
PROCEEDINGS OF THE IEEE 1

RTL synthesis:
from logic synthesis to automatic pipelining

Jordi Cortadella, Marc Galceran-Oms, Mike Kishinevsky, and Sachin S. Sapatnekar

Abstract—Design automation has been one of the main pro-
pellers of the semiconductor industry with logic synthesis being
one of the core technologies in this field. The paper reviews the
evolution of logic synthesis until the advent of techniques for
automatic pipelining based on elastic timing, either synchronous
or asynchronous. The emergence of these techniques can enable a
productive interaction with tools that can do microarchitectural
exploration of complex designs.

I. INTRODUCTION

Since the early days of manual layout, EDA has witnessed
a proliferation of abstract models, algorithms, description
languages and design frameworks that have allowed to scale
productivity. After the introduction of the first VLSI layout
tools, designers started working with objects at a higher level
of abstraction, logic gates, and logic synthesis emerged as one
of the main engines to satisfy the competitive requirements of
quality and short time-to-market.

Most of the innovation in logic synthesis has taken place
in academia, where UC Berkeley has been one of the leading
actors. Since the early 80’s, logic synthesis has evolved to
accommodate the increasing complexity of circuits. Today,
we have specification models at the level of algorithms and
transactions that enable designers to specify behaviors at
abstractions levels similar to those used in software.

In this long trip, timing has always been one of the essential
design parameters under optimization and a variety of timing
models have been proposed to devise algorithms that can deal
with performance and interfacing constraints. We can model
the execution time (E) of an algorithm running for a specific
data set by the following Performance Equation:

E = N · P (1)

where N is the number of cycles required to execute the task
and P is the cycle period.

In combinational logic synthesis [3], [4], timing optimiza-
tions are directed to shorten the critical paths in the combina-
tional regions and reduce P without modifying the sequential
elements (latches and flip-flops) of the circuit. Sequential
optimizations, such as retiming [34], permit the modification
of the internal sequential behavior of the circuit and give
more opportunities for timing optimizations. Still, all the

J. Cortadella is with the Universitat Politècnica de Catalunya, Barcelona,
Spain. M. Galceran-Oms is with eSilicon, Barcelona, Spain. M. Kishinevsky
is with Intel Corporation, Hillsboro, USA. S. Sapatnekar is with the University
of Minnesota, Minneapolis, USA.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

optimizations preserve the external cycle-level behavior (N is
not modified), thus avoiding any re-synthesis of the interfaces.

In the last decade, High-Level Synthesis [17] has evolved
as a competitive alternative to manual RTL. Among different
techniques for scheduling operations under performance and
resource constraints, several forms of loop pipelining have
been proposed to reduce N through the parallelization of
operations from different iterations [22].

An essential step for timing optimization takes place when
the strict timing constraints at the external interfaces are
relaxed and handshaking mechanisms are introduced to deter-
mine the validity of data at the communication channels. This
new paradigm is known as timing elasticity [11], which opens
a new avenue of optimizations that can either be applied to
asynchronous or synchronous circuits. With this new scenario,
the optimization parameter is average rather than worst-
case performance and automation can play a relevant role in
architectural pipelining [20]. Synthesis tools for architectural
exploration can be created, thus conquering a field that was
only in the domain of manual design.

This paper gives a historical view and discusses the evo-
lution of synthesis methods from combinational logic syn-
thesis to automatic pipelining. The classical combinational
and sequential logic synthesis techniques are first presented,
with strict timing models that do not allow any flexibility
at the interfaces. High-level synthesis is next discussed and
techniques for automatic pipelining are reviewed. General
models for time elasticity and handshaking schemes are finally
introduced. Asynchronous and synchronous elastic circuits
are two related paradigms that exploit elastic timing using
different variations of handshakes. The paper continues with
optimizations that can be introduced when timing elasticity is
allowed and are the core for automatic pipelining at RTL. The
paper finally debates about how automatic pipelining can be
exploited for architectural exploration. An example shows how
a non-pipelined version of the DLX CPU can be sped-up by
3x with a 20% area overhead by using automatic pipelining
techniques.

II. LOGIC SYNTHESIS

A. Combinational Logic Synthesis
The goal of combinational logic synthesis is to optimize

the timing, area, and power of an implementation under the
best models at this stage of design. This step is divided
into technology-independent synthesis, which optimizes logic
expressions to obtain low implementation costs by reducing
literal counts or logic depths. and technology-dependent syn-
thesis, which maps the logic expressions to a cell library of



PROCEEDINGS OF THE IEEE 2

pre-characterized gates, using more accurate area, delay, and
power numbers. Since the loads on logic gates are related to
placement, technology-dependent synthesis is often interleaved
with placement. Most combinational synthesis algorithms im-
plicitly assume that the circuits are acyclic. Although combi-
national logic may be implemented with cyclic circuits [44],
such structures are not used in mainstream designs.

Early approaches to technology-independent synthesis used
exact methods for two-level minimization based on sum-of-
products or product-of-sums representations [18]. Since exact
logic minimization is an Σp

2-complete problem [51], [6], these
methods were largely supplanted by heuristic methods [4].
These approaches were then generalized to multi-level logic
minimization [3], with enhancements based on algebraic di-
vision and algorithmic transformations of logic expressions.
Multi-level methods are a vital ingredient in optimizing typical
circuits that contain 10–20 levels of logic.

The problem of technology-dependent logic optimization
for area/power minimization has no known exact solution
in polynomial time, and is typically solved using heuristics.
Beginning with a logic decomposition using simple primitives
such as 2-input NANDs and inverters, the combinational
circuit is modeled as a directed acyclic graph. If this is
decomposed into a forest of trees where each gate in a tree
has at most one fanout, then each such tree can be mapped
optimally in linear time in the number of tree vertices [30].
Heuristics have also been developed for providing practical
solutions with area/power/delay trade-offs. Such technology
mapping approaches suffer from structural bias, wherein the
solution quality depends on the initial decomposition. Methods
for overcoming this problem are summarized in [13].

From a timing point of view, the main goal of combinational
optimization is to ensure that the longest path through any
combinational stage meets the setup time constraint: for edge-
triggered circuits, the sum of the longest combinational path
delay and the setup time cannot exceed the clock period.

B. Sequential Logic Synthesis
While combinational timing optimization operates on one

combinational block at a time, sequential optimizations ad-
dress the memory elements within the system. These memory
elements may be level-clocked transparent latches or edge-
triggered flip-flops, and we will refer to them as “latches” in
our discussion. Various sequential logic synthesis operations,
such as state minimization and state encoding, can optimize
sequential elements in a system. Such operations are primarily
directed towards reducing the amount of sequential and com-
binational logic, and can impact circuit timing by reducing the
complexity and delay of a logic implementation.

Time-borrowing between sequential stages is possible
through latch-based optimizations such as retiming [34] and
clock skew scheduling [19]. Retiming moves memory ele-
ments across logic while leaving unchanged the latency on
all cycles and input-output paths. By moving combinational
boundaries, retiming allows the clock period of a circuit to
be improved without altering the externally-observable cycle-
level timing. Moreover, by moving latches across logic, the
number of latches in a system may be reduced.

4 4

1 2

3 983

9

(a)

4 4

1 2

3 983

9

(b)

4 4

1 2

3 983

9

(c)

Fig. 1. A sequential circuit in (a) original form. (b) The same circuit after
retiming with a (b) larger and (c) smaller number of latches.

+ +

* * *
+

+

+
* *

+

+ +

* * *

+

+ + +

+

+

+

+ +

* * *
+

+

+
* *

+

+ +

* * *

+

+ + +

+

+

+

+

+

*

+

+

*

+

+

*

+

+

*

+

+

*

+

+

*

+

+

*

+

*

in

out

Fig. 2. Loop pipelining of a FIR filter ([24]).

Fig. 1(a) shows an edge-triggered sequential circuit, where
the rectangles correspond to latches and the combinational
elements are represented by circles annotated with the element
delays. Assuming zero setup times, the clock period, corre-
sponding to the longest combinational path between latches,
is 28 units, along the path containing the shaded circles. After
retiming some flip-flops along the arrows shown in the figure,
the resulting circuit is shown in Fig. 1(b), where the period
is 17 units. The reader can verify that this is the minimum
clock period achievable by the system under retiming. Fig. 1(c)
shows a solution with the minimum number of latches at the
expense of increasing the cycle period to 18 units.

The retiming problem can be formulated as an integer linear
programming problem [34] that can be solved using graph and
network flow algorithms. Further efficiencies are introduced
in [46], [35]. Another optimization related to retiming is c-
slowing [34], where each memory element is replaced by c
consecutive elements. In restricted situations where unrelated
data sets are processed, e.g., in acyclic pipelines, this operation
can increase the circuit throughput.

III. HIGH-LEVEL SYNTHESIS AND AUTOMATED
PIPELINING

The techniques used in High-Level Synthesis (HLS) [17]
aim at transforming algorithmic descriptions into RTL. Per-
formance and resource constraints are common parameters
defined by designers to provide guidelines in the generation
of solutions. Optimizing performance under area constraints
or optimizing area under performance constraints are typical
scenarios in the exploration of the design space.

Many of the techniques used in HLS have been inherited
from the body of knowledge of parallelizing compilers [23],
including techniques for loop pipelining [24], [31]. The goal
is to reduce E in equation (1) by reducing both N and P . The
major impact of loop pipelining is in the reduction of N .

Fig. 2 depicts a classical example of loop pipelining in
which the algorithmic description is shown on the left and



PROCEEDINGS OF THE IEEE 3

a pipelined schedule is shown on the right. The schedule
parallelizes operations from different iterations of the same
loop (shaded region).

One of the main components of an optimizing compiler
is the module for dependency analysis that determines the
sequencing constraints of operations. As an example, Read-
After-Write (RAW) dependencies prevent operations that write
and read the same operand to be re-ordered. For example, the
sequence of instructions

R[i] = a * b;
c = R[j] + d;

cannot be re-ordered unless i 6= j. The optimizations during
HLS are based on static analysis techniques. Data dependen-
cies ara analyzed taking into account the worst-case scenarios
and produce static schedules that are valid for any possible
data. For this reason, static schedules cannot fully exploit
parallelism when dependency analysis is not able to provide
conclusive information.

Automated pipelining without using classical HLS tech-
niques has been previously proposed in [32], [41]. Both
methods assume that the hardware of the datapath is already
partitioned into pipelined stages. Then [32] generates a stall
controller and the forwarding logic, while [41] informs the
designer of the available opportunities for applying forwarding
and speculation and based on the designer choice generates a
stalling engine. In both cases the stalling engine is a global
non-pipelined controller.

In modern technology nodes, both control and datapath need
to be pipelined to avoid long logic and wire delays. The
elastic pipelining techniques that will be later presented in
this paper allow to naturally distribute the pipeline control
along the datapath. This is achieved by performing RTL
transformations and using distributed handshake protocols.
Elastic pipelining allows to keep track of the validity of
data and define distributed pipeline boundaries that can easily
interact with other components of the system. Additionally,
elastic pipelining can deliver dynamic schedules by analyzing
data dependencies “on-the-fly” and stalling the pipeline when
data hazards are produced.

IV. ELASTIC TIMING MODELS

The behavior of a system can be modeled as an ordered set
of computations and communications that deliver some output
data after reading some input data. The time elapsed between
reading inputs and delivering outputs may depend on different
factors: complexity of the computation, optimization of the
circuit, timing of the environment, etc.

The classical methods for combinational and sequential
logic synthesis preserved the cycle-accuracy of the compu-
tations, i.e., two systems were said to be equivalent if their
behavior could not be distinguished externally at any cycle
of the computation. This equivalence allowed to modify the
internal sequential behavior of the system (e.g., by retiming
flip-flops or re-encoding FSMs) but did not allow to modify the
external behavior. It also enforced the environment to honor
the cycle accuracy when producing the inputs and reading the
outputs of the system. We refer to this model as rigid.

Master Slave Master Slave

Data Data

DS

DTACK HREADY

HCLKAMBA AHBVMEbus

HTRANS

Fig. 3. Handshaking schemes for buses

In a rigid timing model, it is not possible to break long
combinational paths by introducing new pipeline stages, since
this would modify the timing relationship between the inputs
and the outputs of the system. However, modern systems
include multiple complex components performing different
computations. Very often these components work at different
speeds even with clocks running at different frequencies. For
the sake of modularity, it is convenient that these modules can
be substituted by other instances with the same interface but
different power/performance characteristics.

To preserve this type of modularity, circuit designers have
proposed systems that tolerate variable latency (aka, timing
elasticity). As an example, most of the bus protocols have
handshaking mechanisms to indicate when access is granted
and when data is valid in the bus. Figure 3 shows two signaling
schemes for standard buses, VME [25] and AMBA AHB [2].
The main difference between both is the synchronization pro-
tocol: VME is asynchronous whereas AMBA is synchronous.
As in most protocols, both have two handshake signals to
implement time elasticity. One signal goes from master to
slave to indicate the availability of information in the bus.
The other signal goes from slave to master to indicate the
completion of the transfer.

In asynchronous protocols, data transfers are indicated by
the events of the handshake signals and data signals are
maintained stable as long as the handshake cycle has not
been completed. In the VME bus, the DS signal (Data Strobe)
indicates the period of time in which the master maintains
valid data in the bus, while the DTACK signal (Data Transfer
Acknowledge) indicates when data has been accepted by the
slave.

In synchronous protocols, the initiation and completion of
transfers are indicated by the value of the handshake signals
at the clock edges. In the AMBA AHB bus, the HTRANS
signal (two bits) may indicate an IDLE cycle when no transfer
must be performed. The slave can also indicate that it has not
been able to accept the transfer (HREADY=0), thus forcing
the master to maintain the same data on the subsequent cycles
until the transfer has been completed (HREADY=1).

Even though the elastic interfaces offer the possibility of
modifying the timing at the master or slave modules, the
classical logic synthesis techniques do not take advantage
of this flexibility for optimization and always preserve the
original timing specification at the boundaries of the modules.
To exploit elasticity, the timing specifications of the modules
must be manually changed at RTL and a new synthesis process
must be executed. This constraint prevents automated design
explorations playing with time elasticity.



PROCEEDINGS OF THE IEEE 4

Fig. 4. Kahn Process Network.

a b c d e f ...

a b c d e f ...

a b c d e f ...

fa b c d e ...

s
1

s
2

s
3

s
4

Fig. 5. Equivalent streams

A. Introducing elasticity during synthesis

Design automation requires formal models as a reference
to preserve correctness when the implementation of a system
is transformed by a set of synthesis rules. The incorporation
of time elasticity during synthesis requires timing models that
go beyond the cycle-by-cycle equivalence imposed by rigid
timing.

One of the simplest and most general models for elasticity
is Kahn Process Networks (KPNs) [28], where a system is a
set of processes that communicate through unbounded first-in-
first-out (FIFO) channels, as shown in Fig. 4. Every channel
can be considered as an infinite queue of tokens and the
execution model is similar to the firing semantics of Petri
nets [40]. A process can start a computation when data is
available at all input channels. Every computation reads data
from the input channels and writes data to the output channels.

With this execution model, equivalence is defined in terms
of data streams in the communication channels, i.e., two
systems are equivalent if they produce the same output streams
when reading the same input streams. Along this line, several
formal models with subtle differences have been defined to
decouple timing from data while preserving the equivalence
of streams [8], [33]. We will refer to these models as elastic
timing models.

Figure 5 depicts four equivalent streams. They transfer the
same data in the same order but at different time instants. The
first stream, s1, could correspond to a rigid synchronous timing
model. Streams s2 and s3 could represent two equivalent
streams regulated by a synchronous clock in which data
transfers occur at different cycles and some of the cycles,
depicted as shadowed boxes, contain invalid data (bubbles).
Finally, s4 could represent an asynchronous stream in which
no global clock is regulating the data transfers.

At this point, an important observation can be made. When
using elastic timing models, the latency of the system can be
modified and, thus, long combinational paths can be broken by
new sequential elements. This opens the door to a new avenue
of exploration techniques that can synthesize circuits with
different area/performance/power trade-offs, in a similar way
as different pipelines can be proposed for a microprocessor
without modifying the Instruction Set Architecture (ISA).

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5 D6

D1 D2 D3 D4

Circuit clock

Arch. clock

Architectural cycle

(c)

Data

Data

Req

Ack

Data

Valid

Ready

(b)

(a)

Fig. 6. Synchronization mechanisms: (a) synchronous rigid timing, (b)
synchronous elastic timing, (c) asynchronous elastic timing.

B. Introducing elasticity in hardware

The KPN model assumes unbounded channels with non-
blocking writes. For hardware implementations channels must
be bounded and some strategy is required to determine the
size of the FIFO. Two options can be considered here:

1) Calculating an upper bound of the size of the FIFOs
considering all possible behaviors of the KPN.

2) Using blocking writes when FIFOs become full.
The first option is not always acceptable since boundedness

imposes timing constraints on the environment. Moreover, the
selected bounds also prevent a full flexibility in substituting
components by other instances with different timing charac-
teristics.

The second option is more appropriate for elastic timing
but requires some handshaking mechanism to block the sender
when the FIFO at the output channel becomes full. The size
of the FIFOs is important in elastic systems since it directly
determines the performance of the system and the absence of
deadlocks. This aspect will be discussed in Section VII.

To put it simply, the transformation of a rigid system into
elastic can be done by substituting the sequential elements
(registers) by FIFOs controlled by handshake signals and
following the firing semantics of KPNs.

Figure 6 shows timing diagrams for three signaling schemes
corresponding to different timing models. The one in Fig. 6(a)
corresponds to a rigid model in which data transfers occur
at each cycle, i.e., no handshake signals are required. This
scheme would produce streams similar to s1 in Fig. 5.

The scheme in Fig. 6(b) represents a synchronous elastic
channel with a Valid/Ready protocol. The Valid signal in-
dicates when the sender has valid data, whereas the Ready
signal indicates that the receiver is able to accept the data.
Data transfers occur when Valid ∧ Ready. This scheme is
synchronous and the handshake signals are used to generate
a gated version of the circuit clock (architectural clock) that
triggers the data transfers. This scheme would produce streams
similar to s2 and s3 in Fig. 5.

Finally, Fig.6(c) depicts a 4-phase asynchronous protocol.
In this case, the Request/Acknowledge signals play a similar
role as the Valid/Ready signals in the synchronous protocol.
This scheme would produce streams similar to s4 in Fig. 5.



PROCEEDINGS OF THE IEEE 5

Control

EB

Control

EB

Control

EB

Control

EB

Control

EB

Control

EB

valid

CLK(b)

req

ack

(c)

CLK

(a)

ready

Fig. 7. The structure of the design: (a) synchronous rigid timing, (b) synchronous elastic timing, (c) asynchronous elastic timing (matched delays version).

More details about the asynchronous protocols will be given
in Section V.

We can observe that the three schemes are very similar
and the only difference between rigid and elastic systems
is the implementation of the communication channels. This
similarity can be observed in Fig. 7, where three differ-
ent implementations are depicted. The leftmost diagram (a)
represents a rigid system with a global clock that triggers
the flip-flops between combinational regions. The diagram
in the middle is synchronous elastic and has been obtained
from the rigid system by substituting the flip-flops by elastic
buffers (FIFOs). The controllers implement the handshake
protocol and generate the architectural clock as a gated version
of the circuit clock. Finally, the rightmost diagram is an
asynchronous elastic system. The only difference with the
synchronous elastic system is in the controllers that generate
the architectural clock using the asynchronous handshake
signals. The delays in the req/ack signals are designed to match
the delays in the datapath in such a way that the clock edges
satisfy the setup/hold timing constraints.

Up to this point, the paper has discussed the evolution of
timing models to improve system performance. In the sequel,
the paper will focus on elasticity and how it can be used to
optimize a design up to the point of performing automatic
pipelining.

V. ASYNCHRONOUS CIRCUITS

Asynchronous circuits have been present for many years
in the academic community as an alternative to the syn-
chronous [48]. They have also had a limited presence in
industry. The goal of asynchronous design is to adapt the
delays to the dynamic requirements of the computations and
the environment of a circuit.

This section reviews some basic protocols that have been
broadly used in asynchronous design with the goal of illustrat-
ing possible implementations for elastic timing models, such
as the one shown in Fig. 6(c). We refer the reader to [48] for
a more extensive review of the area.

One of the pioneering efforts in asynchronous systems was
the Macromodules project [37] with the introduction of the
Delay-Insensitive (DI) modules that can interact with the
environment under the presence of arbitrary delays at the
inputs and outputs of the module. Seitz introduced self-timed
systems [45] with the assumption that the components of
the system were working with local timing constraints (e.g.
negligible wire delays).

In general, different forms of asynchronous circuits have
been proposed, all of them aiming at avoiding a global
synchronization at system level. As discussed in Section IV,
the implementation of these type of timing schemes requires
a set of handshake signals with a synchronization protocol.

Figure 8 illustrates the two most popular protocols using a
pair of request/acknowledge signals. In the 4-phase protocol, a
communication cycle involves four events and the handshake
signals return to zero at the end of each data transfer. In the
2-phase protocol, each cycle involves only two events (either
rising or falling). Both protocols have been used extensively
in asynchronous circuits, showing different advantages and
disadvantages.

As shown in Fig. 7, the difference between synchronous
and asynchronous timing models is mostly reduced to the
implementation of the synchronization layer that generates the
clock signal for the sequential elements of the circuit.

Figure 9 depicts one of the best known schemes for asyn-
chronous pipelines, based on a 4-phase protocol implemented
with Muller’s C-elements [38]. The picture shows a linear
pipeline with latches between regions of combinational logic
(CL). The C-element at each latch guarantees that a latch
becomes transparent when a new data is available at the
input (Req = 1) and no data is stored in the following latch
(Ack = 0). A FIFO (in the KPN sense) can be implemented
as a sequence of latches with no logic in between. A similar
scheme using a 2-phase protocol was proposed by Sutherland
to implement the well-known Micropipelines [50].

The handshake protocol also requires certain timing con-
straints to guarantee that latches are neither missing nor
overwriting data. For this reason it is necessary to guarantee
a minimum separation of events that allows data to traverse
combinational logic without having any setup/hold timing vio-
lation. Figure 9 shows a delay for every Req signal to properly
synchronize the clock signals at each latch. There are different
ways to implement this delay, either by a chain of logic gates
that mimic the delay in the combinational logic (bundled-data
approach) or by implementing the combinational logic with
multiple rails (e.g., dual rail) and using explicit circuits to
detect the completion of the computation.

The latter case can be pushed to the limit when no tim-
ing assumptions are required to guarantee the correct se-
quencing of events. This can be achieved by using delay-
insensitive codes [52]. However, the robustness provided by
these schemes comes with a high cost in area and power [49].



PROCEEDINGS OF THE IEEE 6

4−phase 2−phase

Req

Ack

Data

Req

Ack

Data

Fig. 8. Asynchronous 4-phase and 2-phase communication protocols.

C C

CL

C

CL

Req

Ack

delay delay

Req

Ack

Fig. 9. Muller’s pipeline

VI. ELASTIC CIRCUITS

The worlds of synchronous and asynchronous designs
converged from different starting approaches. On the one
hand, [42] studied synchronous implementations of the asyn-
chronous circuits. On the other hand, [10] proposed latency-
insensitive systems. Both forms in essence implemented the
idea of an asynchronous system quantized by the global clock
reference as illustrated by the timing diagram in Figure 6(b)
and the structural diagram in Figure 7(b).

Since global stall signals are typically unacceptable for
large systems, a distributed control is required to handle the
back-pressure generated when a receiving block is not ready
to accept new data. Extra storage is necessary inside the
elastic buffer1 (EB) to accommodate new incoming data from
the previous block to the stalled block, while preserving the
previously received data that have not yet been processed.
When the ready signal is asserted, the EB can deliver the
stored data in FIFO order. A desirable property is that EBs do
not introduce additional latency with regard to conventional
synchronous registers in absence of back-pressure.

A. Design of elastic buffers and elastic pipelines

Figure 10 shows three implementation schemes for an EB
that can hold two data items. Note that while this figure
presents EBs capable of holding two data items, in general
EBs are elastic FIFOs of arbitrary finite capacity.

Figures 10(a) and 10(b) show two possible implementations
of an EB using edge-triggered registers. Other implementa-
tions are also possible, but in all of them a multiplexer is

1Also called relay station in [10]

Control Control Control
valid

m
ai
n

au
x

(a)

m
ai
nau
x

(b)

L L

(c)

ready

Fig. 10. Implementation of elastic buffers.

Control
valid

ready
Control

valid

ready

Control Control
valid valid

JO
IN

F
O
R
K

ready ready
Control

Fig. 11. Synchronous elastic module with multiple inputs and outputs.

required to select data from one of the registers. Figure 10(c)
shows the structure of a more efficient implementation using
transparent latches [26], [16]. The use of flip-flop based
registers though can sometimes be more convenient for timing
analysis or for the implementation in FPGAs that do not
provide support for latches.

The designs depicted in Figure 7 can be easily extended to
netlists in which the elastic modules have multiple inputs and
outputs connected to other elastic modules.

An example of such extension is depicted in Fig. 11. The
controller in the middle of the figure is synchronized with
the neighboring controllers. The Join block combines the
handshake signals of the input modules with the ones of the
controller. Similarly, the Fork blocks combines the handshake
signals for the output modules. Intuitively, the Join block
implements the conjunction of valid signals, whereas the Fork
block implements the disjunction of stop (not ready) signals.
Note that the same scheme applies for an asynchronous circuit
with req/ack handshake signals.

B. Performance analysis

The performance analysis of an elastic system is founded
on the well-known theory of marked graphs [14], [43], which
can be briefly summarized as follows.

Every directed cycle in the system has a number of tokens
and bubbles stored in EBs and distributed in a number of
stages. A data transfer in a cycle implies swapping the location
of a token and a bubble, i.e., the token moves to an empty slot
in an EB, whereas the previous location of the token becomes
empty. The number of tokens and bubbles is an invariant for
every cycle.

Every cycle C in the system has an associated throughput
(tokens per cycle) that can be calculated as follows:

Th(C) =
min(TC , BC)

SC

where TC and BC are the number of tokens and bubbles,
respectively, and SC is the number of stages in the cycle.
Intuitively, the formula computes the average number of tokens
per cycle that can be processed at every stage. However,
given the duality between the move of tokens and bubbles,
the performance may also be limited by the lack of space in
the cycle (a token cannot move if there is no available space at
the next stage). This is the reason for the min operator in the



PROCEEDINGS OF THE IEEE 7

C
1

C
2

Fig. 12. Performance analysis of an elastic system.

formula. In a strongly connected system with several cycles,
the performance is determined by the most stringent cycle:

Th = min
C

Th(C).

Figure 12 depicts an example for performance analysis in
which the shadowed ovals represent combinational logic and
the boxes represent 2-slot EBs. The system has two simple
cycles, C1 and C2, with the following characteristics:

T1 = B1 = S1 = 4; T2 = 4, B2 = 6, S2 = 5.

Therefore, Th = min(Th1,Th2) = min(1, 4
5 ) = 4

5 , indicating
that every computational unit will operate 4 out of 5 cycles,
on average. It is interesting to note that the addition of one
token in C1 would have a negative impact on performance
since T1 = 5 and B1 = 3, hence Th = 3/4.

Note that a cycle with zero tokens or zero bubbles has zero
throughput (deadlock). Therefore, a necessary and sufficient
condition for liveness is that every cycle has at least one token
and one bubble.

Besides the global constraints, every EB requires a lo-
cal performance constraint to sustain the maximum allowed
throughput under the presence of back-pressure. In order
to accommodate incoming tokens and locally propagate the
handshake signals (valid/ready), every EB requires at least
two slots. All the previous analysis can be extended to
multi-cycle units or asynchronous systems with arbitrary for-
ward/backward propagation delays [11].

VII. OPTIMIZATION OF ELASTIC CIRCUITS

Section II-B describes some of the optimization transfor-
mations that can be applied for standard synchronous circuits.
All of them are latency-preserving transformations in that they
do not change the latencies of a computation as measured in
clock cycles. All of these transformations can be applied to
elastic designs.

Asynchronous and synchronous elastic designs, on the other
hand, tolerate changes in latency. Such tolerance can be
used to introduce novel correct-by-construction transforma-
tions enabling the exploration of new microarchitectural trade-
offs [29], [21]. In some cases, the cycle time of the system can
be reduced by increasing the latency of some operations, e.g.,
by introducing more pipeline stages. By properly balancing
cycle time and throughput, the system with the optimal effec-
tive cycle time can be achieved. The effective cycle time is a
performance metric similar to the time-per-instruction (TPI) in
CPU design. It captures how much time is required to process
one token of information - the smaller the better. For example,
let us assume that the design in Fig. 12 has a cycle period of
500 ps. Given that Th = 4

5 , the effective cycle time is 625 ps

4 4

1 2

3 983

9

(a)

4 4

1 2

3 983

9

(b)

Fig. 13. Design after (a) retiming, (b) retiming and recycling.

(500/Th), indicating that a token is processed every 625 ps,
on average.

One of the properties of elastic circuits is that they accept
the insertion of empty buffers at arbitrary locations while
preserving the behavior of the design. This can be done both
for asynchronous circuits [39], [36] or synchronous elastic
circuits [8], [33]. We often refer to these empty buffers as
bubbles. The process of inserting bubbles into an asynchronous
design was called slack matching [36], while for synchronous
elastic - recycling [9].

The main reason for the insertion of bubbles is performance
improvement. Figure 13(a) shows an example after an optimal
retiming. The combinational nodes (shown as circles) are
labeled with their delays. The boxes represent 2-slot elastic
buffers. Those labeled with a dot contain one token (valid
data) and one bubble, whereas the unlabeled ones contain two
bubbles. The cycle time of this design is 17 time units.

Figure 13(b) shows an optimal configuration combining
retiming and recycling. An empty elastic buffer is inserted
into the bottom path. The cycle time has been reduced to
11 time units. The throughput is determined by the slowest
cycle. The token/buffer ratios for each cycle are 1, 4/5 and
2/3. Therefore, the throughput is 2/3, and the average number
of cycles to process a token is 3/2. This provides an effective
cycle time of 16.5 time units (16.5 = 11 · 3/2). It means that
a new token is processed on average every 16.5 time units,
which is an improvement compared to the 17 units of the
optimally retimed design.

As explained in [11] another technique to optimize the
elastic circuits is buffer sizing: increasing the capacity of EBs.
Unlike recycling, buffer sizing can never degrade the cycle
time of the design. Both techniques can be combined with
retiming in an automated flow to optimize elastic designs. Next
section will describe additional optimization techniques based
on anti-tokens.

VIII. ANTI-TOKENS

One of the important optimizations towards automatic
pipelining was the introduction of early evaluation and anti-
tokens. Early evaluation contributes to increase the perfor-
mance of elastic systems, because the design does not have to
stall waiting for irrelevant data. Early evaluation was proposed
for asynchronous [5], [1] and synchronous designs [15].

A. Early evaluation

The execution model of conventional elastic systems is
based on strict evaluation: a computation is initiated only when
all input data are available. This requirement can be relaxed if



PROCEEDINGS OF THE IEEE 8

ALU
-1

0

1

1

(a)

ALU 0

1

(b)

ALU 0

1

(c)

ALU 0

1

(d)

-1

Fig. 14. Moving tokens and anti-tokens for early evaluation.

(a)

wd

wa ra

W R
rd

W R

wa ra

wd

=

rd

(c)(b) (d)

−1 −1−1

−1 −1−i −j

−(i+j)

Fig. 15. Anti-token transformations: (a) insertion, (b) grouping, (c) retiming,
(d) memory bypass.

early evaluation is used. For example, the behavior of a 2-input
multiplexer can be modeled with the following statement:

z = if s then a else b.

In case s is available and its value is true, there is no need
to wait for b; the result can be delivered as soon as a arrives.
Similarly when s is false.

When using early evaluation, the spurious enabling of
functional units must be prevented if the late inputs arrive after
the completion of the computation. One of the mechanisms to
discard late inputs is the use of negative tokens, also called
anti-tokens. Each time an early evaluation occurs, an anti-
token is generated at every non-required input in such a way
that it annihilates when it meets a positive token [15].

Figure 14(a) depicts a circuit with early evaluation. The
circuit contains valid data in all registers with tokens. The 0-
input of the multiplexer has no valid data, however the control
signal indicates that the 1-input must be selected. In this
situation, there is no need to wait for the “late” data produced
by the ALU.

Figure 14(b) shows how the 1-input has been sent to the
output of the multiplexer. Additionally, an anti-token (-1) has
been sent backward to the 0-input. In Fig. 14(c), the result
from the ALU arrives, and then in Fig. 14(d) the valid data
and the anti-token cancel each other, thus disregarding the
non-selected data.

Various implementations exist both in synchronous
(e.g., [12]) and asynchronous (e.g., [1], [47]) circuits. Among
the different implementations of anti-tokens, two main classes
have been distinguished: passive anti-tokens, when they stat-
ically wait for the arrival of tokens, and active anti-tokens,
when they move backward to meet tokens.

Active anti-tokens have the advantage of disabling data
transfers proactively, potentially providing power savings
(fewer computations performed). Passive anti-tokens are sim-
pler to implement and have a lower area overhead.

B. Anti-token transformations

Anti-tokens can also be used to enable new retiming
configurations beyond the ones presented in Section II-B.
An empty EB is equivalent to an EB with one token of
information followed by an anti-token injector with one anti-
token, as shown in Fig. 15(a). An anti-token injector can be

4 4

1 2

3 983

9
0.7

0.1
0.2

(a)

4 4

1 2

3 983

9
0.7

0.1
0.2

-1

(b)

Fig. 16. Optimal configuration with (a) early evaluation and (b) anti-token
insertion. Boxes represents 2-slot elastic buffers.

implemented with a simple control that contains an up-down
counter placed on the communication channel (without any
latency penalty). When a token flows through a non-empty
anti-token injector, the token and the anti-token cancel each
other, updating the counter.

Anti-tokens can be retimed (as in Fig. 15(c)) and grouped
(as in Fig. 15(b)). However, anti-token counters cannot be
retimed through computational units that have state or mem-
ory. Such state can be represented in the microarchitectural
graph as a self-loop of the node, which will effectively disable
retiming and propagation of anti-tokens.

C. Re-designing for average performance

The performance of a system with early evaluation is
no longer determined by the slowest cycle, since average-
case performance is achieved instead of worst-case. Early
evaluation allows to design for the typical case in terms of data
variability. Data that is not selected often can be safely delayed
by a few clock cycles without a significant impact on the
throughput. By using this technique, it is possible to achieve
a cycle time reduction with small throughput degradation,
thus improving the effective cycle time. Relaxing the timing
constraints on parts of the design that are not used very often
can also result in power and area savings.

Figure 16(b) shows a design similar to Fig. 13(b), with an
early evaluation multiplexer selecting between three branches.
In this example, anti-token insertion has been applied to the
dashed channel. Then, the new EB can be retimed backwards
across the node with delay 8, and the bubble between nodes
8 and 9 can be removed. This new configuration has a cycle
time of 11 units, but the estimated throughput using an ILP
model [7] is higher, 0.918, since there is only one cycle with a
bubble2 compared to Fig. 16(a), where two of the three cycles
have bubbles. The resulting effective cycle time is 11.98 units.
This configuration can only be achieved by using the anti-
token insertion transformation.

There is no known efficient exact method to compute the
throughput of a system with early evaluation. An upper bound
method using linear programming is presented in [27]. Each
input must be assigned a probability so that the performance
can be analyzed. Such probabilities should be obtained by
running a typical application on the system, and then counting
how often each input is selected.

2the cycle corresponds to the one with the anti-token (-1), as the sum of a
token and an anti-token is equivalent to a bubble.



PROCEEDINGS OF THE IEEE 9

ALU

W R

wa

rd

ra

wd

M2 M3M1

IFD
oc

RF

(a)

ALU

W R

wa
rd

ra

wd

M2 M3M1

IFD DD
oc

(b)

ALU

W R
rdwd

M2 M3M1

oc

wa

ra
IFD DD

(c)

ALU

W R
rdwd

M2 M3M1 -1

-2

oc

wa

ra
IFD DD

(d)

Fig. 17. (a) Graph model of a simple design, (b) After 3 bypasses, (c) Duplicate mux, enable forwarding, (d) Final pipeline after transformations

D. Memory bypass

One of the key strategies for boosting performance in
computer architecture is to parallelize instruction execution
when data and control dependencies do not prevent it. A
common technique for that is to bypass data that have not been
yet committed to memory or to the register file. These schemes
introduce multiplexers to forward data to the requesting units.

Figure 15(d) depicts a transformation to introduce a memory
(or register file) bypass [29]. The memory block is represented
by the write logic (W), the read logic (R) and a buffer
containing the information. A memory can be modeled as a
large register that is read/written at every cycle, even though
the read/write operations only affect a small subset of bits.

The transformation introduces an EB that delays the com-
mitment of the write data (wd). Additionally, a register to delay
the write address (wa) is required. The output multiplexer
can select between the data coming from memory or the one
coming from the non-committed data. The selection is done
depending on the coincidence of the read address (ra) and the
previous write address.

The relevance of this transformation is twofold. On one
hand, a new EB is introduced that can be retimed backwards
searching for more pipelining opportunities that can reduce
the cycle time. On the other hand, the output multiplexer
can perform early evaluation and forward data one cycle
earlier when no data dependencies exist between the read and
write requests. Interestingly, this transformation can be applied
iteratively, creating a several forwarding levels.

Memory bypass is one of the key enablers of architectural
exploration. By applying a different number of bypass transfor-
mations in the architecture, various configurations trading-off
area and performance can be generated and compared.

IX. AUTOMATIC PIPELINING

By using the techniques presented in previous sections, it
is possible to automatically pipeline a design starting from

a functional specification graph. Pipelining is achieved by
by applying a sequence of correct-by-construction structural
transformations that generate an elastic distributed control in
which every block only controls the input/output EBs and
local computation blocks. The generated pipelines can handle
dynamic data dependencies and do not rely on a static global
schedule.

Bypassing memory elements using early-evaluation is es-
sential for automatic pipelining, since they introduce new EBs
that can be retimed backwards. Finally, the system can be
pipelined by retiming the EBs inserted with the bypasses and
using other transformations such as recycling or anti-token
insertion.

A. Example: Pipelining a Reduced Instruction Set

Figure 17(a) shows the specification of a simple design. The
register file RF is the only state holding block. IFD fetches
instructions and decodes the opcode and register addresses.
ADD and M are arithmetic functions. The results are selected
by the multiplexer for RF write-back. M has been divided
into three stages. The potential boundaries for breaking up
logic to allow pipelining is a design decision that is typically
determined a priori, regardless whether pipelining will be
applied or not.

In Fig. 17(b), three memory bypasses have been added to
RF for building a bypass network. The node DD receives all
previous write addresses and the current read address in order
to detect any dependencies and determine which of the inputs
of the bypass multiplexer must be selected.

The right-most multiplexer and the bypass EBs must be
duplicated to feed each bypass path independently, enabling
new forwarding paths, as shown in Fig. 17(c). Once the for-
warding paths have been created, the design can be pipelined
by applying retiming and anti-token insertion, as shown in
Fig. 17(d). The final elastic pipeline is optimal in the sense that
its distributed elastic controller inserts the minimum number
of stalls. Furthermore the pipeline structure is not redundant



PROCEEDINGS OF THE IEEE 10

F

W R

ID

RF
ALU

W R

MEM

PC

+4
rdwd

wa ra

ocja

BR

Fig. 18. DLX initial graph

since there are no duplicated nodes. Therefore, this is as good
as a manually designed pipeline.

Fast instructions that require few cycles to compute, like
ADD in this example, use the bypass network to forward data
avoiding extra stalls, while long instructions use the bypass
network as a stall structure that handles data hazards. In
this example, the only possible stalls occur when the paths
with anti-token counters are selected by the early evaluation
multiplexers. This situation corresponds to a read after write
(RAW) dependency involving a result computed by M, which
needs three cycles to complete.

B. Microarchitectural exploration

As the graph specification grows, the number of possible
pipelining configurations explodes exponentially, and man-
ual exploration becomes complicated and error-prone. The
retiming and recycling optimizations, including anti-token
insertion and retiming, can be unified as a mixed integer
linear programming problem (MILP) [7], and solved using
linear programming tools. Therefore, automatic exploration of
pipelines can be achieved by trying different combinations of
bypasses added to each of the memory elements of the design,
and then automatically pipelining each exploration point [20].
Since the retiming and recycling method can only compute an
upper bound of the throughput instead of the exact throughput,
the most promising designs should be simulated at the end of
the exploration to identify the best one, or to study a possible
trade-off between performance and area or power.

Let us illustrate this exploration method on a simple mi-
croarchitecture similar to a DLX, shown in Fig. 18 before
pipelining. In this microarchitecture, there is no pipelining
and every instruction is executed in one cycle with a long
cycle time. The execution unit has an integer ALU and a long
operation F. The instruction decoder ID produces the opcode,
oc, that goes to the write-back multiplexer and a jump address,
ja, which depends on the previous ALU operation, stored
in register BR. Table I shows approximate normalized area
and delays of the functional blocks. These parameters have
been obtained by synthesizing some of the blocks in a 65nm
technology library (ALU, RF, mux2, EB and +4). The rest of
the values have been estimated.

F is considered to be a floating point unit which may be
divided into several blocks for pipelining (F1, . . . Fi). The
memory has a read latency of LMEM cycles, which is set to 10
in Table I. This is a typical value for the read latency of an
on-chip cache memory.

Figure 19 shows the effective cycle time and area of the best
Pareto points found for different partitions of F. Using a set
of realistic assumptions for the probability of each instruction

TABLE I
DELAY, AREA AND LATENCY NUMBERS FOR DLX EXAMPLE

Block Delay Area Lat. Block Delay Area Lat.
mux2 1.5 1.5 1 EB 3.15 4.5 1
ID 6.0 72 1 +4 3.75 24 1
ALU 13.0 1600 1 F 80.0 8000 1
RF W 6 6000 1 RF R 11 - 1
MEM W - - 1 MEM R - - 10

Fig. 19. Effective cycle time and area of the best pipelined design for
different depths of F. (x,y) and (x,y,z) tuples represent the depth of F, the
number of bypasses applied to RF and to MEM (z = 9 if omitted)

and the probability of data hazards, a pipeline was generated
automatically for each possible partition of F, collecting the
effective cycle time of the resulting pipeline and its area. It also
shows how many bypasses were added to the register file and
the memory to introduce instruction parallelism. This figure
illustrates how more pipelining implies better performance
at the expense of more area. While the best performance is
achieved with 6 stages, shorter pipelines (such as the ones
circled in the figure) are simpler and can offer attractive
solutions.

Figure 20 shows one of the best design points, with F
partitioned into three blocks. 3 bypasses have been applied
to RF and then EBs have been retimed to pipeline F . Note
that an extra bubble has been inserted at the output of F3: the
reduction in the throughput due to this bubble is compensated
by a larger improvement in cycle time. Without this bubble
the critical path would include the delay of the multiplexers
after F3. This kind of decisions are driven by the probabilities
at the multiplexers, and derived automatically by the MILP
model.

The bypasses in the memory MEM implicitly create a load-
store buffer to hide memory latency, as shown in Fig. 20. Such
structure can be substituted by a more efficient implementa-
tion: an associative memory. The exploration algorithm can
detect the need for such load-store buffers and calculate their
optimal size.

Figure 21 illustrates how a simple program executes in this
example. Fig. 21(a) shows the trace of a set of 5 instructions
executed in the original DLX design from Fig. 18. In this non-
pipelined design, the cycle time is 107.65 units (using the data
in Table I). Each instruction takes one cycle to complete and



PROCEEDINGS OF THE IEEE 11

ID
RF

ALU

MEM

PC

+4

ocja

F2 F3F1

-1

-2
W R

DD

W R
rdwd

DD

load-store buffer

-1

Fig. 20. Pipelined DLX (F split into 3 blocks. RF has 3 bypasses and M 9)

the program runs in 538.25 time units.
Fig. 21(b) shows the trace corresponding to the execution of

the same program in the pipelined version of the DLX shown
in Fig. 20. In this case, since there are three stages in F, the
cycle time is reduced down to 30 units. However, it needs 11
cycles to complete, so the total execution time is 330 units of
time. The ALU stage in the trace corresponds to the execution
of the ALU function in Fig. 20, while ALU2 is the empty stage
starting with the EB right next to the ALU unit.

There are two data dependencies during this execution
run: I4 reads the result from I2, and I5 from I4. The data
dependencies are drawn with an arrow in the trace. For the
first dependency, the execution of I4 and I5 is stalled during
two cycles as the data hazard cannot be resolved until F1-F2-
F3 is completed. Therefore, two bubbles are introduced in the
pipeline (shaded boxes in Fig. 21). For the second dependency,
there is no need to stall, since the ALU unit completes within
one cycle, and there is one forwarding path that can be used
to bypass the result to the next instruction. This forwarding
path is represented by a dashed line in Fig. 20.

As explained above, this example shows how the bubble
added at the end of the F pipeline is useful to further reduce the
cycle time. If instructions using F occur with low probability,
this bubble will be automatically inserted by the exploration
algorithm, thus reducing cycle time with a small throughput
penalty. If F is executed with high probability, the bubble
will not be inserted because the gain in cycle time will not
compensate the throughput penalty.

X. CONCLUSIONS

After the classical optimizations in logic synthesis, auto-
matic pipelining is the next step in design automation that
contributes to improve the power/performance trade-offs in
system design.

The paper has presented the historical evolution of design
automation that has enabled novel optimizations for pipelining.
Although the proposed transformations can improve perfor-
mance by introducing handshake-based elastic timing, the
behavior still preserves the so-called in-order execution, i.e.
the generated traces transfer information in the same order as
in the original non-elastic system.

(a)

(b)

Fig. 21. Execution of 5 instructions for the unpipelined and pipelined designs
of the DLX example in this section, (a) in the unpipelined DLX (b) in
the pipelined DLX. The 5 instructions are I1=ALU, I2=F, I3=F, I4=ALU,
I5=ALU. I4 needs to read the result from I2, and I5 needs to read the result
from I4.

Several problems still remain opened. Equivalence checking
is one of the main challenges for transformations that modify
timing beyond the natural boundaries of RTL state signals.
Even today, retiming has a very limited use due to the limited
scalability of the sequential equivalence algorithms. Some
initial efforts have already been published [53], but there is
still a long way to go until commercial verification tools can
adopt this technology.

Automation for out-of-order execution is another challenge
that deserves further investigation. While this paradigm is
highly exploited in advanced CPUs, there is still little progress
in automatic synthesis.

REFERENCES

[1] M. Ampalam and M. Singh. Counterflow pipelining: Architectural
support for preemption in asynchronous systems using anti-tokens. In
Proc. International Conf. Computer-Aided Design (ICCAD), pages 611–
618, 2006.

[2] ARM Limited. AMBATM Specification (Rev 2.0), 1999.
[3] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli. Multilevel logic

synthesis. Proceedings of the IEEE, 78(2):264–300, Feb 1990.
[4] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and

G. D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Norwell, MA, USA, 1984.

[5] C. Brej and J. Garside. Early output logic using anti-tokens. In Int.
Workshop on Logic Synthesis, pages 302–309, May 2003.



PROCEEDINGS OF THE IEEE 12

[6] D. Buchfuhrer and C. Umans. The complexity of Boolean formula
minimization. Journal of Computer Science and System Sciences,
77(1):142–153, Jan. 2011.

[7] D. Bufistov et al. Retiming and recycling for elastic systems with early
evaluation. In Proc. ACM/IEEE Design Automation Conference, pages
288–291, July 2009.

[8] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory
of latency-insensitive design. IEEE Transactions on Computer-Aided
Design, 20(9):1059–1076, Sept. 2001.

[9] L. Carloni and A. Sangiovanni-Vincentelli. Combining retiming and
recycling to optimize the performance of synchronous circuits. In 16th
Symp. on Integrated Circuits and System Design (SBCCI), pages 47–52,
Sept. 2003.

[10] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sagiovanni-
Vincentelli. A methodology for correct-by-construction latency insen-
sitive design. In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 309–315, Nov. 1999.

[11] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic
circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 28(10):1437–1455, Oct 2009.

[12] M. Casu and L. Macchiarulo. Adaptive Latency-Insensitive Protocols.
IEEE Design & Test of Computers, 24(5):442–452, 2007.

[13] S. Chatterjee. On algorithms for technology mapping. PhD thesis,
University of California at Berkeley, Berkeley, CA, 2007.

[14] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed
graphs. Journal of Computer and System Sciences, 5:511–523, 1971.

[15] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with
early evaluation and token counterflow. In Proc. ACM/IEEE Design
Automation Conference (DAC), pages 416–419, June 2007.

[16] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of syn-
chronous elastic architectures. In Proc. ACM/IEEE Design Automation
Conference (DAC), pages 657–662, July 2006.

[17] P. Coussy and A. Morawiec, editors. High-Level Synthesis: From
Algorithm to Digital Circuit. Springer, 2008.

[18] E. J. McCluskey, Jr. Minimization of Boolean Functions. Bell System
Technical Journal, 35(6):1417–1444, Nov. 1956.

[19] J. P. Fishburn. Clock skew optimization. IEEE Transactons on
Computers, 39(7):945–951, July 1990.

[20] M. Galceran-Oms, J. Cortadella, M. Kishinevsky, and D. Bufistov.
Automatic microarchitectural pipelining. In Design, Automation and
Test in Europe, pages 961–964, Apr. 2010.

[21] M. Galceran-Oms, A. Gotmanov, J. Cortadella, and M. Kishinevsky.
Microarchitectural transformations using elasticity. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 7(4):18, 2011.

[22] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level
synthesis framework for applying parallelizing compiler transformations.
In Proc. International Conference on VLSI Design, pages 461–466, Jan.
2003.

[23] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. Coordinated parallelizing
compiler optimizations and high-level synthesis. ACM Transactions on
Design Automation of Electronic Systems, 9(4):441–470, Oct. 2004.

[24] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin. PLS: a scheduler for pipeline
synthesis. IEEE Transactions on Computer-Aided Design, 12(9):1279–
1286, Sept. 1993.

[25] IEEE Standard for A Versatile Backplane Bus: VMEbus, 1987. IEEE
Std 1014TM-1987 (R2008).

[26] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster,
E. G. Mercer, and C. J. Myers. Synchronous interlocked pipelines. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 3–12, Apr. 2002.

[27] J. Júlvez, J. Cortadella, and M. Kishinevsky. Performance analysis of
concurrent systems with early evaluation. In Proc. International Conf.
Computer-Aided Design (ICCAD), Nov. 2006.

[28] G. Kahn. The semantics of a simple language for parallel programming.
In J. L. Rosenfeld, editor, Information processing, pages 471–475,
Stockholm, Sweden, Aug 1974. North Holland, Amsterdam.

[29] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms. Correct-
by-construction microarchitectural pipelining. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 434–441, 2008.

[30] K. Keutzer. DAGON: Technology binding and local optimization by
DAG matching. In Design Automation Conference, pages 341–347, June
1987.

[31] A. Kondratyev, L. Lavagno, M. Meyer, and Y. Watanabe. Realistic
performance-constrained pipelining in high-level synthesis. In Proc.
Design, Automation and Test in Europe (DATE), pages 1–6, Mar. 2011.

[32] D. Kroening and W. Paul. Automated pipeline design. In Proc.
ACM/IEEE Design Automation Conference, pages 810–815, June 2001.

[33] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous
elastic networks. In FMCAD, pages 19–30. IEEE Computer Society,
2006.

[34] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica,
6(1):5–35, 1991.

[35] N. Maheshwari and S. S. Sapatnekar. An improved algorithm for
minimum-area retiming. In ACM/IEEE Design Automation Conference,
pages 2–7, 1997.

[36] R. Manohar and A. J. Martin. Slack elasticity in concurrent comput-
ing. In J. Jeuring, editor, Proc. 4th International Conference on the
Mathematics of Program Construction, volume 1422 of Lecture Notes
in Computer Science, pages 272–285, 1998.

[37] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-
insensitive modules. In H. Fuchs, editor, 1985 Chapel Hill Conference
on Very Large Scale Integration, pages 67–86. Computer Science Press,
1985.

[38] D. E. Muller. Asynchronous logics and application to information
processing. In Symposium on the Application of Switching Theory to
Space Technology, pages 289–297. Stanford University Press, 1962.

[39] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching,
pages 204–243. Harvard University Press, Apr. 1959.

[40] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, Apr. 1989.

[41] E. Nurvitadhi, J. Hoe, T. Kam, and S.-L. L. Lu. Automatic Pipelining
from Transactional Datapath Specifications. IEEE Transactions on
Computer-Aided Design, 30(3):441–454, Mar. 2011.

[42] J. O’Leary and G. Brown. Synchronous emulation of asynchronous
circuits. IEEE Transactions on Computer-Aided Design, 16(2):205–209,
Feb. 1997.

[43] C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asyn-
chronous concurrent systems using Petri nets. IEEE Trans. Software
Eng., 6(5):440–449, 1980.

[44] M. Riedel and J. Bruck. Cyclic Boolean Circuits. Discrete Applied
Mathematics, 160(3):1877–1900, 2012.

[45] C. L. Seitz. System timing. In C. A. Mead and L. A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[46] N. Shenoy and R. Rudell. Efficient implementation of retiming. In
IEEE/ACM International Conference on Computer-Aided Design, pages
226–233, 1994.

[47] D. Sokolov, I. Poliakov, and A. Yakovlev. Analysis of static data flow
structures. Fundamenta Informaticae, 88(4):581–610, 2008.

[48] J. Sparsø and S. Furber, editors. Principles of Asynchronous Circuit
Design: A Systems Perspective. Kluwer Academic Publishers, 2001.

[49] J. Sparsø and J. Staunstrup. Delay-insensitive multi-ring structures.
Integration, the VLSI journal, 15(3):313–340, Oct. 1993.

[50] I. E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720–738, June 1989.

[51] C. Umans, T. Villa, and A. Sangiovanni-Vincentelli. Complexity of
two-level logic minimization. IEEE Transactions on Computer-Aided
Design, 25(7):1230–1246, July 2006.

[52] T. Verhoeff. Delay-insensitive codes—an overview. Distributed Com-
puting, 3(1):1–8, 1988.

[53] V. Wijayasekara and S. Srinivasan. Equivalence checking for syn-
chronous elastic circuits. In IEEE/ACM Int. Conf. on Formal Methods
and Models for Codesign (MEMOCODE), pages 109–118, Oct. 2013.



PROCEEDINGS OF THE IEEE 13

Jordi Cortadella (M’88–SM’13–F’15) received the
M.S. and Ph.D. degrees in Computer Science from
the Universitat Politècnica de Catalunya, Barcelona,
in 1985 and 1987, respectively. He is a Professor in
the Department of Computer Science of the same
university and member of the Academia Europaea.
His research interests include formal methods and
computer-aided design of VLSI systems with special
emphasis on asynchronous circuits, concurrent sys-
tems and logic synthesis. Dr. Cortadella has served
on the technical committees of several international

conferences in the field of Design Automation and Concurrent Systems. He
received best paper awards at the Int. Symp. on Advanced Research in Asyn-
chronous Circuits and Systems (2004), the Design Automation Conference
(2004) and the Int. Conf. on Application of Concurrency to System Design
(2009). In 2003, he was the recipient of a Distinction for the Promotion of
the University Research by the Generalitat de Catalunya.

Marc Galceran-Oms received his M.S. and Ph.D.
degrees in Computer Science from the Universitat
Politecnica de Catalunya, Barcelona, in 2007 and
2011. His research interests include formal methods
in system design, logic synthesis and data mining.
He is currently in a back-end design group in eSili-
con. Prior to that he was at an asynchronous design
start-up company (Elastix) and as an intern at the
Strategic CAD Labs group of Intel.

Mike Kishinevsky (M’94–SM’96) received the MS
and PhD degrees in CS from the Electrotechnical
University of St. Petersburg. He leads a research
group in front-end design at Strategic CAD Labs
of Intel. Prior to joining Intel in 1998, he has
been a research fellow at the Russian Academy
of Science, a senior researcher at a start-up in
asynchronous design (TRASSA), a visiting associate
professor at the Technical University of Denmark,
and a professor at the University of Aizu, Japan. He
has served on the technical program committee at

several conferences and workshops. He received the Semiconductor Research
Corporation outstanding mentor awards (2004 and 2010) and the best paper
awards at the Design Automation Conference (2004) and the International
Conference on Application of Concurrency to System Design (2009).

Sachin Sapatnekar (S’86–M’93–F’03) received the
B. Tech. degree from the Indian Institute of Tech-
nology, Bombay, the M.S. degree from Syracuse
University, and the Ph.D. degree from the University
of Illinois. He taught at Iowa State University from
1992 to 1997 and has been at the University of Min-
nesota since 1997, where he holds the Distinguished
McKnight University Professorship and the Robert
and Marjorie Henle Chair. He has received six
conference Best Paper awards, a Best Poster Award,
an ICCAD 10-year Retrospective Most Influential

Paper Award, the SRC Technical Excellence award and the SIA University
Researcher Award.


