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ABSTRACT This article describes how 3-D XPoint memory arrays can be used as in-memory computing
accelerators. We first show that thresholded matrix-vector multiplication (TMVM), the fundamental com-
putational kernel in many applications including machine learning (ML), can be implemented within a 3-D
XPoint array without requiring data to leave the array for processing. Using the implementation of TMVM,
we then discuss the implementation of a binary neural inference engine. We discuss the application of the
core concept to address issues such as system scalability, where we connect multiple 3-D XPoint arrays,
and power integrity, where we analyze the parasitic effects of metal lines on noise margins. To assure power
integrity within the 3-D XPoint array during this implementation, we carefully analyze the parasitic effects
of metal lines on the accuracy of the implementations. We quantify the impact of parasitics on limiting the
size and configuration of a 3-D XPoint array, and estimate the maximum acceptable size of a 3-D XPoint
subarray.

INDEX TERMS 3-D XPoint, in-memory computing, matrix-vector multiplication, neural network, phase-
change memory (PCM).

I. INTRODUCTION

W ITH the rapidly increasing sizes of datasets and chal-
lenges in transistor scaling in recent years, the need

for new computing paradigms is felt more than ever [1].
In today’s computing systems, large portions of computa-
tion energy and time are wasted for transferring data back
and forth between the processor and the memory [2]. One
approach is to bring the processor and memory closer to each
other and build a near-memory platform that places the com-
puting engine adjacent to the memory, and hence reduce the
energy and time overhead for data transfer. Another approach
that even more significantly reduces the time overhead and
energy is to use the memory device as the computational unit
and built a true in-memory computing platform. We follow
the latter approach.

The substrate that we work on is 3-D XPoint [3], a class of
memory technology that fills a unique place within the mem-
ory hierarchy between solid state storage drive (SSD) and the
system main memory. In comparison with the NAND-based
SSD (which is the most ubiquitous storage device available

today [4]), it has the advantage of being faster, denser, and
more scalable. Its nonvolatility differentiates it from com-
peting technologies such as NAND-based SSDs and dynamic
random access memories (DRAMs), although NAND-based
SSDs are more cost-effective today and DRAMs are faster.
Other emerging nonvolatile technologies face limitations:
stand-alone PCM must deal with resistance drift, where the
cell resistance increases over time [5]; FeFET is handicapped
by its large operating voltage and limited endurance [6];
MRAMs require an access transistor (unlike 3-D XPoint),
leading to a larger cell size than 3-D XPoint; ReRAM is not
commercially viable to the level of 3-D XPoint and MRAM.

The operation and performance of 3-DXPoint as amemory
unit are discussed in [7]–[11]. In our work, rather than focus-
ing again on the memory aspects of 3-D XPoint, we explore
the possibility of exploiting 3-D XPoint arrays to perform in-
memory computation. This means not only that 3-D XPoint
can function as a storage unit, but also that it can perform
computation inside its array without the need for the data to
leave the array. Therefore, unlike conventional computational
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systems, the information can be processed locally rather than
being sent to a processor through the memory hierarchy.

The analysis in this article considers wire non-idealities
and physical design of 3-D XPoint subarray. We first show
the implementation of thresholded matrix-vector multipli-
cation (TMVM), which is a building block for neural net-
works (NNs) and deep-learning applications. Second, using
this core operation, we discuss the implementation of a neural
network inference engine. Finally, we discuss how to enable
3-D XPoint for more complex versions of these implementa-
tions (e.g., multibit operations and multilayer NNs).

For in-memory computing platforms, wire resistances are
a substantial source of non-ideality that must be taken
into account during the implementations [12]. Some works
attempt to analyze the parasitic effects of wires but do not
consider all contributing factors with realistic layout consid-
erations [13], [14]. In [15], a framework is presented to incor-
porate the effects of nonidealities in 2-D resistive crossbar
performance. In [16], an analytical approach is developed to
study the effects of the parasitic of wires for the implementa-
tion on spintronics computational RAM.

We discuss the feasibility of using 3-D XPoint as an
in-memory computing engine for neuromorphic applications,
and evaluate its performance for MNIST digit recognition.
We present novel methods for the implementation of MVMT
and NN on 3-D XPoint. We use 3-D stacked PCM memory
layers in the 3-D XPoint subarray to compute and store the
computation results entirely inside the array, without sending
the data to the periphery of the array. Our method is scalable
by using multiple arrays to handle a large computational
workload. In addition, multibit operations are supported in
our methodology. We evaluate a realistic size of the 3-D
XPoint subarray and metal features (based on the ASAP7
7-nm technology [17], [18]) for accurate electrical correct-
ness. We develop a comprehensive method to analyze the
impact of wire parasitics of wires in the 3-D XPoint subarray
and devise a methodology to determine the maximum size
of a 3-D XPoint subarray that ensures electrically correct
operation.

Next, we discuss the structure of 3-D XPoint in Section II.
In Section III, we describe the implementation of TMVM,
and NN. In Section IV, we explore the methods for more
complex implementations. We develop the models for the
effect of wire parasitics in Section V, evaluate the results of
our analysis in Section VI, and then conclude the article in
Section VII.

II. BACKGROUND
Some recent works study the implementation of logic oper-
ations using a 3-D crossbar array architecture. In [19],
a double-layer Pt/HfO2−x /TiN ReRAM crossbar array is used
and it is experimentally shown that the array can implement
MVM and CNN. Additional peripheral circuitry (e.g., AND
gates) are required for obtaining the computation results.
In [20], it is shown that stateful logic operation can be per-
formed on a memristive TiO2-based 3-D crossbar array. The
adverse effects of wire non-idealities are not incorporated in
the implementations. Similarly, in [21], the authors map logic
operations on a memristive 3-D crossbar without considering

FIGURE 1. Structure of a 3-D XPoint subarray. The CMOS
peripheral circuitry is located underneath the memory subarray.

wire parasitic or technology design rules. In [22], the authors
use 3-Dmemristive crossbars for neuromorphic computation.
For the implementation of a neuron, additional amplifier
circuitry is required at the periphery of the crossbar.

Fig. 1 shows the overall structure of a 3-DXPoint subarray.
A two-level PCM stack is integrated at the top of CMOS
peripheral circuitry. The storage device is based on phase-
change memory (PCM) technology, which is connected to
a compatible ovonic threshold switch (OTS) made of AsTe-
GeSiN [23]–[25]. Word lines at the top (WLTs), word lines at
the bottom (WLBs), and bit lines (BLs) in the middle provide
the current path to each individual memory cell [26]. The
compatibility of the junction of PCM and OTS devices is
a key factor in allowing access to individual cells without
facing sneak path problems [27]. The total number of PCM
cells in the 3-D XPoint subarray with Nrow rows and Ncolumn
columns is (2 Nrow × Ncolumn), with half in the top PCM level
and half in the bottom PCM level, as shown in the figure.

PCM is a nonvolatile memory technology exploiting
Ge–Sb–Te (GST) alloys (e.g., Ge2Sb2Te5) as the storage
medium [28]. PCM has two states: a crystalline phase
with high conductance (GC ) and an amorphous phase with
low conductance (GA). The GST alloy transition between
amorphous and crystalline states is triggered by changing
the temperature level [29], [30]. In early explorations of
PCM technology (1970s–early 2000s), the temperature level
was changed using a laser source [31]. The state-of-the-art
research on PCM is focused on using electrical impulses to
change the temperature, and hence the state, of the PCM
device by applying an electric current (or voltage) pulse
across the PCM device [32].

Fig. 2(a) shows that applying a fast high-amplitude current
pulse of amplitude IRESET (called the RESET pulse) heats up
the GST material to the melting temperature Tmelt (∼600 ◦C
or higher [30]), erasing the previous periodic and ordered
atomic arrangement. After quenching, the new disordered
atomic structure will be frozen, making the transition from
high conductance crystalline state to low conductance amor-
phous state possible. To change the state of the GST from
amorphous to crystalline, a slow, relatively low amplitude
current pulse of amplitude ISET (called the SET pulse) must
pass through the GST material. The SET current pulse causes
the GST material to heat up to crystalline temperature Tcryst
(∼400 ◦C [30]). Over a long SET time of several tens of
nanoseconds, this is a high enough temperature (still lower
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FIGURE 2. PCM model: (a) transition between amorphous and
crystalline phases by applying SET and RESET pulses across a
pillar-type PCM device, and (b) PCM cell can be modeled using
a resistive circuit with two voltage control switches [9].

than Tmelt) for the reconfiguration and crystallization of the
previous amorphous atomic region to the crystalline state.
The desirable PCM characteristics are a lower amplitude
of the RESET current and a shorter SET time. A RESET
current as low as 10 µA and a SET time as low as 25 ns for
individual PCM devices is already demonstrated with sub-
20 nm scalability, high endurance 1012 cycles, and a projected
ten-year retention time at 210 ◦C [5].

Fig. 2(b) shows the electrical model of PCMcell. The resis-
tance across the PCM cell can be modeled by two voltage-
controlled switches [9]. Depending on the status of switches
S1 and S2, different currents flow between two lines con-
nected to the terminals of the PCM cell, determined by GA
andGC . The ON/OFF states of the memory cell are determined
by OTS: If the voltage level across the OTS of a cell is larger
than a threshold, the cell is considered to be ON, and it is OFF
otherwise. In today’s technologies, the OTS conductance for
the OFF state is up to 108× smaller than for the ON state.
The value stored in the PCM device can represent either

logic 1 (crystalline phase) or logic 0 (amorphous phase).
Three memory operations available in 3-D XPoint: write
logic 1 (using the fast high-amplitude SET pulse), write
logic 0 (using long low-amplitude RESET pulse), and read.
For the memory read operation, since it is undesirable to
change the state of the PCM cell, a pulse with relatively very
small amplitude will be applied, increasing the temperature
slightly above the ambient temperature but below Tcryst (and
of course Tmelt).

III. REALIZATION OF IN-MEMORY COMPUTING
A. IMPLEMENTATION OF TMVM
TMVM is a fundamental step in the implementation of many
applications, and is a fundamental computational kernel in
machine learning (ML) applications. Using 3-DXPoint as the
TMVM computation engine can tremendously decrease the
ML computational workload, as the data do not need to leave
the 3-D XPoint array during the computation.

To show how the first step of a TMVM, let us multiply,
without thresholding, matrix G ∈ R(Nx+1)×(Ny+1) and vector
V = [V0V1V2, . . . ,VNx ]

T
∈ R(Nx+1), where G is given by

G =


G0,0 G0,1 · · · G0,Ny
G1,0 G1,1 · · · G1,Ny
. . · · · .

. . · · · .

GNx ,0 GNx ,1 · · · GNx ,Ny

 . (1)

FIGURE 3. (a) Using 3-D XPoint as an in-memory computing
engine for TMVM of GV. (b) Equivalent circuit model for the
implementation of a dot product (to calculate O0).

This computes O = [O0O1O2, . . . ,ONy ]
T
∈ R(Ny+1))

where each element of vectorO is a dot product. For example

O0 = G0,0V0 + G1,0V1 + · · · + GNx ,0VNx . (2)

This is computed in the 3-D XPoint array by apply-
ing voltages across a set of conductances to produce a
current O0.
Today’s PCM cells can only store binary values. Hence,

we assume that elements of matrixG and vector V are binary.
To implement a ‘‘neuron-like’’ operation using TMVM,
the O0 value and computed Oi values are followed by a
thresholding operation. In (2), if the sum of products exceeds
the current required to flip the output bit, then logic 1 is stored
as the conductance, GO0 , of the PCM cell O0; otherwise,
the stored logic value is 0. Similarly, for other Ois, the values
after thresholding are stored as the conductance states, GOi .

Fig. 3(a) shows the implementation of the TMVMon a 3-D
XPoint subarray with (2 Nrow×Ncolumn) PCM cells ((Nrow×

Ncolumn) cells each at top PCM level and bottom PCM level)
where Ncolumn = Nx + 1 and Nrow = Ny + 1. For clarity,
as compared to Fig. 1, only the lines and PCM cells engaged
in the computation are shown, and the rest of the lines and
the PCM cells (at the bottom) are removed from the figure.
All elements of O will be calculated simultaneously and are
stored in the same column with Nrow PCM cells. Considering
that today’s 3-D XPoint cannot store multiple values in a cell,
we assume that elements of vector V and G are binary.

The conductances G are first programmed in the top
PCM level by memory write operations or by previous
computation.

1) Before the computation starts, cells that store GOis at
the bottom are preset to logic 0.

2) Then, voltages Vi, 0 ≤ i ≤ Nx are applied to the word
lines WLTs connected to input cells located at top. If Vi
represents logic 1, voltage VDD is applied (Vi← VDD)
to the WLTi and the current that flows through the
corresponding input cell is proportional to G0,iVDD.

3) If Vi represents logic 0, WLTi is floated (Vi ← float)
and no current passes through the corresponding PCM
cell.

4) The summation of currents (IT ) from input cells flows
through the GO0 in a time interval tSET. Based on the
values ofVi andGi,0, different currents pass through the
input cells that storeGi,0. If IT > ISET, the state ofGO0

changes to logic 1. However, we require IT < IRESET
to avoid erroneous computation.
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To calculate theminimum andmaximum allowable applied
voltage (VDD) to the lines, we consider a simplified electrical
model for the implementation of a dot product (e.g., for O0)
shown in Fig. 3(b). Current IT can be written as follows:

IT = GO0

∑Nx
i=0 ViGi,0∑Nx

i=0 Gi,0 + GO0

. (3)

When the computation begins, GO0 ≈ GA since the
preset is 0, and IT (t = 0) is small (of the order of few
hundred nAs). However, by the passage of time, the amor-
phous region near the heater in the output PCM starts to turn
crystalline, resulting in increasingGO0 (and consequently IT )
and heat (generated by the flow of more electric current).
If the applied voltageVDD is large enough to provide a current
larger than ISET, crystallization repeats until a threshold point
where the whole amorphous region in the output PCM turns
into a crystalline region with high conductivity, representing
logic 1. On the other hand, the VDD must not be so large that
the generated temperature exceeds Tmelt, causing erroneous
computation.

To calculate the VDD range for the accurate implemen-
tation of the described dot product, we analyze the two
cases corresponding to Vmin (the minimum acceptable volt-
age) and Vmax (the maximum acceptable voltage). For the
Vmin case, we assume that all Vis, and all Gi,0s represent
logic 1, i.e., VDD voltages are applied to all WLT s and the
conductances of input cells are in the high conductance state
corresponding to GC . In this case, from (3), IT = (Nx +
1)/(Nx + 2)GCVDD. Since ISET ≤ IT ≤ IRESET, the Vmin
requirement implies a first constraint, requiring that VDD to
lie in the range

R1 =

[(
Nx + 2
Nx + 1

)(
ISET
GC

)
,

(
Nx + 2
Nx + 1

)(
IRESET
GC

)]
. (4)

For the Vmax case, all Vis are set to logic 1, while all
Gi,0s are set to logic 0. Since the result of the dot product
should be at logic 0, we expect that the preset value of
PCM stored O0 remains intact. At the maximum voltage
possible, we hypothetically assume that the applied voltage
pulse should be below the level required to change the output
state from logic 0 to logic 1, even if conductances of all input
cells are GA. In other words, IT = ((Nx + 1)GAGC )/((Nx +
1)GA + GC )VDD < ISET, i.e., the output state cannot be
altered. Therefore, the second set of constraints require VDD
to lie in the range

R2 =

[
0,
(
(Nx + 1)GA + GC
(Nx + 1)GAGC

)
ISET

]
. (5)

The acceptable range for VDD is R1 ∩ R2. Therefore,
the minimum and maximum acceptable voltages are Vmin =

min(R1) and Vmax = min(max(R1),max(R2)), respectively.

B. IMPLEMENTATION OF NN
Using the TMVM implementation, we implement a neuro-
morphic inference engine. Fig. 4(a) shows a single-layer NN
with N inputs and P outputs. Fig. 4(b) shows the data layout
for the NN implementation on a 3-DXPoint subarray. The top
PCMcells are allocated for storing theweights (Wi,js), similar

FIGURE 4. NN implementation: (a) Single-layer neuromorphic
inference engine. (b) Data layout for the NN implementation.

to Gi,js in TMVM that were stored in the top PCM cells, and
the bottom PCM cells are allocated for storing the outputs
(Yis), similar to Ois in TMVM. The inputs (Xis) are applied
to WLTis as voltage pulses (similar to Vis in TMVM).If
N ≤ Ncolumn and P ≤ Nrow, then all Yjs can be determined
simultaneously in one step. The output elements of the NN
can be stored in any column at the bottom (here, we choose
column 1). In Fig. 4(b), all other cells at the bottom patterned
by diagonal stripes are not engaged in the computation of Yis,
i.e., WLBs connected to these cells are floated.

An application for the proposed NN implementation is
handwritten digit recognition of MNIST dataset with 10-K
test images [33]. Analyzing each MNIST test image can
be performed using a similar NN shown in Fig. 4(a). Here
P = 10, as in MNIST each image represents a digit (from
0 to 9). In each computational step, b(Nrow/P)c images can
be processed and stored in a column.

IV. ENABLING MORE COMPLEX IMPLEMENTATIONS
In this section, we discuss three concepts that enable more
complex computations. Then, we provide the implementation
of a multilayer NN as an example. Our approach can also be
extended to perform multibit computation directly using the
principles in [34].

A. 3-D XPoint WITH FOUR STACKED LEVEL
OF PCM CELLS
Industry projections show that the next generation of 3-D
XPoint will have four-level stacked PCM cells [35]. If the
number of PCM levels increases, then the volume of stored
information per footprint area increases, and more complex
implementations are possible. Although a two-level subarray
of PCM cells is sufficient to implement any NN (see Sec-
tion IVD), we will illustrate how we can use a four-level
subarray of PCM cells to implement a multilayer NN by
exploiting the extra PCM levels. The NN in Fig. 5 has three
layers: an input layer, a hidden layer, and an output layer.
At the top PCM level, the first set of weights are stored.
In the next PCM level, the hidden layer data are calculated,
and by applying the second set of weights as voltage pulses,
we obtain the outputs Yi of the NN at the third PCM level.
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FIGURE 5. Multilayer NN with an input, hidden, and output layer.

FIGURE 6. Two configurations for communication between 3-D
XPoint subarrays: (a) switches connect BLs of subarray 1 to
BLs of Subarray 2, and (b) switches connect BLs of the
subarray 1 to WLTs of subarray 2.

B. SCALABILITY OF 3-D XPoint TO LARGE
COMPUTATIONS
We can connect multiple 3-D XPoint subarrays to create
a larger array to handle computations with higher matrix
dimensions. In Fig. 6(a), switches connect BLs of subarray
1 to those of subarray 2, enabling current flow from the BLs
of subarray 1 to those of subarray 2. The WLB of subarray 2
that is scheduled to store the computation results will be con-
nected to ground, while all other WLBs not engaging in the
computation (in both subarrays 1 and 2) are floated. Hence,
the computation results in subarray 1, are being calculated
and stored at the bottom PCM level of subarray 2 (BL-to-
WLT). In Fig. 6(b), switches connect BLs of the subarray 1 to
WLT of subarray 2. In this configuration, the results are being
calculated at the top PCM level of subarray 2. The status of
lines during the computation for these two configurations are
listed in the Supplementary Materials.

C. MULTILAYER NN IMPLEMENTATION IN A TWO-LEVEL
PCM STACK
We now illustrate how a multilayer NN can be implemented
using a three-layer PCM stack. As an example, we discuss
the implementation of the three-layer NN (shown in Fig. 5)
using two two-level 3-D XPoint subarrays. Let us assume
that the NN is required to analyze 10-K images of the
MNIST dataset. The data layout of this implementation is
illustrated in Fig. 7 using two subarrays connected with BL-
to-WLT configuration [see Fig. 6(b)]. The first set of weights
is stored at the top PCM cells of subarray 1. The inputs
(X0,X1, . . . ,XN ) are applied as the voltages to the WLTs of

FIGURE 7. Data layout for the implementation of three-layer NN.

subarray 1.We assume that at each time step, the hidden layer
values (H1,H2, . . . ,HN ) for a specific image from MNIST
are being processed. For example, the hidden layer values
of the second image (H im2

1 ,H im2
2 , . . . ,H im2

N ) is calculated in
step 2. Assuming that we calculate the hidden layer values
of M (=Nrow) images in each set of computation, we require
M steps to calculate and store the hidden layer values of
M images at the top PCM cells of subarray 2. In each of
these steps, the corresponding BL in subarray 2 is connected
to GND, and the remaining BLs in subarray 2 are floated.
After all hidden layer values are stored at the top PCM cells
of subarray 2, we apply the second set of the weights (as
voltage pulses) to the WLTs of subarray 2. At each column
at the bottom PCM cells of subarray 2, the outputs (Yis) ofM
images are calculated and stored.

V. ANALYZING INTERCONNECT PARASITIC EFFECTS
To ensure the electrical correctness of the implementations
in in-memory computing platforms, we must consider non-
idealities due to wire parasitic effects [12], [16]. As an exam-
ple, we consider the implementation of a TMVM illustrated
in Fig. 3(a). In the equivalent circuit model shown in Fig. 8,
theWLTs, BLs, andWLBs have nonzero parasitics that cause
a voltage drop in the current path across the 3-D XPoint
subarray, that may potentially lead to errors in the results of
TMVM. Let Gx and Gy be the conductances of the segments
of BLs andWLs, respectively. The conductances forWLT and
WLB are considered equal (both Gy) due to the symmetry
and equal allocation of metal resources to WLTs and WLBs.
We use Gi,j to denote the conductance of PCM cell (i, j) at
the top level, and GOjs to denote conductances of a column
of PCM cells at the bottom level. In the worst case, each row
performs an identical operation, and carries an equal current
Irow. The total voltage drop to the last row is

Irow
Gy
+

2Irow
Gy
+ · · · +

NrowIrow
Gy

=
Nrow (Nrow + 1) Irow

2Gy
(6)

where the first, second, and last terms on the left side
of the equation are for voltage drops of SegmentNrow

,
SegmentNrow−1, and Segment1, respectively. The voltage drop
of the last row increases quadratically with the number of
rows, and this causes a significant limit on the accuracy of
the implementations [12], [16]. Hence, it is important to find
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FIGURE 8. Equivalent circuit model for the TMVM
implementation with considering wire parasitics.

the maximum allowable subarray size in which the voltage
drop does not impair the electrical of implementations.

During the computation, the resistive network shown
in Fig. 8 can have different configurations based on the
applied voltage to WLTs. For example, if V2 ← float, then
allG2,js and their connected parasitics must be removed from
the equivalent circuit model of Fig. 8. To analyze parasitic
effects, we consider the corner case for voltage drop, where
only V0 ← VDD and the rest of the Vis are floated, resulting
in minimum equivalent conductance for inputs and wire par-
asitics. Moreover, for the corner case, we assume that inputs
and outputs are located Ncolumn columns away from each
other (the farthest possible distance). The value of all inputs
assumed to be 1, and therefore, the current flows from the
inputs of the TMVM computation must be sufficient enough
to change the state of the output of the TMVM computation.
An excessive voltage drop across the input and output cells
causes a failure in the TMVM implementation discussed
earlier.

The rows far from the drivers have larger parasitics
between them and the driver. In particular, for the last row
(farthest from the driver, see Fig. 8), the voltage drop is
the worst. If the electrical correctness for the last row does
not hold up, the implementations would be unacceptable.
We observe the rest of the circuit from the last row and
calculate (for the worst case) the Thevenin resistance (Rth)
and Thevenin voltage (Vth) [see Fig. 9(a)]. We define the
Thevenin coefficient, αth = (Vth/VDD), and its value is
between 0 and 1. BothRth and αth can be obtained analytically
using a recursive approach explained in Appendix. Both are
functions of parameters such as Nrow, Ncolumn, PCM cell
width (Wcell) and length (Lcell) as well as other parameters of
PCM and wire devices. Fig. 9(b) and (c) shows Rth and αth for
different Nrow values. For the smaller Nrow, PCM resistances
are the dominant resistances, and the parasitic effect of wires
is minimum. When the Nrow increases, the values of the
collective parasitic resistances become comparable to those
of PCM devices and hence can degrade the electric correct-
ness of the subarray. The configuration of lines is based on
configuration 1 that will be discussed in Table 1 in the next
section.

There are negligible parasitics between the first row and
the driver, and the voltage range that ensures accuracy of

FIGURE 9. (a) Thevenin equivalents can be observed from the
last row, (b) effects of Nrow on Rth, (c) and on αth.

TABLE 1. Different configurations of metal lines in the 3-D XPoint
subarray based on ASAP7 design rules.

FIGURE 10. (a) Calculated voltage ranges for the first and last
rows. (b) Acceptable and unacceptable regions in the (αth,Rth)
plane.

FIGURE 11. Multimetal layer configuration can be utilized for the
design of WLTs, BLs, and WLBs of 3-D XPoint subarray.

computing in the first row is closer to [Vmin,Vmax] (discussed
in Section III) than that of the last row. For the last row,
values of αth and Rth are significantly affected by parasitics.
Let us assume that the new voltage range ensures electrical
correctness of the last row is [V ′min,V

′
max]. The voltage ranges

for the first row and last row are shown in Fig. 10(a). We use
the voltage ranges of first row and last row as two corner cases
(with least and most voltage drops, respectively), and we find
a voltage range the satisfy both corner cases; the obtained
voltage range guarantees the electrical correctness for inter-
mediate rows as well. The final acceptable voltage range is
the overlap between two voltage ranges shown in Fig. 10(a),
[V ′min,Vmax], ensuring all of the rows from first row to the last
row receiving the proper voltage.
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FIGURE 12. NMs of the three metal line configurations: (a) changing Nrow (while Ncolumn = 128, Lcell = 4 Lmin, and Wcell = Wmin),
(b) changing Lcell (while Ncolumn = 128, Nrow = 128, and Wcell = Wmin), (c) changing Wcell (while Ncolumn = 128, Nrow = 64, and
Lcell = 4Lmin), and (d) changing Ncolumn (while Nrow = 256, Lcell = 4Lmin, and Wcell = Wmin).

The noise margin (NM) in implementations is defined by

NM =
Vmax − V ′min

Vmid
(7)

where Vmid = (Vmax + V ′min)/2. Clearly, we desire NM ≥
0. In Fig. 10(b), the acceptable and unacceptable regions
in the (αth,Rth) plane is shown. The NM on the separating
line is 0, above it NM is negative (unacceptable), and below
it NM is positive (acceptable). Our goal is to choose wire
configurations so that the corresponding (αth,Rth) of the
design falls into the acceptable region with maximum NM
possible.

VI. RESULTS AND DISCUSSION
A. NM EVALUATION
To realistically analyze the effect of the parasitics,
we assumed that metal layers in 3-D XPoint are constructed
based on ASAP7 design rules [17], [18] (see Fig. 11). We can
create different configurations for allocating metal lines to
WLTs, WLBs, and BLs. Table 1 lists three possible config-
urations. In configuration 1, only M1, M2, and M3 (the first
three metal lines) in ASAP7 are exploited for 3-D XPoint,
and they are allocated to WLB, BL, and WLT, respectively.
For configurations 2 and 3, we assume that other than M1,
M2, and M3, the other metal layers (M4 to M9) can also
be allocated to the 3-D XPoint lines. In configuration 2,
we allocate M4 and M5 to the BLs, and M6 to M9 are
allocated equally between WLTs and WLBs. In configura-
tion 3, we assume that all metals fromM4 toM9 are allocated
equally between WLTs and WLBs; no extra top metal lines
are allocated to BLs. We report the minimum cell width
(Wmin) and length (Lmin) for each configuration based on the
minimum required width of a line and space between adja-
cent lines in each layer. The values of parameters for metal
lines and PCM devices are available in the Supplementary
Material.

1) NM IMPROVES WITH INCREASING Nrow

Fig. 12(a) shows NMs of different Nrow values. NM is
significantly sensitive to Nrow. For Nrow as large as 2048,
the implementations are not valid due to excessive voltage
drop, and hence negative NM. Configuration 3 provides the
best NM, because more metal resources dedicated to WLT
and WLB causes smaller parasitics in the current path across
rows.

2) NM IMPROVES WITH INCREASING Lcell
Fig. 12(b) shows the NMs for different Lcells (for each con-
figuration, values are normalized to Lmin listed in Table 1).
By increasing Lcell, the width of the WLTs and WLBs
increases, decreasing the parasitic resistances related to
WLTs and WLBs.

3) NM DECREASES WITH INCREASING Wcell
Fig. 12(c) shows the NMs for different Wcell (for each con-
figuration, values are normalized to Wmin listed in Table 1).
By increasing Wcell, the length of the WLTs and WLBs
increases, and consequently, parasitics related to WLTs and
WLBs considerably increase. Therefore, for all cases, smaller
Wcell causes larger NM.

4) NM REMAINS UNCHANGED WITH
INCREASING Ncolumn
Fig. 12(d) shows that the increase in Ncolumn does not affect
NM significantly. By increasing Ncolumn, parasitics of BLs
increase. However, since the BL resistances are in series
with those of PCM devices with orders of magnitude larger
resistance, the increase in BL resistance does not affect NM.

B. IMPLEMENTING NNs ON THE 3-D XPoint SUBSTRATE
We list the performance of various 3-D XPoint subarrays
of various sizes for the digit recognition of MNIST dataset
in Table 2. Each MNIST test image is scaled to 11 × 11
as in [36], a transformation that maintains 91% recognition
accuracy and reduces computation. We use configuration 3
in all cases, as it provides the best NM among all alterna-
tives. For the smallest subarray with size 64 × 128, NM
is the maximum among all cases. For the largest subarray
with size 1024 × 1024, we increase Lcell by 2.6× (compare
to that of 64 × 128 subarray) to decrease the parasitics of
lines. Consequently, we achieve acceptable NM of 34.5%.
With this relatively large subarray, we have more parallelism
that allow to process a larger number of MNIST images in
each computational step, reducing the total execution time
(17× faster than that of 64 × 128 subarray). The energy
per image is similar for all cases because the subarray sizes
listed in Table 2 are large enough to allow fully processing an
11 × 11 MNIST image locally without extra data movement
between subarrays or peripheral circuitry.

The table also shows the impact of 10% process variation
on NM. In the second to the last column, interconnect resis-
tances are changed by 10%. For small arrays, the change in
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TABLE 2. Evaluation of different subarray sizes for digit
recognition application.

NM is negligible because the resistance of the PCM element
and OTS dominate wire resistance. For larger arrays, this
effect becomes more noticeable (but is still not significant).
In the last column, PCM device parameters as well as inter-
connect resistances are simultaneously varied by 10% to find
the worst NM due to variations of all parameters. NMs for all
arrays are still positive and acceptable (between 12.4% for the
largest subarray and 46.6% for the smallest subarray).

VII. CONCLUSION
We have presented methods for the implementations of
TMVM, NN, and 2-D convolution on 3-D XPoint. To ensure
the accuracy of the implementations, we considered wire
parasitics in our implementations.We have demonstrated that
interconnect parasitics have a significant effect on the imple-
mentations performance and have developed a comprehen-
sivemodel for analyzing this impact. Using thismethodology,
we have developed guidelines for the 3-D XPoint Subarray
size and configurations based on ASAP7 technology design
rules. We used different size 3-D XPoint subarrays for digit
recognition of MNIST dataset. Using the our methodology
methodology, we design a relatively large subarray of 2 Mb
with acceptable NM of 34.5%, providing the opportunity
for processing more images per step without any energy
overhead.

APPENDIX
We derive recursive expressions for calculating Rth and Vth of
a (Nrow × Ncolumn) subarray of 3-D XPoint.

Within the footprint area of a cell (Wcell × Lcell), we define
Gy (representing the conductance for WLT and WLB seg-
ments) andGx (representing the conductance of BL segment).
Fig. 13 shows the equivalent simplified circuit model for the
implementation TMVM in the corner case. Row i is separated
from its predecessor by conductance Gy at each end. The
input cell is connected to the output cell, Ncolumn columns
away. The conductances in the last row are rearranged to cre-
ate a two-port structure consisting of the PCM conductances
so that the rest of the network can be modeled using Thevenin
Equivalents (Rth and Vth).
For configuration 1 (listed in Table 1), Gy = GM1 = GM3

(assuming similar wire conductance for WLTs and WLBs)
and Gx = GM2 in which the conductance, GMk , is given
by: G−1Mk

= (ρMkLMk )/(tMkWMk ), where ρMk , LMk , tMk , and
WMk are, respectively, the resistivity, length, thickness, and
width in metal layer k (see the Supplementary Material). For
configurations 2 and 3, the equivalent conductance of the wire
segment must be calculated based on the multimetal layer

FIGURE 13. Notations used for calculating Thevenin resistance
(Rth) and Thevenin voltage (Vth) shown on the circuit model for
the implementation of TMVM in the worst case scenario.

configuration of a given segment. For example, in configu-
ration 2, Gy (representing a segment conductance of WLT) is
obtained by Gy = GM3 + GM6 + GM8 .
To calculate Rth and Vth, we derive recursive expressions.

For conciseness, we define the resistance, Rrowi , of row i as

Rrowi = Ncolumn (Gx)−1 + (GC )−1 +
(
GONrow−i

)−1
. (8)

We can obtain Rth, using the notations in Fig. 13, as

Rth = 2
(
Gy
)−1
+ Ncolumn (Gx)−1 + RNrow−1 (9)

where RNrow−1 is calculated using the recursive expression

Ri =
(
Rrowi

) ∥∥∥(Ri−1 + 2
(
Gy
)−1)

. (10)

The base case corresponds to the driver row that precedes
the first row, and is R0 = 2 RD, as seen in Fig. 13.
To compute Vth, as illustrated in Fig. 13, we first compute

the intermediate variable R′j, which corresponds to the effec-
tive downstream resistance (away from the source) seen from
node j. The computation proceeds in a recursive fashion from
the last row toward the first as

R′j−1 =
(
Rrowj−1

) ∥∥∥(R′j + 2
(
Gy
)−1) (11)

with the base case R′Nrow−1
= RrowNrow−1 . Having computed

R′j, we may now compute Vth = VNrow , using a recursive
computation on Vi

Vj =
R′j

2
(
Gy
)−1
+ R′j

Vj−1 (12)

in which 2 ≤ j ≤ Nrow − 1 and the base case is

V1 =
R′1

R′1 + 2
(
Gy
)−1
+ 2RD

Vb. (13)
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