
1

ALIGN: A System for Automating Analog Layout
Tonmoy Dhar1, Kishor Kunal1, Yaguang Li2, Meghna Madhusudan1, Jitesh Poojary1,

Arvind K. Sharma1, Wenbin Xu2, Steven M. Burns3, Ramesh Harjani1, Jiang Hu2,
Desmond A. Kirkpatrick3, Parijat Mukherjee3, Sachin S. Sapatnekar1, and Soner Yaldiz3

1 University of Minnesota, Minneapolis, MN, USA
2 Texas A&M University, College Station, TX, USA

3 Intel Labs, Hillsboro, OR, USA

F

Abstract—ALIGN (“Analog Layout, Intelligently Generated from
Netlists”) is an open-source automatic layout generation flow for analog
circuits. ALIGN translates an input SPICE netlist to an output GDSII
layout, specific to a given technology, as specified by a set of design
rules. The flow first automatically detects hierarchies in the circuit netlist
and translates layout synthesis to a problem of hierarchical block as-
sembly. At the lowest level, parameterized cells are generated using an
abstraction of the design rules; these blocks are then assembled under
geometric and electrical constraints to build the circuit layout. ALIGN
has been applied to generate layouts for a diverse set of analog circuit
families: low frequency analog blocks, wireline circuits, wireless circuits,
and power delivery circuits.

1 MOTIVATION AND GOALS

ALIGN (Analog Layout, Intelligently Generated from
Netlists) is an open-source layout generator for analog
circuits that is currently under development. Version 1 of
the software flow was released in August 2020. The ALIGN
project engages a joint academic/industry team to translate
a SPICE-level netlist into a physical layout, with 24-hour
turnaround and no human in the loop. The ALIGN flow
inputs a netlist whose topology and transistor sizes have
already been chosen, specifications, and a process design kit
(PDK), and outputs GDSII.

The philosophy of ALIGN is to compositionally synthe-
size the layout by first identifying layout hierarchies in the
netlist, then generating correct-by-construction layouts at
the lowest level of hierarchy, and finally assembling blocks
at each level of hierarchy during placement and routing.
Thus, a key step in ALIGN is to identify these hierarchies
to recognize the building blocks of the design. In doing so,
ALIGN mimics the human designer, who identifies known
blocks, lays them out, and then builds the overall layout
hierarchically. At the lowest level of this hierarchy is an
individual transistor; these transistors are then combined
into larger fundamental primitives [e.g., differential pairs,
current mirrors], then modules [e.g., operational transcon-
ductance amplifiers (OTAs)], up through several levels of
hierarchy to the system level [e.g., a radio-frequency (RF)

This work was supported in part by the DARPA IDEA program under
SPAWAR contract N660011824048.

Fig. 1: Classification of analog circuits, showing the factors
that are important in each category.

transceiver]. ALIGN uses a mix of algorithmic techniques,
template-driven design, and machine learning (ML) to cre-
ate layouts that are at the level of sophistication of the expert
designer.

Unlike digital designs that are built from a composition
of a small number of building blocks, analog circuits tend
to use a wide variety of structures. Each of these has its
own constraints and requirements, and traditionally only
the expert designer has been able to build circuits that could
deliver high performance. ALIGN targets a wide variety
of analog designs, in both bulk and FinFET technologies,
covering four broad classes of functionality:

• Low-frequency components that include analog-to-
digital converters (ADCs), amplifiers, and filters.

• Wireline components that include clock/data recov-
ery, equalizers, and phase interpolators.

• RF/Wireless components that implement transmit-
ters, receivers, etc.

• Power delivery components include capacitor- and
inductor-based DC-to-DC converters.

Each class is characterized by similar building blocks that
may have a similar set of performance parameters, although
it should be mentioned that there is considerable diversity
even within each class. An overview of factors that are
important in each category is summarized in Fig. 1.

There have been several prior efforts to automate analog
layout synthesis [1]–[7], but these methods are not widely

deployed in tools today. Some methods address limited
classes of designs; others cannot be tuned to handle a wide
enough set of variants of the same design class. Moreover,
there is a general consensus that prior methods for automat-
ing analog layout have been unable to match the expert
designer, both in terms of the ability to comprehend and
implement specialized layout tricks, and the number and
variety of topologies with circuit-specific constraints. The
ultimate goal for analog layout synthesis is to reach the
quality of a hand-crafted design.

In recent years, the landscape has shifted in several
ways, making automated layout solutions attractive. First,
in nanometer-scale technologies, restricted design rules with
fixed pitches and unidirectional routing limit the full free-
dom for layout that was available in older technologies, thus
reducing the design space to be explored during layout,
reducing the advantage to the human expert. Second, today
more analog blocks are required in integrated systems than
before, and several of these require correct functionality
and modest performance. The combination of increasing
analog content with the relaxation in specifications cre-
ates a sweet spot for analog automation. Even for high-
performance blocks, an automated layout generator could
considerably reduce the iterations between circuit optimiza-
tion and layout, where layout generation is the primary
bottleneck. Third, the advent of ML provides the promise for
attacking the analog layout problem in a manner that was
not previously possible, and set the stage for no-human-in-
the-loop design.

This article provides an overview of the technical details
of ALIGN and shows how ALIGN has been used to translate
analog circuit netlists to layouts. The core ALIGN engine
can be run with no human in the loop, enabled by ML
algorithms that perform the functions typically performed
by humans, e.g., recognizing hierarchies in the circuit during
auto-annotation, or generating symmetry constraints for
layout. ML algorithms can also be instrumental in creating
rapid electrical constraint checkers, which verify whether
a candidate placement/routing solution meets performance
constraints or not, and using this to guide the place-and-
route engine towards optima that meet all specification. For
deeper details, the reader is referred to detailed descriptions
in [8]–[11], and to watch for new publications of ongoing
work by our group.

2 THE TECHNICAL CORE OF ALIGN
The ALIGN flow consists of five modules, illustrated in
Fig. 2:
(1) Netlist auto-annotation creates a multilevel hierarchical
representation of the input netlist and identifies structural
symmetries in the netlist. This is a key step that is used to
hierarchically build the layout of the circuit.
(2) Design rule capture abstracts the proprietary PDK into
a simplified grid, appended with Boolean constraints as
needed, that must be obeyed at all steps during layout.
(3) Constraint generation identifies the performance con-
straints to be met, and transforms them into layout con-
straints, such as maximum allowable net lengths, or con-
straints such as matching/common-centroid based on struc-
tural information identified during auto-annotation.

Netlist
auto-

annotation

Electrical
constraint
generation

Primitive
layout

generation

Block assembly
(placement,

floorplanning, routing)

D
esign
rules

Input:
Unannotated
netlist

Output:
GDSII

Input: PDK

ALIGN Layout Generator

Machine learning models

CORE LAYOUT GENERATION ENGINE

Fig. 2: Overview of the ALIGN flow.

(4) Parameterized primitive cell generation automatically
builds layouts for primitives, the lowest-level blocks in
the ALIGN hierarchy. Primitives typically contain a small
number of transistor structures (each of which may be
implemented using multiple fins and/or fingers). A param-
eterized instance of a primitive in the netlist is automatically
translated to a GDSII layout in this step.
(5) Hierarchical block assembly performs placement and
routing on the hierarchical circuit structure while meeting
geometric and electrical constraints.
The flow creates a separation between open-source code
and proprietary data. Proprietary PDK models must be
translated into an abstraction that is used by the layout
generators. Parts of the flow are driven by ML models: the
flow provides infrastructure for training these models on
proprietary data.

The overall ALIGN flow is intended to support no-
human-in-the-loop design. However, the flow is modular
and supports multiple entry points: for example, the auto-
annotation module could be replaced by designer annota-
tion, and the rest of the flow could be executed using this
annotation. The flow is flexible to user input: for example,
the user can specify new primitives, and they will be used
by the annotation module as well as the layout generator
within the flow.

2.1 Netlist Auto-Annotation

This step groups transistors and passives in the input netlist
into a hierarchical set of building blocks and identifies
constraints on the layout of each block. The input to ALIGN
is a SPICE netlist that is converted to a graph representation.
Next, features of the graph are recognized, and a circuit
hierarchy is created. If the input netlist is partitioned into
subcircuits, such information is used during recognition,
but ALIGN does not count on netlist hierarchy. Instead,
hierarchies are automatically identified and annotated. It
is important to note that the best layout hierarchy may
sometimes differ from a logical netlist hierarchy; hence,
ALIGN may flatten netlist hierarchies to build high-quality
layouts.

Analog designers typically choose from a large number
for variants of each design block, e.g., between textbooks
and research papers, there are well over 100 widely used
OTA topologies of various types (e.g., telescopic, folded
cascode, Miller-compensated). Prior methods are library-
based (i.e., they match a circuit to prespecified templates) [4]
or knowledge-based (i.e., they determine block functionality
using a set of encoded rules) [1], or both [12]. Library-
based methods require a large library, while rule-based

2

VoutnVoutp Vinp Vinn

Id

Vdd

Vdd

Vss

Vbiasn

VoutnVoutp Vinp Vinn

Id

Vdd

Vdd

Vss

Vbiasn

Current mirrorCurrent mirror

Differential pairDifferential pair

Differential loadDifferential load

Switched Capacitor Filter Current Mirror OTA Primitives
ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

C2

CA

CA

C3

C1

C1

C2

CL

CL

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

C2

CA

CA

C3

C1

C1

C2

CL

CL

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

C2

CA

CA

C3

C1

C1

C2

CL

CL

VoutnVoutp Vinp Vinn

Id

Vdd

Vdd

Vss

Vbiasn

Current mirror

Differential pair

Differential load

Switched Capacitor Filter Current Mirror OTA Primitives
ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

ɸ1

ɸ2

ɸ2 ɸ2

ɸ1 ɸ1

C2

CA

CA

C3

C1

C1

C2

CL

CL

Fig. 3: Extracting netlist hierarchy during auto-annotation.

methods must be supported by an exhaustive knowledge
base, both of which are hard to build and maintain. ALIGN
uses two approaches for annotating circuits blocks, both
based on representing the circuit connectivity using a graph
representation:

(1) ML-based methods: For commonly encountered blocks,
the problem of identifying blocks maps on to whether a
subgraph of the larger circuit is isomorphic to a known
cell. However, to allow for design variants, ALIGN uses
approximate graph isomorphism, enabled by the use of graph
convolutional neural networks (GCNs) that classify nodes
within the circuit graph into classes (e.g., OTA nodes, LNA
nodes, Mixer nodes). With some minimal postprocessing, it
is demonstrated that this approach results in excellent block
recognition. Details of the approach are provided in [8]. A
training set for the GCN, consisting of 1390 OTA circuits,
including bias networks, is available on the ALIGN GitHub
repository.

(2) Graph traversal based methods: It is unrealistic to build
a training set that covers every possible analog block, and
for blocks that lie outside the scope of the GCN training
set, we use graph-based approaches to recognize repeated
structures within a circuit. Such structures typically require
layout constraints: for example, analog-to-digital converters
may use a set of binary weighted capacitors or a set of
resistors in an R-2R ladder, and these require careful place-
ment in common-centroid fashion and symmetric routing.
ALIGN employs methods based on graph traversal and ap-
proximate subgraph isomorphism to recognize these array
structures.

Once these structures are recognized in a very large
circuit graph, they form a level of hierarchy. Within these
blocks, lower hierarchical levels can be detected using
conventional subgraph isomorphism methods: sub-blocks
at these levels have fewer variants and can be efficiently
recognized using library-based approaches.

Fig. 3 shows the results of auto-annotation on a
switched-capacitor filter. A GCN-based approach can be
used to identify the current-mirror OTA, and then primitives
within the OTA can be identified. In the process, lines of
symmetry within each structure can be found, as illustrated
in the figure. At the primitive level, since the layouts are
generated by the parameterized cell generator, these lines of
symmetry are implicit in the definition of the primitive. At
higher levels, these can be inferred during auto-annotation.

2.2 Design Rule Abstraction
The ALIGN layout tools are guided by process-specific de-
sign rules that ensure design rule correctness. The complex-
ity of design rules has grown significantly in recent process
generations. Efforts at building generalized abstractions for
process rules have previously been proposed (e.g., [13]).
ALIGN uses a more efficient design rule abstraction mech-
anism that creates fixed grid structures in FEOL and BEOL
layers, as illustrated in Fig. 4. Major grids (bold lines), repre-
sent centerlines for routes, while minor grids (dashed lines)
correspond to stopping points for features. The gridding
structure and basic process information is abstracted into
a JSON file. For BEOL layers, this includes:

• default wire dimensions, pitch, and grid offset
(Pitch, Width, MinL, MaxL, Offset).

• end-to-end spacing design rules (EndToEnd).
• metal direction, colors (Direction, Color).
• via rules (Space{X/Y}, Width{X/Y},

VencA_{L/H}, VencP_{L,H}).

11Fundamental Research

• [Previously presented]
• Philosophy: Simplify design by restricting layout onto grids
• Distance-based design rules become enforced either:

• By adherence of objects to the grid, or
• By Boolean rules relating the presence/absence of objects on the grid

• Examples: Pitch, width and space, minimum end-to-end, via rules
• ~8x reduction in the abstracted rules compared to PDK DRCs

Task 2: PDK Abstraction

Via-to-via rule: diagonal vias disallowed

Min
End-to-End

Width

Pitch

La
ye

r-s
pe

ci
fic

 g
rid

di
ng

*Design rules for MockPDKs available on ALIGN github

Applied to
• Commercial PDKs

• FinFET: GF12/14, Bulk: TSMC65
• Synthetic PDKs

• ASAP7, FinFET Mock PDK*
• (NEW) 65nm Bulk MockPDK*

[Steegen et al., IEDM05]
• Internally within Intel to 22, 14, 10, 7, 5,

3nm process technologies

11Fundamental Research

• [Previously presented]
• Philosophy: Simplify design by restricting layout onto grids
• Distance-based design rules become enforced either:

• By adherence of objects to the grid, or
• By Boolean rules relating the presence/absence of objects on the grid

• Examples: Pitch, width and space, minimum end-to-end, via rules
• ~8x reduction in the abstracted rules compared to PDK DRCs

Task 2: PDK Abstraction

Via-to-via rule: diagonal vias disallowed

Min
End-to-End

Width

Pitch

La
ye

r-s
pe

ci
fic

 g
rid

di
ng

*Design rules for MockPDKs available on ALIGN github

Applied to
• Commercial PDKs

• FinFET: GF12/14, Bulk: TSMC65
• Synthetic PDKs

• ASAP7, FinFET Mock PDK*
• (NEW) 65nm Bulk MockPDK*

[Steegen et al., IEDM05]
• Internally within Intel to 22, 14, 10, 7, 5,

3nm process technologies

Fig. 4: Design rule abstraction using per-layer grids and rules.

While this is superficially similar to traditional λ-rules,
our abstraction permits a different gridding structure that
can vary from layer to layer, and the use of major/minor
grid lines that represent wire pitches, wire overhangs, as
well as the ability to incorporate via rules through Boolean
constraints. Our approach reduces the complex set of con-
ditions embedded in thousands of rules in a design rule
manual to a massively simplified and much smaller set,
enforcing some limitations through the choice of grids. It
is found, through comparisons with manual design, that
this leads to minimal or zero degradation in layout quality.
Advanced commercial process nodes (22nm, 10nm, 7nm,
beyond) have been abstracted into this simplified form. The
abstraction enables layout tools to comprehend PDK fea-
tures such as regular and irregular width and spacing grids
(for each layer), minimum end to end spacing design rules
(between metals in the same track), minimum length design
rules, and enforced stopping point grids. For convenience,
the JSON file also encodes per unit parasitics for metal
layers and vias.

To facilitate further layout research, we have released
design rules for Mock PDKs based on public-domain infor-
mation to abstract layout rules at a 14nm FinFET node [14]
and a 65nm bulk node [15]. While they do not represent
real technologies, they are realistic. Validation of the design

3

tools on these PDKs, which can be freely shared, helps the
software development process.

2.3 Constraint Generation
Two types of constraints are generated to guide layout:
(1) Geometric constraints: As the auto-annotation step rec-
ognizes known blocks or array structures, it associates ge-
ometric requirements with these blocks, such as symmetry,
matching, and common-centroid constraints. For instance,
Fig. 3 shows lines of symmetry in an OTA structure that
must be respected during layout. These constraints are ex-
tracted naturally as part of auto-annotation. In contrast with
prior methods that are based on simulation-intensive sensi-
tivity analysis [16] or graph traversal based exact match-
ing to templates [4], the approach in ALIGN method [9]
combines graph traversal methods with machine learning
based methods and is computationally efficient, capable
of finding hierarchically nested symmetry constraints even
under approximate matches.
(2) Electrical constraints: ALIGN generates a layout based
on a fixed netlist, and performance shifts are driven by
changes in parasitics from netlist-level estimates to post-
layout values. Therefore, ALIGN translates electrical con-
straints to bound the maximum parasitics at any node
of the circuit. For instance, an electrical constraint may
be translated to a maximum limit on the resistance of a
wire connecting two nodes, which in turn corresponds to
a constraint on the maximum length, the number of parallel
metal tracks, and the number of vias on the route connecting
these nodes. This feature is currently being implemented in
ALIGN [10], [11] and is a work in progress. The essential
idea is to develop a fast ML inference engine that operates
within the inner loop of an iterative placer, and for each
placer configuration, determines whether or not its electrical
constraints are satisfied.

These constraints are passed on to the layout generation
engine to guide layout at all levels of hierarchy.

2.4 Parameterized Primitive Layout Generation
ALIGN provides the user with a predefined library of
parameterizable primitives, as illustrated in Fig. 5. Each
primitive consists of a small number of transistor or passive
units; however, each such unit may consist of multiple repli-
cated structures, such as multifin/multifinger transistors, or
resistive/capacitive arrays.

The primitive cell layout follows the gridded abstraction
defined by the design rules, and cell generation can be
parameterized in terms of the unit cell and the number of
unit cells, as shown in Fig. 6. For a transistor, a unit cell may
be parameterized by the number of fins in a FinFET tech-
nology; for a capacitor, parameterization may correspond to
the size of the unit capacitor. Additionally, primitive layouts
can be parameterized by their aspect ratio, their layout style
(common-centroid vs. interdigitated transistors), the gate
length, the effective widths of critical wires in the cell, etc.

The utility in recognizing primitives and creating pa-
rameterized layouts is in enabling ALIGN to create layouts
that incorporate the appropriate geometric constraints (e.g.,
symmetry or common-centroid). In principle, a layout could
be built using a “sea of transistors,” where the primitive

Fig. 5: Examples of primitive structures.

2Fundamental Research

Task 2: Primitives

• New features
• More built-in primitives
• Body contact
• Parallel routing connections
• Digital, “digital analog” cells

• Parameterized primitives

Body contacts

3 parallel wires
to reduce R

10K resistor 50fF Capacitor Array

DP – Common-centroid DP – Interdigitated

A B B A A B A B

Lg: Lmin Lg: 4xLmin

By aspect ratio

By # fins/fingers, active width, gate lengthBy layout pattern

Fig. 6: Parameterization of primitive layouts.

corresponds to a single transistor, but it would be challeng-
ing for such an approach to enforce symmetry requirements
beyond the transistor primitives. Prior methods for primi-
tive layout generation [17]–[20] have generally not been as
modular or scalable as the ALIGN approach.

2.5 Hierachical Block Assembly

Given the layouts of all primitives and the hierarchical
block level structure of the circuit, extracted during auto-
annotation, the placement and routing step performs hierar-
chical block assembly that obeys the geometric and electrical
constraints described earlier.

Each layout block in the hierarchy can have multiple
layout options with different shapes generated for each
module. For example, primitives can be parameterized by
aspect ratio, and multiple aspect ratios for other blocks
may be generated. Flexible shapes drive floorplanning-like
placement algorithms that deliver compact layouts under
the electrical and geometric constraints passed on to them
by the constraint generation step. Routing is integrated into
each hierarchical level, accounting for net length/parasitic
constraints, shielding and symmetry requirements, and con-
forming with the design rules embedded into the PDK
abstraction. The placer is based on prior work using the
sequence pair method [6] and can handle general geometric
constraints, such as symmetry, matching and alignment.
Symmetry, shielding and resistance-constrained routing are
supported during routing.

4

The ALIGN flow can employ one of two detailed routers:
(a) A constructive router that uses an integer linear pro-
gramming formulation and an A* algorithm; this works
particularly well for more sparse designs. (b) A SAT-based
detailed router1, released by Intel, which is well suited for
congested designs.

3 WORKING IN AN OPEN-SOURCE ENVIRONMENT

3.1 Why Open-source Software?

Aside from technical innovations, ALIGN breaks new
ground in providing a fully open-source analog layout
software flow, which has not been available in the past. The
availability of open-source software is crucial for nurturing
future innovations in the field. First, further research can
build upon a “piece of the puzzle” of analog layout de-
sign: for instance, a new cell generator can plug into the
open-source ALIGN flow and show end-to-end results from
netlist to layout, rather than providing limited results at
the end of cell generation. Second, open-source enables a
path to ensure that reported results can be reproducible. The
traction for open-source is evidenced not only through the
efforts in ALIGN, but also in other notable efforts on analog
layout [21], digital layout (including back-end infrastructure
such as parasitic extraction on power delivery that is more
broadly applicable to any other class of design [22].

3.2 Open-source Designs

Unlike digital designs, where a wealth of designs exists in
the public domain, the font of analog designs is very sparse.
Design parameters tend to be closely linked with process
nodes and existing automation flows do not allow robust
circuit optimization to meet constraints. Sharing designs
based on a commercial PDK over multiple institutions re-
quires a multiway nondisclosure agreement involving the
institutions, the foundry, and the foundry access provider.
Within the ALIGN team, this issue was complicated by the
need for such an agreement to cover both academic and
industry team members.

The ALIGN GitHub repository hosts a number of sized
analog netlists, a set that is growing, to facilitate open
research. These netlists contain testbenches that measure the
performance parameters of the circuit to verify its adherence
to specifications. Moreover, as stated earlier, the repository
contains unsized netlist topologies for a variety of OTA
circuits.

3.3 Software Infrastructure

The software flow is maintained on a GitHub repository [23]
and may be downloaded and installed in a native Linux
environment. Alternatively, it may be run in a lightweight
Docker container that performs operating system virtual-
ization and enables portability and ease of maintenance.
ALIGN can leverage the use of other open-source tools such
as the KLayout layout viewer. The core software flow is
Python-based, and the computationally intensive engines –
notably the placer and router – are implemented in C++.

1. github.com/ALIGN-analoglayout/AnalogDetailedRouter

The project is aided by the use of tools that are vital to a
open-source infrastructure with continuous integration (CI).
These include CI build flows, using CircleCI, for automated
build of new components as they are added to the repos-
itory; unit testing, using pytest, to verify the correctness
of individual units of source code that is added to the
repository; code coverage to measure how much of the code
is executed by the automated tests, using coverage.py with
Codecov for tracking; and automated code review for code
quality checks using Codacy.

TABLE 1: Post-Layout Performance Analysis of the
ALIGN-generated OTA

Schematic Manual layout ALIGN Layout
(RC extract) (RC extract)

Gain (dB) 24.28 24.22 24.14
3dB frequency (MHz) 24 24 24
UGF (MHz) 199 197 198
Phase margin (◦) 89 88 88
Input offset (mV) ∼0 0.13 0.10

TABLE 2: Post-Layout Performance Analysis of the
ALIGN-generated Switched-Capacitor Filter Layout

Specification Schematic Manual layout ALIGN layout
(RC extract) (RC extract)

Gain (dB) 16.1 15.84 15.59
3dB frequency (KHz) 503 511 524
Unity gain frequency (KHz) 3435 3415 3610
Input offset (mV) 0 0.13 0.10

4 RESULTS

The ALIGN flow has been applied to generate layouts for
circuits that lie in all four classes: low-frequency analog,
wireline, wireless, and power delivery. We are unaware of a
prior layout generator that has been demonstrated to handle
such a broad class of circuits. Fig. 7 illustrates a sample set
of layouts generated using ALIGN: these include a current-
mirror OTA with bias circuitry and its power grid (Fig. 7b),
a switched capacitor (SC) filter containing the OTA (Fig. 7c),
an analog-to-digital converter [all low-frequency analog], a
bandpass filter (Fig. 7e) [wireless], a switched capacitor DC-
to-DC converter (Fig. 7a) [power delivery], and an equal-
izer (Fig. 7f) and an optical receiver (Fig. 7g) [both wireline].
The layouts are compact and regular.

A set of representative results for the post-layout per-
formance analysis of ALIGN-generated layouts for the OTA
(Fig. 7b) and the switched-capacitor filter (Fig. 7c) contain-
ing the OTA are shown in Tables 1 and 2, respectively. For
the larger block, the switched-capacitor filter, the extraction
results show a good match with the schematic simulation

TABLE 3: Comparing the performance of the schematic (S),
manual layout (M), and the ALIGN-generated layout (A)

SDC Signal adder
Gain (dB) [∆Gain] BW (GHz) [∆BW] Gain (dB) [∆Gain] BW (GHz) [∆BW]

S -5.6 27.9 2.9 24.5
M -6.0 [-3.5%] 19.8 [-29.0%] 2.3 [-5.8%] 15.7 [-36.1%]
A -6.1 [-4.8%] 23.0 [-17.6%] 2.2 [-7.0%] 19.8 [-19.2%]

VGA Linear equalizer
Gain (dB) [∆Gain] BW (GHz) [∆BW] Gain (dB) [∆Gain] BW (GHz) [∆BW]

S -10.9dB ∼ 5.5 26.25 1.2 18.0
M -10.9dB ∼ 5.6 [1.0%] 12.58 [-52.1%] 0.9 [-3.4%] 13.9 [-22.8%]
A -11.0dB ∼ 5.0 [-5.6%] 13.40 [-49.0%] 0.8 [-4.2%] 15.7 [-12.8%]

5

(a) SC DC2DC (b) OTA with bias circuitry

(c) SC Filter

(d) ADC (e) BPF

(f) Equalizer

(g) Optical Receiver

Fig. 7: Sample layouts generated by ALIGN. Note that the
block sizes are different; the layouts are not on the same scale.

(this level of mismatch between schematic and layout per-
formance is quite normal in analog design), attesting to
the quality of the layout. Moreover, the layout respects
symmetry constraints that are considered important by ana-
log designers to guard against parasitic mismatch due to
systematic variability. For both layouts, the performance of
the ALIGN-generated layout is very close to that of the
manual layout.

For a set of wireline circuits, Table 3 shows a comparison
between the performance of the ALIGN-generated layout
and a hand-crafted manual layout, and demonstrates that
the performance of both layouts is comparable.

5 CONCLUSION

This paper summarizes the current state of the ALIGN flow
for automated analog layout synthesis. ALIGN is open-
source and may be downloaded and used freely [23]. Cur-
rently, the project has seen about 24 months of development,
and can already synthesize layouts for a wide variety of
analog circuits. It is expected that the capabilities of ALIGN
will be enhanced significantly over the next few years,
handling more sophisticated circuits, more complex con-
straints, and improved software robustness. The inherent
hierarchical approach adopted by ALIGN is key to ensuring
scalability of the software to larger designs in future, while
also providing high-quality solutions.

REFERENCES

[1] R. Harjani, et al., “OASYS: A framework for analog circuit syn-
thesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 8, pp. 1247–1266, Dec. 1989.

[2] J. Cohn, et al., “KOAN/ANAGRAM II: New tools for device-level
analog placement and routing,” IEEE Journal of Solid-State Circuits,
vol. 26, pp. 330–342, Mar. 1991.

[3] H. E. Graeb, ed., Analog Layout Synthesis: A Survey of Topological
Approaches. New York, NY: Springer, 2010.

[4] M. Eick, et al., “Comprehensive generation of hierarchical place-
ment rules for analog integrated circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
pp. 180–193, Feb. 2011.

[5] H.-C. Ou, et al., “Simultaneous analog placement and routing with
current flow and current density considerations,” in Proceedings of
the ACM/EDAC/IEEE Design Automation Conference, 2013.

[6] Q. Ma, et al., “Simultaneous handling of symmetry, common
centroid, and general placement constraints,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
pp. 85–95, Jan. 2011.

[7] C.-Y. Wu, et al., “A pre-search assisted ILP approach to analog
integrated circuit routing,” in Proceedings of the IEEE International
Conference on Computer Design, pp. 244–250, 2015.

[8] K. Kunal, et al., “GANA: Graph convolutional network based
automated netlist annotation for analog circuits,” in Proceedings
of the Design, Automation & Test in Europe, 2020.

[9] K. Kunal, et al., “A general approach for identifying hierarchical
symmetry constraints for analog circuit layout,” in Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design,
2020.

[10] Y. Li, et al., “Exploring a machine learning approach to perfor-
mance driven analog IC placement,” in Proc. ISVLSI, 2020.

[11] Y. Li, et al., “A customized graph neural network model for
guiding analog ic placement,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 2020.

[12] P.-H. Wu, et al., “A novel analog physical synthesis methodol-
ogy integrating existent design expertise,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
pp. 199–212, Feb. 2015.

6

[13] G. Soto, “Discover the power of OPAL, a new high-level design
rule modeling language,” 2017. (Talk at an Si2 Event at DAC 2017,
http://www.si2.org/events/opal/).

[14] C. H. Lin et al., “High performance 14nm SOI FinFET CMOS
technology with 0.0174µm2 embedded DRAM and 15 levels of
Cu metallization,” in IEEE International Electronic Devices Meeting,
pp. 3–8, 2014.

[15] A. Steegen et al., “65nm CMOS technology for low power applica-
tions,” in IEEE International Electronic Devices Meeting, pp. 64–67,
2005.

[16] E. Malavasi, et al., “Automation of IC layout with analog con-
straints,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 8, pp. 923–942, 1996.

[17] S. Bhattacharya, et al., “Correct-by-construction layout-centric re-
targeting of large analog designs,” in Proceedings of the ACM/IEEE
Design Automation Conference, pp. 139–144, 2004.

[18] N. Lourenco, et al., “Laygen-automatic layout generation of analog
ics from hierarchical template descriptions,” in Proc. IEEE Ph. D.
Research in Microelectronics and Electronics, pp. 213–216, 2006.

[19] L. Zhang, et al., “An automated design tool for analog layouts,”
IEEE Transactions on VLSI Systems, vol. 4, pp. 881–894, Aug. 2006.

[20] E. Yilmaz and G. Dundar, “Analog layout generator for cmos
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, pp. 32–45, Jan. 2008.

[21] B. Xu, et al., “MAGICAL: Toward fully automated analog IC layout
leveraging human and machine intelligence,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 2019.

[22] T. Ajayi, et al., “Toward an open-source digital flow: First learnings
from the openroad project,” in Proceedings of the ACM/IEEE Design
Automation Conference, 2019.

[23] “ALIGN: Analog layout, intelligently generated from netlists,”
Software repository, accessed August 1, 2020. https://github.
com/ALIGN-analoglayout/ALIGN-public.

7

