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ABSTRACT Traditional Von Neumann computing is falling apart in the era of exploding data volumes
as the overhead of data transfer becomes forbidding. Instead, it is more energy-efficient to fuse compute
capability with memory where the data reside. This is particularly critical to pattern matching, a key
computational step in large-scale data analytics, which involves repetitive search over very large databases
residing in memory. Emerging spintronic technologies show remarkable versatility for the tight integration
of logic and memory. In this article, we introduce SpinPM, a novel high-density, reconfigurable spintronic
in-memory pattern matching spin–orbit torque (SOT)—specifically spin Hall effect (SHE)—substrate, and
demonstrate the performance benefit SpinPM can achieve over conventional and near-memory processing
systems.

INDEX TERMS Computational random access memory, pattern matching, processing in memory, spin Hall
effect (SHE) magnetic tunnel junction (MTJ).

I. INTRODUCTION

CLASSICAL computing platforms are not optimized for
efficient data transfer, which complicates large-scale

data analytics in the presence of exponentially growing data
volumes. Imbalanced technology scaling further exacerbates
this situation by rendering data communication, and not com-
putation, a critical bottleneck [1]. Specialization in hardware
cannot help in this case unless conducted in a data-centric
manner.

Tight integration of compute capability into the memory,
processing in memory (PIM), is especially promising as the
overhead of data transfer becomes forbidding at scale. The
rich design space for PIM spans full-fledged processors and
coprocessors residing in memory [2]. Until the emergence
of 3-D stacking, however, the incompatibility of the state-
of-the-art logic and memory technologies prevented practi-
cal prototype designs. Still, 3-D stacking can only achieve
near-memory processing (NMP) [3]–[5]. The main challenge
remains to be fusing computation and memory without vio-
lating array regularity.

Emerging spintronic technologies show remarkable ver-
satility for the tight integration of logic and memory. This
article introduces a high-density, reconfigurable spintronic

in-memory compute substrate for pattern matching, SpinPM,
which fuses computation and memory by using spin–orbit
torque (SOT)— specifically, spin Hall effect (SHE)—as the
switching principle to perform in situ computation in spin-
tronic memory arrays. The basic idea is to add compute capa-
bility to the magnetic tunnel junction (MTJ)-based memory
cell [6], [7], without breaking the array regularity; thereby,
each memory cell can participate in gate-level computation
as an input or as an output. Computation is not disruptive,
i.e., memory cells acting as gate inputs do not lose their stored
values.

SpinPM can implement different types of basic Boolean
gates to form a functionally complete set; therefore, there
is no fundamental limit to the types of computation. Each
column in a SpinPM array can have only one active gate at
a time, and however, computation in all columns can proceed
in parallel. SpinPM provides true in-memory computing by
reconfiguring cells within the memory array to implement
logic functions. As all cells in the array are identical, inputs
and outputs to logic gates do not need to be confined to a spe-
cific physical location in the array. In other words, SpinPM
can initiate computation at any location in the memory
array.
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FIGURE 1. (a) SpinPM cell. (b) Two-input gate formation in the array. (c) Two-input NOR gate circuit equivalent.

Pattern matching is at the core of many important large-
scale data analytics applications, ranging from bioinformatics
to cryptography. The most prevalent form is string match-
ing via repetitive search over very large reference databases
residing in memory. Therefore, compute substrates, such as
SpinPM, that collocate logic and memory to prevent slow and
energy-hungry data transfers at scale, have great potential.
In this case, each step of computation attempts to map a short
character string to (the most similar substring of) an orders of
magnitude longer character string and repeats this process for
a very large number of short strings, where the longer string
is fixed and acts as a reference.

In this article, we detail the end-to-end design of the
SpinPM accelerator for large-scale string matching. The
design covers device-, circuit-, and architecture-level details,
including the programming interface. We evaluate SpinPM
using representative benchmarks from emerging application
domains to pinpoint its potential and opportunities for opti-
mization. Specifically, Section II covers the basics of how
SpinPM fuses compute with memory. Section III introduces
a SpinPM implementation for pattern (string) matching;
Sections IV and V provide the evaluation; Section VI
compares and contrasts SpinPM to related work. Finally,
Section VII concludes this article.

II. BASICS
A. FUSING COMPUTATION AND MEMORY
Without loss of generality, SpinPM adapts computational
RAM (CRAM) [8] as the spintronic PIM substrate to
accelerate large-scale string matching. In its most basic
form, a CRAM array is essentially a 2-D magnetore-
sistive RAM (MRAM). When compared to the standard
2T(ransistor)1M(TJ) MRAM cell, however, the array fea-
tures an additional logic line (LL) per cell —as shown
in Fig. 1(a) and (b)—to connect cells to perform logic opera-
tions. A CRAM cell can operate as a regular MRAMmemory
cell or serve as an input/output to a logic gate.

Each MTJ consists of two layers of ferromagnets, termed
pinned and free layers, separated by a thin insulator. The
magnetic spin orientation of the pinned layer is fixed; the
magnetic spin orientation of the free layer is controllable.
SpinPM uses SHE MTJs, where—in order to separate read
and write paths for more effective optimization—a heavy
metal layer (i.e., the SHE channel) is juxtaposed with the
free layer. The SHE channel has a high resistance that brings
down the write current, leading to lower energy consumption.
Changing the spin orientation of the free layer entails passing
a (polarized) current through the SHE channel, where the
current direction sets the free layer orientation. The relative
orientation of the free layer with respect to the pinned layer,
i.e., antiparallel (AP) or parallel (P), gives rise to two distinct
MTJ resistance levels, i.e., Rhigh and Rlow, which encode
logic 1 and 0, respectively.

1) MEMORY CONFIGURATION
When the array is configured as a memory, the LL is active,
i.e., connected to a voltage source. In the following, we detail
the configuration for read word line (RWL) and write word
line (WWL), considering various memory operations.

1) Data Retention: The RWL and WWL are set to 0 to
isolate the cells and to prevent current flow through the
MTJ and the SHE channel (which we refer to together
as the SHE-MTJ).

2) Read: RWL is set to 1, to connect each SHE-MTJ
to its LL. WWL is set to 0. A small voltage pulse
applied between LL and bit select line (BSL) induces
a current through the SHE-MTJ, which is a function of
the resistance level (i.e., logic state) and in turn a sense
amplifier attached to BSL captures.

3) Write: WWL is set to 1 and transistor TM is switched
ON to connect the SHE channel to its LL. RWL is set
to 0. A large enough voltage pulse (in the order of the
supply voltage) is applied between LL and BSL to
induce a large enough current through LL and the SHE
channel to change the spin orientation of the free layer.

2) LOGIC CONFIGURATION
In the logic mode, LL establishes the connection between
inputs and outputs of logic gates.We also distinguish between
two sets of BSL: even BSL (EBSL) and odd BSL (OBSL).
These are utilized to connect all cells participating in com-
putation, on a per column basis, as input and output cells.
Such cells may act as logic gate inputs or outputs, where the
only restriction is having all inputs connected on the same
type of BSL and the output on the different types. For each
SpinPM input cell participating in computation, RWL is set
to 1 to connect its MTJ with LL. On the other hand, for each
SpinPM output cell participating in computation, WWL is set
to 1 to turn the switch TM on, which in turn connects the SHE
channel to the LL. A voltage pulse applied between EBSL and
OBSL induces a current, dependent on the resistance levels
of input cells, through the SHE channel of the output cell.
As an example, Fig. 1(b) shows the formation of a two-input
logic gate in the array, where cells labeled by ‘‘0,’’ ‘‘1,’’ and
‘‘2’’ correspond to the inputs In0, In1, and the output Out,
respectively. The output cell is preset to a known logic value
(‘‘0’’ or ‘‘1’’), depending on the type of logic operation to
perform, by a standard write. Fig. 1(c) shows the equivalent
circuit; OBSL is grounded, while EBSL is set to voltage V0.
The value of V0 determines the current through the input
MTJs, I0 and I1, as a function of their resistance values R0
and R1. Each input resistance captures the resistance of the
corresponding SHE-MTJ, whereas the output resistance ROut
is only the SHE channel resistance of the output cell. Input
and output cells are connected to LL by setting the respective
RWL andWWL to 1 [colored red in Fig. 1(b)]. IOut = I0+ I1
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TABLE 1. Two-input NOR truth table (Out preset = 0).

flows throughROut. If IOut is higher than the critical switching
current Icrit, it will change the free layer orientation of Out’s
MTJ and, thereby, the logic state of Out. Otherwise, Out will
keep its previous (preset) state.

We can easily expand this example tomore than two inputs.
The key observation is that we can change the logic state
of the output as a function of the logic states of the inputs,
within the array, and voltages applied between BSLs of the
participating cells dictate how such functions look like.

Continuing with the example from Fig. 1(b) and (c), let
us try to implement a universal, two-input NOR gate. Table 1
provides the truth table. Out would be 0 in this case for all
input combinations, but In0 = 0 and In1 = 0, which incurs
the lowestR0 andR1 and, hence, the highest IOut = I0+I1. Let
us refer to this value of IOut as I00, following Table 1. Accord-
ingly, if we preset Out to 0 (before computation starts) and
determineV0 such that I00 does exceed Icrit, while both I11 and
I01 = I10 do not, Out would not switch from (its preset value)
0 to 1 for all input combinations, but In0 = 0 and In1 = 0.
As Boolean gates of practical importance (such as NOR)

are commutative, a single voltage level at the BSLs of the
inputs suffices to define a specific logic function. Each volt-
age level can serve as a signature for a specific logic gate.
In the following, we will refer to such as Vgate. In the earlier
example, Vgate = VNOR. While NOR gate is universal, we can
implement different types of logic gates following a similar
methodology for mapping the corresponding truth tables to
the SpinPM array.

B. BASIC COMPUTATIONAL BLOCKS
We will next introduce basic SpinPM computational blocks
for pattern matching, including inverters (INV), buffers
(COPY), three-input and five-input majority (MAJ) gates,
and 1-bit full adders.

1) INV
INV is a single-input gate. Still, we can follow a similar
methodology to the NOR implementation (see Table 1); preset
output to 0 and define VINV in a way such that I0 (I1), i.e., the
current if the input is 0 (1) is higher (lower) than Icrit such
that the output does (not) switch from the preset 0 to 1.
By definition, I1 < I0 applies, as R1 > R0. However, in this
case, the input cell will inevitably switch, as well, due to the
same current flowing through the input and output cells. INV,
therefore, is a destructive gate, which still can be very useful
if the input data are not needed in the subsequent steps of
computation—as it is the case in our case studies.

2) COPY
For 1-bit copy, two back-to-back invocations of INV can
suffice. A more time and energy-efficient implementation,
however, can perform the same function in one step as fol-
lows; preset output to 1 and define VCOPY in a way such that
I0 (I1), i.e., the current if the input is 0 (1) is higher (lower)
than Icrit such that the output does (not) switch from the
preset 1 to 0. By definition, I1 < I0 applies, as R1 > R0.

TABLE 2. XOR implementation.

3) MAJ
MAJ gates accept an odd number of inputs and assign the
majority (logic) state across all inputs to the output. The
structure for a three-input MAJ3 or five-input MAJ5 gate
is not any different from the circuit structure in Fig. 1(c),
except the higher number of inputs. As an example, IOut of the
MAJ3 gate assumes its highest value for the 000 assignment
of the three inputs—as the resistances of the three inputs,
R0, R1, and R2, assume their lowest value for 000. Any input
assignment having at least one 1 gives rise to a lower IOut than
I000 and having at least two 1s, to an even lower IOut. Finally,
IOut reaches its minimum for the input assignment 111, for
which the inputs assume their highest resistance. Accord-
ingly, we can preset the output to 1 and define VMAJ3 in a
way such that IOut remains higher than Icrit if the three inputs
have less than two 1s such that Out switches from the preset 1
to 0, to match the input majority. We can symmetrically
define VMAJ5, assuming a preset of 1.

4) XOR
XOR is an especially useful gate for comparison, and however,
a single-gate SpinPM implementation is not possible: In this
case, we need Out (not) to switch for 00 and 11, but not for
01 and 10, if the preset is 1 (0). However, due to I00 > I01 =
I10 > I11 and assuming a preset of 1, we cannot let both I00
and I11 remain higher than Icrit (such that Out switches), while
I01 = I10 remains lower than Icrit (such that Out does not
switch). The same observation holds for a preset of 0 as well.

We can implement XOR using a combination of univer-
sal SpinPM gates, such as NOR; thereby, each XOR takes at
least four steps (i.e., logic evaluations). For pattern matching,
we will rely on a more efficient three-step implementation
(see Table 2): In Step 1, we compute S1 = NOR (In0 and In1).
In Step 2, we perform S2 = COPY(S1). In the final Step 3,
we invoke a four-input thresholding TH function, which ren-
ders a 1 only if its inputs contain more than two zeros: Out =
TH(In0, In1, S1, S2). TH has a preset of 0, and the operating
principle is very similar to the majority gates, except that TH
accepts an even number of inputs. We can further optimize
this implementation and fuse Steps 1 and 2 by implementing
NOR as a two-output gate.

5) FULL ADDER
A full adder has three inputs: In0, In1, and carry-in Ci. The
two outputs are Sum and the carry-out Co. Like other logic
functions, we can implement this adder using NOR gates.
However, an implementation based on a pair of MAJ gates
reduces the required number of steps significantly [9]. Fig. 2
shows a step-by-step overview.
Step 1: Co = MAJ (In0, In1,Ci).
Step 2: S1 = INV (Co).
Step 3: S2 = COPY (S1).
Step 4: Sum = MAJ (In0, In1,Ci, S1, S2).

C. COLUMN-LEVEL PARALLELISM
SpinPM can perform only one type of logic function in a
column at a time. This is because there is only one LL that
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FIGURE 2. Full adder implementation [8]. Output of each gate is depicted in red.

spans the entire column, and any cell within the column to
participate in computation gets directly connected to this LL
(see Section II-A).

On the other hand, the voltage levels on BSLs determine
the type of the logic function, where each BSL spans an
entire column. Furthermore, in each row, each of WWL and
RWL—which connect cells participating in computation to
LL—spans an entire row. Therefore, all columns can perform
the very same logic function in parallel on the same set of
rows. In other words, SpinPM supports a special form of
single-instruction multiple-data (SIMD) parallelism, where
instruction translates into logic gate/operation and data into
input cells in each column, across all columns, which span
the very same rows.

Multistep operations are carried out in each column inde-
pendently, one step at a time, while all columns operate in
parallel. The output from each logic step performed within a
column stays in that column and can serve as an input to the
subsequent logic steps (performed in the same column). All
columns follow the same sequence of operations at the same
time. In case of a multibit full adder, as an example, the carry
and sum bits are generated in the same column as the input
bits, which are used in subsequent 1-bit additions in the very
same column.

To summarize, SpinPM can have part or all columns com-
puting in parallel or the entire array serving as memory. Reg-
ular memory reads and writes cannot proceed simultaneously
with computation. Large-scale pattern matching problems
can greatly benefit from this executionmodel, as we are going
to demonstrate next.

III. SPINTRONIC PATTERN MATCHING
Pattern matching is a key computational step in large-scale
data analytics. The most common form by far is character
string matching, which involves repetitive search over very
large databases residing in memory. Therefore, compute sub-
strates, such as SpinPM, that collocate logic and memory
to avoid the latency and energy overhead of expensive data
transfers, have great potential. Moreover, comparison opera-
tions dominate the computation, which represents excellent
acceleration targets for SpinPM. As a representative and
important large-scale string matching problem, in the fol-
lowing, we will use deoxyribonucleic acid (DNA) sequence
prealignment [10] as a running example without loss of
generality and expand SpinPM’s evaluation to other string
matching benchmarks in Section V.

At each step, DNA sequence prealignment tries to map a
short character string to (the most similar substring of) an
orders of magnitude longer character string and repeats this
process for a very large number of short strings, where the
longer string is fixed and acts as a reference. For each string,
the characters come from the alphabet A(denine), C(ytosine),
G(uanine), and T(hymine). The long string represents a com-
plete genome; short strings represent short DNA sequences
(from the same species). The goal is to extract the region

of the reference genome to which the short DNA sequences
correspond to. We will refer to each short DNA sequence as
a pattern and the longer reference genome as reference.

Aligning each pattern to the most similar substring of the
reference usually involves character-by-character compar-
isons to derive a similarity score, which captures the number
of character matches between the pattern and the (aligned
substring of the) reference. Improving the throughput perfor-
mance in terms of number of patterns processed per second in
an energy-efficient manner is especially challenging, consid-
ering that a representative reference (i.e., the human genome)
can be around 109 characters long, at least 2 bits are necessary
to encode each character, and a typical pattern data set can
have hundreds of millions patterns to match [11], where
SpinPM can help due to reduced data transfer overhead and
(column) parallel comparison/similarity score computations.

By effectively pruning the search space, DNA prealign-
ment can significantly accelerate DNA sequence alignment—
which, besides complex pattern matching in the presence
of errors, include preprocessing and postprocessing steps
typically spanning (input) data transformation for more effi-
cient processing, search space compaction, or (output) data
reformatting. The execution time share of pattern match-
ing (accounting for possible complex errors in patterns and
the reference) can easily reach 88% in highly optimized
GPU implementations of popular alignment algorithms [12].1

In the following, we will only cover basic pattern matching
(which can still account for basic error manifestations in the
patterns and the reference) within the scope of prealignment.

Mapping any computational task to the SpinPM array
translates into cooptimizing the data layout, data represen-
tation, and the spatiotemporal schedule of logic operations,
to make the best use of SpinPM’s column-level paral-
lelism. This entails distribution of the data to be processed,
i.e., the reference and the patterns, in a way such that each
column can perform independent computations. The data
representation itself, i.e., how we encode each character of
the pattern and the reference strings, has a big impact on
both the storage and the computational complexity. Specifi-
cally, data representation dictates not only the type but also
the spatiotemporal schedule of (bitwise) logic operations.
Spatiotemporal scheduling, on the other hand, should take
intermediate results during computation into account, which
may or may not be discarded (i.e., overwritten), and which
may or may not overwrite existing data, as a function of the
algorithm or array size limitations.

A. DATA LAYOUT AND DATA REPRESENTATION
We use the data layout captured in Fig. 3 by folding the
long reference over multiple SpinPM columns. Each column

1For this implementation of the common Burrows–Wheeler–Aligner
(BWA) algorithm, the time share of the pattern matching kernel, inex-
act_match_caller, increases from 46% to 88%, as the number of base mis-
matches allowed (an input parameter to the algorithm) is varied from one to
four (both representing typical values).
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FIGURE 3. Data layout per SpinPM array.

has four dedicated compartments to accommodate a fragment
of the folded reference: one pattern, the similarity score
(for the pattern when aligned to the corresponding fragment
of the reference), and intermediate data (which we will refer
to as scratch). The same format applies to each column, for
efficient column-parallel processing. Each column contains a
different fragment of the reference.

We determine the number of rows allocated for each of
the four compartments as follows. In the DNA prealignment
problem, the reference corresponds to a genome, and there-
fore, it can be very long. The species determines the length.
As a case study for large-scale pattern matching, in this
article, we will use approximately 3 × 109 character-long
human genome. Each pattern, on the other hand, represents
the output from a DNA sequencing platform, which biochem-
ically extracts the location of the four characters (i.e., bases)
in a given (short) DNA strand. Hence, the sequencing technol-
ogy determines the maximum length per pattern, and around
100 characters is typical for modern platforms processing
short DNA strands [13]. The size of the similarity score
compartment, to keep the character-by-character comparison
results, is a function of the pattern length. Finally, the size
of the scratch compartment depends on both the reference
fragment and the pattern length.

While the reference length and the pattern length are
problem-specific constants, the (reference) fragment length
(as determined by the folding factor) is a SpinPM design
parameter. By construction, each fragment should be at least
as long as each pattern. Themaximum fragment length, on the
other hand, is limited by the maximum possible SpinPM col-
umn height, considering the maximum affordable capacitive
load (hence, RC delay) on column-wide control lines, such
as BSL and LL. However, column-level parallelism favors
shorter fragments (for the same reference length). The shorter
the fragments, the more columns would the reference occupy,
and the more columns, hence regions of the reference, would
be ‘‘pattern-matched’’ simultaneously.

For data representation, we simply use 2 bits to encode
the four (base) characters, and hence, each character-level
comparison entails two bit-level comparisons.

B. PROOF OF CONCEPT SpinPM DESIGN
SpinPM comprises two computational phases, which
Algorithm 1 captures at the column level: match, i.e., aligned
bitwise comparison and similarity score computation.
As each column performs the very same computation in par-
allel, in the following, we will detail column-level operations.

In Algorithm 1, len (fragment) and len (pattern) represent
the (character) length of the reference fragment and the pat-
tern, respectively; and loc is the index of the fragment string
where we align the pattern for comparison. The computation
in each column starts with aligning the fragment and the

Algorithm 1 Two-Phase Pattern Matching at Column Level
loc = 0
while loc < len(fragment)−len(pattern) do
Phase-1: Match (Aligned Comparison)
align pattern to location loc of reference fragment;
(bit-wise) compare aligned pattern to fragment
Phase-2: Similarity Score Computation
count the number of character-wise matches;
derive similarity score from count
loc++

end while

FIGURE 4. (a) Aligned bitwise comparison. (b) Adder reduction
tree used for similarity score computation.

pattern string, from the first character location of the fragment
onward. For each alignment, a bitwise comparison of the
fragment and pattern characters comes next. The outcome
is a len (pattern) bits long string, where a 1 (0) indicates
a characterwise (mis)match. We will refer to this string as
the match string. Hence, the number of 1s in the match
string acts as a measure for how similar the fragment and the
pattern are when aligned at that particular character location
(loc per Algorithm 1).

A reduction tree of 1-bit adders counts the number of 1s
in the match string to derive the similarity score. Once the
similarity score is ready, the next iteration starts. This process
continues until the last character of the pattern reaches the last
character of the fragment when aligned.
Phase 1 (Match, i.e., Aligned Comparison): Each aligned

characterwise comparison gives rise to two bitwise compar-
isons, each performed by a two-input XOR gate. Fig. 4(a)
shows an example, where we compare the base character ‘‘A’’
(encoded by ‘‘00’’) of the fragment with the base character
‘‘A’’ (i) and ‘‘T’’ (encoded by ‘‘10’’) (ii), of the pattern.
A two-input NOR gate converts the 2-bit comparison outcome
to a single bit, which renders a 1 (0) for a characterwise
(mis)match. Recall that a NOR gate outputs a 1 only if both of
its inputs are 0 and an XOR gate generates a 0 only if both of its
inputs are equal. The implementation of these gates follows
Section II-B.

SpinPM can only have one gate active per column at a time
(see Section II-C). Therefore, for each alignment (i.e., for
each loc or iteration of Algorithm 1), such a 2-b comparison
takes place len (pattern) times in each column, one after
another. Thereby, we compare all characters of the aligned
pattern to all characters of the fragment, before moving to
the next alignment (at the next location loc per Algorithm 1).
Having said that, each such 2-bit comparison takes place in
parallel over all columns, where the very same rows partici-
pate in computation.
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Phase 2 (Similarity Score Computation): For each align-
ment (i.e., iteration of Algorithm 1), once all bits of the match
string are ready—i.e., the characterwise comparison of the
fragment and the aligned pattern string is complete for all
characters, we count the number of 1s in the match string to
calculate the similarity score. A reduction tree of 1-bit adders
performs the counting, as captured in Fig. 4(b), with the carry
and sum paths shown explicitly for the first two levels. The
top row corresponds to the contents of the match string and
each ⊕ to a 1-bit adder from Section II-B.

len (pattern), the pattern length in characters, is equal to
the match string length in bits. Hence, the number of bits
required to hold the final bit count (i.e., the similarity score)
is N = blog2[len(pattern)]c + 1. A naive implementation
for the addition of len (pattern) number of bits requires len
(pattern) steps, with each step using an N -bit adder, to gen-
erate an N -bit partial sum toward the N -bit end result. For
a typical pattern length of around 100 [13], this translates
into approximately 100 steps, with each step performing an
N = 7 bit addition. Instead, to reduce both the number of
steps and the operand width per step, we adopt the reduction
tree of 1-bit adders from Fig. 4(b). Each level adds bits in
groups of two, using 1-bit adders. For a typical pattern length
of around 100 [13], we thereby reduce the complexity to 188
1-bit additions in total.

Alignment under basic error manifestations in the pattern
and the reference is also straightforward in this case. For DNA
sequence alignment, the most common errors take the form
of substitutions (due to sequencing technology imperfections
and genetic mutations), where a character value assumes a
different value than actual value [14]–[17]. We can set a tol-
erance value t (in terms of number of mismatched characters)
based on expected error rates and pass an alignment as a
‘‘match’’ if less than t characters mismatch.
Assignment of Patterns to Columns: In each SpinPM array,

we can process a given pattern data set in different ways.
We can assign a different pattern to each column, where a
different fragment of the reference resides, or distribute the
very same pattern across all columns. Either option works
as long as we do not miss the comparison of a given pattern
to all fragments of the reference. In the following, we will
stick to the second option, without loss of generality. This
option eases capturing alignments scattered across columns
(i.e., where two consecutive columns partially carry the most
similar region of the reference to the given pattern). A large
reference can also occupy multiple arrays and give rise to
scattered alignments at array boundaries, in which column
replication at array boundaries can address.

Many pattern matching algorithms rely on different forms
of search space pruning to prevent unnecessary brute-force
search across all possibilities. At the core of such prun-
ing techniques lies indexing the reference, which is known
ahead of time, in order to direct detailed search for any
given pattern to the most relevant portion of the reference
(i.e., the portion that most likely incorporates the best match).
The result is pattern matching at a much higher throughput.
SpinPM, as well, features search space pruning for efficient
pattern matching. The idea is chunking each pattern and the
reference into substrings of known length and creating a
hash (bit) for each substring; thereby, both the pattern and
the reference become bit vectors, of much shorter length

TABLE 3. Technology parameters.

than their actual representations. Search space pruning in
SpinPM simply translates into the bitwise comparison of each
pattern bit vector to the (longer) reference bit vector, within
the memory array, in a similar fashion to the actual full-
fledged pattern mapping algorithm, considering all possible
alignments exploiting SpinPM’s massive parallelism at the
column level. Thereby, we eliminate unnecessary attempts for
full-fledged matching (using actual data representation and
not hashes).

IV. EVALUATION SETUP
A. TECHNOLOGY PARAMETERS
Table 3 provides the technology parameters for a representa-
tive SHE-MTJ and a more conventional spin–torque transfer
(STT)-MTJ (near-term and projected long-term). The critical
current Icrit refers to an MTJ switching probability of 50%,
which would incur a high write error rate (WER). To compen-
sate, when deriving gate latency and energy values, we con-
servatively assume a 2× (5×) larger Icrit for the near (long)
term STT-MTJ. The corresponding value for SHE-MTJ is,
by definition, lower due to spin Hall effect-based switching.
The long-term STT specification is based on projections from
the literature [18]. SHE-MTJ specification comes from [19].
We model access transistors after 22-nm (HP) PTM [20].

B. SIMULATION INFRASTRUCTURE
We developed a step-accurate simulator to capture the
throughput performance and energy consumption of
SpinPM-based pattern matching as a function of the tech-
nology parameters. We model the peripheral circuitry using
NVSIM [24] to extract the row decoder, mux, precharge,
and sense amplifier induced energy and latency overheads
at 22 nm. NVSIM captures parasitic effects, such as the
temperature impact on wire resistance.

C. ARRAY SIZE AND ORGANIZATION
It is evident that, depending on the pattern matching prob-
lem at hand, we might need SpinPM arrays ranging from
modest to very large in size. The thought-provoking issue
here is how to deal with sufficiently large arrays as it
might restrict the design space, considering fabrication and
circuit-level-design-related limitations. As an example, the

VOLUME 5, NO. 2, DECEMBER 2019 211



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

TABLE 4. Benchmark applications.

proof-of-concept implementation requires 300 arrays of 10k
columns and around 2k rows each for the string matching
case study from genomics. This renders a total size of roughly
24 Mb per array, which is not excessively large. Still, the fab-
rication technologymight not be mature enough to synthesize
such an array. Commercial MRAM manufacturers address
this challenge by banking. For example, EverSpin [25] uses
eight banks in its 256 Mb (32 Mb × 8) MRAM product. Dis-
tributing array capacity to banks helps satisfy the latency
and energy requirement per access as well. For SpinPM-
based pattern matching, we too are inclined to use a hierarchy
of banks to enhance scalability. While a clever data layout,
operation scheduling, and parallel activation of banks can
mask the time overhead, the energy and area overhead would
be largely due to replication of control hardware across banks.
The most straightforward option for banked SpinPM would
be to treat each bank simply as an individual array, which
wouldmap even shorter fragments of the reference to patterns
from the input pattern data set.

D. SEARCH SPACE PRUNING
Without loss of generality, we use GRIM filter [26] to con-
vert the patterns and the reference to bit vectors. Except
for bit-vector generation, all operations (including bit-
vector mapping) are implemented entirely in SpinPM arrays.
We synthesize the dedicated logic for bit-vector genera-
tion in 22 nm to extract the energy and time overheads.
We account for the overhead of search space pruning through-
out the evaluation, which spans bit-vector generation and
matching in the SpinPM arrays.

E. BENCHMARKS
We evaluate SpinPM using four pattern matching applica-
tions [which also include common computational kernels
for pattern matching such as bit count (BC)], besides the
running example of DNA sequence prealignment throughout
this article. Table 4 tabulates these applications along with the
corresponding problem sizes.

DNA sequence prealignment (DNA) is our running case
study throughout this article. We use a real human genome,
NCBI36.54, from the 1000 genomes project [27] as the ref-
erence and 3M 100-base character long real patterns from
SRR1153470 [28].

BC [29] counts the number of ones in a set of vectors of
fixed length. This includes the addition of bits in the vectors
and the subsequent addition of all individual counts. The
input vectors are mapped to the columns of SpinPM to exploit
parallelism.

String match (SM) [30] matches a search string with a
prestored reference string to identify the part of the refer-
ence of highest or lowest similarity. Space-separated string
segments and the search substring (which forms the pattern)
are mapped to SpinPM columns such that all searches are
performed in parallel.

Rivest Cipher 4 (RC4) is a popular stream cipher. Upon
generating a cipher key, i.e., a string, it performs bitwise XOR
on the cipher key and the text to cipher. The same key is used
to decipher the text as well. Segments of input text and the
cipher key are mapped to SpinPM columns.

Word count (WC) [30] counts the number of occurrences
of specific words in an input text file through word matching.
The words are mapped to SpinPM columns along with search
words, and the word matching in each column is executed
concurrently.

F. BASELINES FOR COMPARISON
1) NMP BASELINE
For NMP-based pattern matching, we use an hybrid mem-
ory cube (HMC) model based on the published data [3],
which covers memory and logic layers, and communication
links. To favor the NMP baseline, we ignore the power
required to navigate the global wires between the mem-
ory controller and the logic layer, and intermediate rout-
ing elements. For the logic layer, we consider single-issue
in-order cores, modeled after ARM Cortex A5 [31] with
1-GHz clock and 32-kB instruction and data caches. We first
consider a total of 64 cores to provide parallel processing.
For communication, we assume an HMC-like configuration
with four communication links operating at their peak fre-
quency of 160 GB/s. To derive the throughput performance,
we use the same reference and input patterns to profile each
benchmark. We then use the instruction and memory traces
to calculate the throughput. We validated this model through
CasHMC [32] simulations. For reference, we also include a
hypothetical NMP variant, which includes 128 cores in the
logic layer and incurs zero memory overhead.

2) SpinPM-STT BASELINE
To demonstrate the effect of different cell technologies,
we also use an STT-MRAM-based SpinPM implementa-
tion as a baseline for comparison. STT-MTJ-based SpinPM
(SpinPM-STT) performs logic operations following the same
principle as the SHE-based (SpinPM-SHE) implementation,
however, transposed [8].

V. EVALUATION
We next characterize benchmark applications in terms
of match rate and compute efficiency when mapped to
SHE-based SpinPM (SpinPM-SHE). We use match rate
(in terms of number of patterns processed per second) for
throughput and match rate per milliwatt for compute effi-
ciency. Fig. 5(a) shows the match rates for SpinPM-SHE
normalized to four baselines: NMP, a hypothetical variant
of NMP with no memory overhead (NMP-Hyp), and two
variants of STT-based SpinPM (near-term SpinPM-STT and
projected SpinPM-STT), respectively. Overall, we observe
that SpinPM-SHE outperforms NMP baselines in all bench-
mark applications. Moreover, in comparison to near-term
SpinPM-STT, SpinPM-SHE shows a significant improve-
ment in throughput performance and compute efficiency. All
applications have smaller improvement with respect to NMP-
Hyp compared with NMP since NMP-Hyp has no memory
overhead and hence has a much higher match rate than NMP
to start with.

Fig. 5(b) shows the outcome for compute efficiency. Gen-
erally, we observe a similar trend to match rate, with all
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FIGURE 5. Throughput and energy efficiency of SpinPM-SHE.
(a) Match rate (pattern/second). (b) Compute Efficiency
(pattern/second/mW).

FIGURE 6. Throughput with respect to Ambit [33].

benchmarks (but BC) featuring≥2× improvement even with
respect to the ideal baseline NMP-Hyp. Overall, BC shows
the least benefit since BC has a lower compute to memory
access ratio.

SpinPM-SHE performs significantly better, in terms of
match rate and compute efficiency, than near-term SpinPM-
STT due to smaller switching latency and energy consump-
tion. Moreover, the match rate and compute efficiency of
SpinPM-SHE are quite close to that of projected long-term
STT-MTJ-based implementations.

A. IMPACT OF PROCESS VARIATION
We conclude the evaluation with a discussion on the impact
of process variation, which, due to imperfections in manu-
facturing technology, may result in significant deviation in
device parameters from their expected values. Both access
transistors and the SHE-MTJ are subject to process variation.
Being a relatively new technology, MTJ devices are more
susceptible to process variation, which directly affects critical
parameters such as switching current and switching latency.
However, as MTJ technology matures, it is likely that it too
will be able to reduce the impact of process variation.

One concern is variation in critical switching current,
which can directly translate into variation in bias voltages
on BSLs, i.e., Vgate, which determines the gate type. How-
ever, different SpinPM gates featuring close Vgate values
(and hence subject to this type of variation) are usually
distinguished either by a different value of the preset or a
different number of inputs, which makes it unlikely that the
gate functions would overlap with each other as a result of
variation. We validated this observation assuming a variation
in switching current by ±5%, ±10%, and ±20% for all
evaluated gates implemented in the SpinPM array.

B. GATE-LEVEL CHARACTERIZATION
We next compare the throughput performance of SpinPM
with Ambit [33] and Pinatubo [34]. Ambit reports a compara-
tive bulk throughput with respect to CPU and GPU baselines,
in executing basic logic operations on fixed-sized vectors
of 1-bit operands. Pinatubo reports bitwise throughput of
OR operation only, on a 220 bit long vector. We considered
the highest throughput (for a 128-row operation) reported

by Pinatubo. To conduct a fair comparison, we assume the
same vector size of 32 MB used in Ambit. Fig. 6 captures the
outcome, with respect to Ambit, in terms of gigaoperations
per second (GOPs), for NOT, OR, NAND, and XOR implemen-
tations. We observe a higher throughput for SpinPM-SHE
across all of these bitwise operations. The high degree of
parallelism and lack of actual data transfer within the array
are the main reasons behind such improvement. For the more
complex XOR, the throughput improvement for SpinPM-SHE
and projected SpinPM-STT is ≈4× over Ambit, whereas for
near-term SpinPM-STT, the throughput for SpinPM-SHE and
projected SpinPM-STT is only 1.34×. In comparison to OR
throughput of Pinatubo, SpinPM-SHE has similar improve-
ment as projected SpinPM-STT (12×). For this comparison,
we do not optimize data layout or operation scheduling for
SpinPM.

VI. RELATED WORK
Without loss of generality, we base SpinPM on the spintronic
PIM substrate CRAM that was briefly presented in [8] and
evaluated for a single-neuron digit recognizer along with a
small-scale 2-D convolution in [18]. CRAM is unique in
combining multigrain (possibly dynamic) reconfigurability
with true processing in memory semantics.

The conventional bitline computing substrates employ
sense amplifier-based logic operations and cannot truly elim-
inate data movement overhead within the array boundary.
The SRAM-based compute cache [35] can carry out different
vector operations in the cache, but SpinPM supports a wider
range of computations on much larger data than could fit in
cache. Recent proposals for bitwise in memory computing
include Ambit [33], DRISA [36], Pinatubo [34], and STT-
CiM [37]. DRAM-based solutions, such as Ambit or DRISA,
use modified sense amplifier-based designs. These designs
support bitwise operations in DRAM but can only perform
computation on a designated set of rows. Thus, to compute
on an arbitrary row, the row must first be copied to these
dedicated compute rows and then copied back once the com-
putation is complete. While both designs feature high degrees
of (column) parallelism, they suffer from data movement
overheads within the array boundary. Pinatubo [34], on the
other hand, can perform bitwise operations on data residing
in multiple rows, using a specialized sense amplifier with
variable reference voltage, which increases the susceptibility
to variation.

VII. CONCLUSION
This article introduces SpinPM, a novel, reconfigurable spin-
tronic pattern matching substrate for true in-memory pattern
matching, which represents a key computational step in large-
scale data analytics. When configured as memory, SpinPM
is not any different than an MRAM array. Each MRAM
cell, however, can act as an input or output to a logic gate
on demand. Therefore, reconfigurability does not compro-
mise memory density. Each column can have only one logic
gate active at a time, but the very same logic operation can
proceed in all columns in parallel. We implement a proof-of-
concept SpinPM array with SHE-MTJ technology for large-
scale string matching to pinpoint design bottlenecks and
aspects subject to optimization. The encouraging results from
Section V indicate a great potential for throughput perfor-
mance and compute efficiency.
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