
1

Adaptive-length Coding of Image Data for
Low-cost Approximate Storage

Qianqian Fan, David J. Lilja, and Sachin S. Sapatnekar

Abstract—In the past few years, ever-increasing amounts of image data have been generated by users globally, and these images are
routinely stored in cold storage systems in compressed formats. This paper investigates the use of approximate storage that leverages
the use of cheaper, lower reliability memories that can have higher error rates. Since traditional JPEG-based schemes based on
variable-length coding are extremely sensitive to error, the direct use of approximate storage results in severe quality degradation. We
propose an error-resilient adaptive-length coding (ALC) scheme that divides all symbols into two classes, based on their frequency of
occurrence, where each class has a fixed-length codeword. This provides a balance between the reliability of fixed-length coding
schemes, which have a high storage overhead, and the storage-efficiency of Huffman coding schemes, which show high levels of error
on low-reliability storage platforms. Further, we use data partitioning to determine which bits are stored in approximate or reliable
storage to lower the overall cost of storage. We show that ALC can be used with general non-volatile storage, and can substantially
reduce the total cost compared to traditional JPEG-based storage.

Index Terms—Adaptive-length Coding, Error-resilience, Approximate Storage.

F

1 INTRODUCTION

THE quantity of image data on cloud-based storage has
skyrocketed in recent years. For example, in 2014 annual

trends report, 1.8 billion images were uploaded to Facebook,
Instagram, Snapchat, and WhatsApp every day [1], a num-
ber that has surely increased since. Furthermore, images
are currently stored in most sites at multiple resolutions to
support different devices and contexts, further increasing
storage overheads [2]. These uploads require a significant
amount of storage, which can be expensive. Therefore, cost-
effective image storage is an active field of research. In
[3], they reduced the metadata of photo to obtain lower
cost storage with higher throughput. Progressive JPEG with
customized encoding parameters for dynamic resizing was
used to reduce bandwidth and storage overheads in [2].
Recent works applied cheaper, lower-reliability image and
video storage at dramatically lower cost [4] [5] [6] [7]. This
concept has been explored for raw images [7] and client
devices presuming the availability of a high-fidelity copy in
the cloud [4]. However, these prior works do not address
the issue of reducing the cost of the long-term storage in the
cloud, which is the subject of this paper.

Individual images are typically saved in compressed
form in long-term storage rather than in a raw format where
every pixel is stored. Apple is adopting the High Efficiency
Image File (HEIF) format as its new photo format [8], but
this format is still only a small part of the market. Drop-
box uses Lepton to re-compress JPEG files, which replaces
the lowest layer of the baseline JPEG compression with a
parallelized arithmetic code (variable-length) to improve
speed [9]. The PTC encoding algorithm is used in [4] for
the purpose of approximate storage, which is a seldom-used
image format and has low compression efficiency. To reach
our target, the JPEG encoding algorithm is a good candidate
because of its popularity [10] and high compression ratio.

The JPEG standard uses a discrete cosine transform
(DCT) and saves the coefficients of the dominant spatial
frequencies using variable-length coding (VLC), a Huff-
man coding scheme that further improves compression

efficiency [11]. Modern image storage providers, such as
Google Photos, typically re-compress JPEG files to reduce
the image size. While this loses some information, it does so
without any perceptual difference [9] [12]. Similarly, when
approximate storage is used, the new storage scheme should
keep each encoded image with no visually perceptible loss
in quality. However, an error in compressed image data can
change key attributes of the VLC-encoded image, and even
with variable error correction mechanism, can still result in
obvious distortions in the image [5]. Even a single error
could completely corrupt part of the image (Fig. 1a). The
direct use of error-prone low-reliability storage for saving
VLC-encoded JPEG images is thus risky as it can cause
unacceptable levels of error. Therefore, despite their low
cost, error-prone storage is not considered viable for storing
compressed VLC-encoded images.

Fig. 1: (a) VLC-based storage where a single error corrupts
the the remaining blocks of image (b) VLC-based storage
with variable error correction mechanism [5] under a 1%
error rate, showing obvious degradation. (c) Our ALC-
based scheme with a same percentage of data stored in
approximate storage as (b) under a 1% error rate, showing
no visible quality loss.

In this work, a novel adaptive-length coding (ALC)
scheme is proposed to replace the error-sensitive Huffman
coding in JPEG compression. Our ALC scheme is shown to
be inherently resilient to errors. ALC divides all the symbols



into two classes: more frequently occurring symbols, which
are encoded to a shorter fixed length, and more infrequent
symbols that are mapped to a longer fixed length code.
Since the codeword in each class has the same length, ALC
is an encoding scheme where every word uses one of two
allowable lengths. This differs from Huffman coding as used
in VLC where each symbol could be mapped to a variable
length encoding [11]. By limiting the number of code lengths
to two, we obtain the best of both worlds, balancing the
error-resilience of fixed-length encoding with the reduced
storage needs of VLC. According to the statistics of an im-
age, the algorithm adaptively and efficiently adds additional
bits to compensate for the quality loss. We demonstrate
that ALC maintains excellent compression efficiency while
improving error resilience inherently. An example result is
shown in Fig. 1c.

The increased error resilience of ALC allows most of the
data bits of an image to be stored in low-cost approximate
storage, but some critical parts of the image may still require
reliable storage. We develop a data partitioning scheme that
segments the ALC-encoded data into reliable and approx-
imate storage, minimizing the total cost of storage with
the quality degradation constrained. From source-channel
separation theorem [13] aspect, we can optimize ALC and
ECC of storage separately and can simply combine them
in a cascaded manner. In this work, we mainly focus on
the compressed image data instead of other applications
with high error resilience [14]. Our scheme can be imple-
mented for JPEG files recompression as [9], which only
replace Huffman coding with error-resilient ALC compared
to conventional JPEG scheme. Furthermore, ALC scheme is
compatible with more sophisticated JPEG techniques, e.g.
JPEGmini, which use image-specific quantization matrix to
further improve compression efficiency [15].

2 RELATED WORK

The networking community has proposed a set of tech-
niques for image transmission over lossy networks to im-
prove the error resilience of image coding.

From the point of view of source coding, to overcome
the resynchronization limitation of VLC, the error resilient
entropy coding (EREC) method was proposed in [16]. In this
code, blocks of various lengths are reorganized into fixed-
length blocks to prevent error propagation beyond block
boundaries. The approaches in [17] [18] [19] adopt the same
idea to improve the error resilience of JPEG by preventing
the errors propagating across the block boundaries. How-
ever, this cannot prevent quality degradation within blocks
at the higher error rates seen in low-cost storage. In [20],
the embedding and side-match vector quantization (VQ) is
used to conceal the corrupted block, but their discussion
shows that it is challenging for this scheme to achieve
acceptable quality degradation under large error rates. The
Hybrid Variable Length Code (HVLC) [21] uses multiple
VLC coding structures to reduce the error propagation
distance within one codeword, but the boundaries of the
codeword are based on VLC, and if errors are introduced in
these boundary code bits, the image data can be corrupted.

Channel coding also can be applied intelligently to im-
prove the error resilience. An error-resilient unequal pro-
tection can robustly cope with packet loss in transmis-
sion [5] [22]. The Wyner-Ziv Error-Resilient scheme empha-

sizes protecting the Region of Interest area in the frame [23].
However, the goal of all these methods localize the error
within blocks or larger segments and to prevent it from
impacting the entire bit-stream. As we stated earlier, the
impact of this block-based error on perceptual quality is still
large for purposes of image storage, as shown in Fig. 1b.

Instead of using VLC, SoftCast [24] compresses data
by discarding zero and near-zero DCT components. The
codewords preserve the numerical properties of the original
pixels, so the error resilience of image or video coding can
be improved compared to the VLC-based scheme. Fixed-
length coding (FLC) [25] ensures that errors do not propa-
gate beyond the corrupted codeword, but at a much lower
compression efficiency than VLC. Variable-to-Fixed-length
codes, e.g. the Tunstall coding algorithm, map symbols to
a fixed number of bits and can also avoid resynchroniza-
tion issues in VLC. However, the compression efficiency of
Tunstall coding is severely affected by rarely-used symbols
compared with Huffman coding [26]. No existing scheme
can overcome the error sensitivity of VLC with comparable
compression efficiency.

3 PRELIMINARIES AND MOTIVATION

3.1 Cost-reliability trade-offs for approximate storage
There exists a clear trade-off between the cost of a storage
device and its reliability. For instance, inexpensive HDDs
have lower reliability than more expensive enterprise-class
devices. As a result, the less expensive devices are typically
used in a RAID configuration to improve the system reliabil-
ity. There is a similar trade-off for SSD devices and for other
types of storage technologies. Furthermore, we can make
other trade-offs besides reliability and price cost. For exam-
ple, there is a trade-off between the cost of adding ECC to
a memory system and the resulting reliability. This trade-off
has been used in prior work to build an approximate storage
system [4] [5]. There also exists a trade-off in NAND flash
technology between the cell storage efficiency (bits/cell) and
reliability [27]. For the emerging STT-MRAM technology,
the reliability is related to the energy required to change
the device’s state. A lower energy circuit will provide lower
reliability [6] [7].

The goal of this work is to develop a methodology for
storing a compressed image in approximate storage. We
propose a general methodology and presenting the notion
of the trade-off under various cost scenarios. As a result, we
assume only two types of storage - reliable and approximate
- that have different cost ratios. The specific implementation
of these two types of storage is beyond the scope of this
work.

3.2 Fundamentals of JPEG
JPEG is a commonly used technique that employs the dis-
crete cosine transform (DCT) to perform lossy compression
on digital images [28]. The DCT divides an image into a set
of 8×8 pixel frames, converting the sub-image in each frame
from the spatial domain into an 8×8 matrix of coefficients
in the frequency domain, corresponding to various spatial
frequencies. The zero-frequency coefficient of the DCT is
referred to as its DC term, which is the average of the pixel
values. It provides a baseline value for the encoding. The
remaining elements for the AC terms provide information

2



about the successively higher frequency components, which
represent color changes across the block. Since the human
eye is insensitive to high-frequency spatial variations, a
quantization step is used to divide each coefficient by
the non-uniform entry in the quantization matrix (higher
resolution for DC and low-frequency components), and an
integer result is stored. As larger divisors are used at higher
frequencies, and DCT coefficients tend to be lower at high
frequencies, many coefficients go to zero. Only nonzero DCT
coefficients are stored, and thus the volume of compressed
data is greatly reduced from the raw image. The original
image can be reconstructed from this data with little or no
discernible loss in quality. The entries of the quantization
matrix, for a quality factor Q, range from 1 to 100, where
a higher number corresponds to higher quality (Q = 90 is
widely used). The quantization matrix for any value of Q
can be derived using the procedure in [28] that is based on
standard quantization matrix for Q = 50.

Fig. 2: The zigzag pattern that orders the DCT coefficients
for storage.

The top left entry in the 8×8 DCT coefficient matrix
is the DC coefficient. The DC coefficients store the basic
information for the image, and employ differential coding,
whereby the difference of the DC coefficients between suc-
cessive blocks is saved. This enables more compact storage,
but allows an error to affect multiple blocks. The remaining
entries are the AC coefficients. In practice, since the nonzero
AC coefficients tend to cluster near the top left entry of
the matrix, the quantized coefficients are stored in a zigzag
sequence, as shown in Fig. 2. Then DC and AC coefficients
are encoded separately based on different Huffman tables
specified in the JPEG standard [29].

TABLE 1: VLC-encoded AC coefficients in Fig. 2.

Nonzero
coefficient

RL 1’s complement
representation

CAT Codeword

2 0 10 2 01 10
-1 2 0 1 11100 0

In VLC, the value of a coefficient is stored using one’s
complement representation1, where the sign is encoded by
ensuring that the MSB for a positive [negative] number
is 1 [0]. For example, consider a differentially coded DC
coefficient of 5, represented in one’s complement notation
as 101, in Fig. 2. Then the category (CAT) of this coefficient
will be encoded based on the Huffman table for the DC
coefficient, which represents the number of bits required
to store this value. Therefore, for this example, CAT =

1. two’s complement representation can also be applied, but it will
not introduce any meaningful changes in the results.

3, which is translated to 100 after Huffman coding. The
encoded DC coefficient then concatenates these to obtain
the codeword 100 101. In VLC, the maximum value of CAT
for DC coefficients is 11 bits.

Table 1 encodes the AC coefficient values in Fig. 2.
The sequence of coefficients is translated to symbols that
encode the run-length (RL) and the category (CAT) of the
coefficient. Here, RL corresponds to the number of zeros
preceding the coefficient, e.g., for the entry of −1, RL =
2 as it is preceded by two zeros. Each (RL, CAT) symbol
is represented by a variable-length codeword based on
Huffman tables, assigning shorter codes to more common
symbols, e.g., in Table 1, (RL = 0, CAT = 2) is represented
by the symbol 01. In VLC, RL is limited to 4 bits and CAT
to 10 bits for AC coefficients; in case of larger run-lengths,
symbols with (RL = 15, CAT = 0) can be concatenated.

For the block in Fig. 2, the precise bit string that is stored
is a concatenation of the codewords for the DC coefficient
and all AC coefficients in Table 1, i.e.,

1001010110111000 . . . 1010

where the ellipsis represents the nonzero coefficients that are
not shown in the figure. The last symbol, 1010, corresponds
to end of block (EOB), a unique symbol that indicates the
last nonzero coefficient of a block. The EOB symbol acts as
a separator between consecutive blocks.

As shown in Fig. 3e, the storage overhead is dominated
by the AC coefficients. Further, among these AC coefficients,
the distribution of the symbols (RL, CAT) is quite unbal-
anced. For example, in the images, Girlface, Peppers and
the two additional images Tiger, Bird, from the Imagenet
dataset [30], the first 15 symbols can be seen to cover over
95% of the coefficients, with (0,1), (0,2) and (1,1) correspond-
ing to over half of all 161 symbols, as shown in Fig. 3. This
motivates the use of Huffman coding in VLC, but we will
soon see how VLC is sensitive to errors.

3.3 Error resilience limitations of JPEG storage
schemes

The error tolerance for traditional VLC-encoded JPEG,
where the storage scheme uses a Huffman-based coding
algorithm, is quite limited, and even a single error can
bring a dramatic degradation, as illustrated in Fig. 1(a). This
error occurs due to a misalignment caused by an erroneous
symbol, which maps to a keyword with a different (RL,
CAT) value and disrupts symbol boundaries. This creates
noisy data in the blocks that follow. Moreover, some EOB
symbols are left undetected, and the image is interpreted to
have fewer blocks, with all-zero coefficients in the last few
blocks, causing them to be black.

One way to avoid such scenarios is to annotate each
block with the number of bits that it contains [17]. This
improves the error resilience by reducing the possibility of
error propagation across blocks, but under a larger number
of errors, as shown in Fig. 1(b).

Another alternative is to use fixed-length coding
(FLC) [25]. Instead of a variable-length codeword, FLC may
use the maximum number of bits for RL (4 bits) and CAT
(10 bits) if coding AC coefficients. For a constant number of
CAT bits, it is essential to also explicitly store a sign bit since
the sign can no longer be inferred from the leading bit of the

3



(a) Girlface (b) Peppers

(c) Tiger (d) Bird

(e) Number of bits required to store the DC and AC coefficients using
VLC

(f) Distribution of the (RL, CAT) symbols for the AC coefficients

Fig. 3: A set of sample images and the distribution of the
symbols representing their AC and DC coefficients.

data. In other words, to represent signed binary AC coeffi-
cients, the sign-magnitude representation is needed for FLC
instead of only using the one’s complement representation
in VLC. This implies that the length of each codeword in
FLC can be 4+10+1 = 15 bits. This fixed codeword length
allows the boundary between codewords in this scheme to
be determined easily, so that errors no longer propagate
to subsequent codewords, but this potential improvement
in error resilience is accompanied by a severe degradation
in compression efficiency. Furthermore, the error resilience
may not actually be improved, since the large increase in
the number of storage bits raises the likelihood of errors
that cannot be corrected for.

4 ADAPTIVE-LENGTH CODING

In this section, we propose the adaptive-length coding
(ALC) scheme to provide a balance between the reliability
of fixed-length coding schemes and the storage-efficiency
of Huffman coding schemes. The ALC method is described
in three steps: symbol classification for the AC coefficients
(Section 4.1), adaptation for additional bits (Section 4.2), and
EOB identification (Section 4.3).

It is worth noting that the number of AC coefficients sig-
nificantly exceeds the number of DC coefficients, as shown
in Fig. 3e. Meanwhile, as we will see in Section 8.4, the DC
coefficients contain the important characteristics of an image
and are not very tolerant to errors. Therefore, we develop
the ALC scheme to compactly store the AC coefficients
while the DC coefficients are still encoded using VLC.

4.1 Step 1: Symbol classification
Our ALC scheme places all symbols for the AC coefficients
into one of two classes. Class I corresponds to a shorter fixed
codeword length for the most frequent symbols, (0,1), (0,2),
and (1,1). Class II consists of all other symbols, which are
encoded using a longer fixed-length.

The structure of the codewords is summarized in Fig. 4.
The MSB indicates whether the symbol belongs to Class I
or II. In case of Class I, all of the remaining bits are used to
store the coefficient. For Class II, if RL = 0, the second-MSB
is set to 0, the third bit is the sign bit, and four bits are used
to save the coefficient magnitude. If RL 6= 0, then the second-
MSB is 1, followed by three bits for RL, the sign bit, and 1
bit for the coefficient magnitude. Similar to FLC, the sign-
magnitude representation is used for the AC coefficients in
ALC. Next, we justify the choice of the number of bits used
to store RL and the coefficient.

Fig. 4: Bit assignment for Class I and Class II symbols in the
ALC scheme.

4.1.1 Precise representation for Class I
Table 2 shows our scheme for uniquely representing Class
I codewords using a 4-bit fixed-length code. For Class I,
the MSB is set to 0. The next bit indicates the sign, and
is 0 for a positive value and 1 for a negative value. The
last two bits denote the magnitude of the coefficient. Since
the only symbols in Class I are (RL, CAT) = {(0,1), (0,2),
(1,1)}, there are four cases without considering the sign bit,
as shown in Table 2. Thus, the magnitude and RL of Class I
can be precisely represented using a 2-bit fixed length field.
For comparison, the corresponding VLC codes are shown,
which have similar output length to the ALC codes.

TABLE 2: Encoding Class I in ALC, and a comparison with
VLC.

(RL, CAT) Magnitude
ALC Codeword VLC Codeword Output length

Positive Negative Positive Negative ALC VLC
(0, 1) 1 0 0 00 0 1 00 00 1 00 0 4 3

(0, 2) 2 0 0 01 0 1 01 01 10 01 01 4 4
3 0 0 10 0 1 10 01 11 01 00 4 4

(1, 1) 1 0 0 11 0 1 11 1100 1 1100 0 4 5

4.1.2 Approximate representation for Class II
For elements in Class II, Fig. 5 shows the distribution of
the DCT coefficient magnitudes without considering the
symbols in Class I. This distribution determines the number
of bits required for Class II. Four representative images are
analyzed in Fig. 3a–3d, separating the scenarios where RL
= 0 and RL 6= 0. All results show the same trend: when
RL 6= 0, CAT is small for almost all possible values, and
is larger only when RL = 0. Thus, finding symbols with
large values of both RL and CAT is improbable. Based on
this observation, the use of the fixed bit length for Class II

4



symbols varies with RL. When RL = 0, all bits are used to
store the coefficient, and when RL 6= 0, the first few bits
represent RL while the rest correspond to the coefficient, as
illustrated in Fig. 4.

Fig. 5: A histogram of coefficient magnitudes for Class II
symbols for a representative set of images, for RL = 0 and
RL 6= 0. The values in the x-axis for each class group several
magnitude values when one more bit is added in the Class
II magnitude field.

4.1.2.1 Selecting the number of bits for RL 6= 0:
Table 3 examines the symbols that cannot be represented
by three RL bits, i.e., with RL = 1, · · · , 8. Only a small
fraction of symbols have RL > 8 and these tend to have
small magnitudes. Thus, for this case, 3 bits are sufficient to
represent RL. Any symbols with RL > 8, and all coefficients
beyond this symbol, are discarded with little quality loss.

TABLE 3: Distribution of symbol magnitudes for RL > 8

Girlface Peppers Tiger Bird
Fraction of symbols with RL > 8 1.67% 5.18% 2.83% 0.42%

Distribution of the
coefficient magnitude

in RL > 8 symbols

Magnitude = 0 7.53% 13.29% 7.31% 3.28%
Magnitude = 1 90.75% 86.30% 92.26% 96.72%
Magnitude = 2 1.54% 0.41% 0.24% 0.00%

Magnitude > 2 0.18% 0.00% 0.19% 0.00%

The observation from Table 3 can be extended to a larger
set of images. Fig. 6 shows the distributions generated
with 500 images in the dataset [30]. Figure. 6a shows that
the fraction of symbols that require RL>8 is quite small.
Thus, three bits for RL is sufficient for most situations. In
Figure. 6b, only a few parts of the symbols with RL>8 have
magnitude larger than 2, which means the information can
be discarded with little impact on the final results.

4.1.2.2 Selecting the number of bits for the coeffi-
cient magnitude: According to the Huffman table for the
AC coefficients, the magnitudes can be represented precisely
using 10 bits. However, from Fig. 5, numbers that use all
10 bits are seldom encountered. Therefore, we reduce the
number of magnitude bits while still covering the vast
majority of scenarios. The figure shows that the distribution

(a) (b)

Fig. 6: The distribution of images based on the different
percentage of symbols that cannot be covered by Class II
representation for RL.(a) Discard the symbols with RL>8.(b)
The discarded symbols with the magnitude larger than 2.

(a) RL=0 (b) RL6=0

Fig. 7: The distribution of images based on the different
percentage of AC coefficients can be covered by Class II
representation for magnitude.

of magnitudes for RL = 0 has a wider spread than for RL
6= 0, but even here, the number of coefficients whose values
exceed 19 is small. Therefore, our ALC encoding represents
the magnitude using 4 bits. Since any value of RL > 8 is
treated as an EOB, it is not necessary to store coefficient
values of 0 to store long run lengths, and Class II has no
magnitudes of 1 and 2 when RL = 0. Therefore four bits
can be used to store magnitudes ranging from 4 to 19. If
the actual coefficient magnitude exceeds 19, a value of 19
is stored. Similarly, for RL 6= 0, the vast majority of coeffi-
cient magnitudes are ≤ 2, so that ALC uses 1 bit to store
coefficients2 of 1 or 2. Coefficient magnitudes of 3 or larger
are capped at 2. This is a large reduction over FLC, which
requires 10 bits to represent the coefficient magnitude.

The distribution of these four images are representative
and the number of bits covering most of the scenarios works
for a larger set of images. Fig. 7 shows the distributions
generated with 500 images in the dataset [30]. When RL=0,
most images have over 90% of the AC coefficients that
can be covered by 4 bits for magnitude; when RL6=0, most
images have over 85% of the AC coefficients that can be
covered by 1 bit. This parameter selection is verified on a
larger dataset of images in Section 8.

4.2 Step 2: Adaptation per image
The basic ALC scheme described above combines the spirit
of the Huffman coding scheme in VLC with the error-
resilience of FLC. However, if used directly, only using the
few bits in Section 4.1.2 to represent the magnitude of Class
II is not enough and it can lead to a significant degradation
of the image quality.

2. When RL=1, the magnitude representation can be extended to
encode 2 or 3 since (RL, CAT)=(1,1) is already encoded in Class I.

5



Fig. 8: The average AC coefficient magnitudes, over all
frames, of all the blocks in Girlface. A lighter color repre-
sents a higher magnitude.

To better understand the reason, we study the average
magnitudes of all the blocks in a representative image, Girl-
face, (other images show similar overall trends) for each AC
frequency band. Fig. 8 presents a color-coded map of these
magnitudes for each element in the 8×8 coefficient matrix.
The figure indicates that larger-magnitude coefficients are
located near the beginning of the zigzag storage sequence.
In particular, the first few lower-frequency elements of the
sequence have larger coefficients with more important infor-
mation than higher-frequency components. For instance, we
can see that there is an important AC frequency band whose
average value is about 20, but this results in an overflow in
our basic ALC scheme, which only allows a maximum four
bits to store a coefficient.

We alter the basic scheme to improve quality by selec-
tively adding extra bits to the codewords of Class II located
in lower-frequency positions, which allows storing these
high magnitude coefficients more precisely. In order to de-
velop a computationally simple methodology, the number
of additional bits and the number of codewords with these
additional bits are the same for all blocks in one image.
Therefore, adding one more bit can result in a large change
in output length. To ensure high compression efficiency,
rather than choosing a worst-case value over all images,
we employ image-specific adaptation, where the number of
additional bits is chosen based on the characteristics of a
specific image.

The number of additional bits required to precisely
represent the first T AC codewords is determined by all
block samples from an image, where T is an optimization
parameter, in the zigzag pattern based on this data. We
choose only the first T AC codewords because the AC
codewords near the end of the block normally have lower
magnitudes. Then we find the maximum and median values
of the required additional bits among all block samples. If
we use the Structural Similarity Index (SSIM) [31] as the
quality metric (defined in Eq. (3) in Section 7.3), in the
absence of error, we find that using the maximum value
of the required number of additional bits provides the best
quality, but at highest overhead (because this value may be
rare). Another alternative is to use the median value, which
has relatively low overhead, but this still results in large
quality degradation, as illustrated in Fig. 9.

We find that using median value + α × (max value −
median value) provides an effective trade-off between the
goal of reducing the overhead while delivering adequate
quality, where α can be set to any value from 0 to 1.
Fig. 9 shows the results for α = 0.25 and α = 0.5. In our
experiments, α = 0.25 is used.

Fig. 9: The impact of using different methods to decide the
number of bits to be added to the first T AC codewords.

Fig. 10: The impact of using different number of blocks to
decide the number of bits to be added to the first T AC
codewords.

Moreover, as shown in Fig. 9, the effectiveness in im-
proving the quality goes down steeply after the first few
codewords. Thus, in our experiments, we only test the value
of T from 0 to 10 to satisfy different quality requirements.

Considering the high correlation of content among ad-
jacent blocks, we uniformly select a subset of the blocks
from an image and determine the number of additional bits
required to precisely represent the first T AC codewords.
From Fig. 10, it can be seen that once a subset of the blocks
are sampled, a representative value of T can be chosen. The
red dot shows the SSIM value when 25% of the blocks are
chosen, and empirically this is seen to be a safe threshold. In
principle, this also depends on the order in which the blocks
are sampled, but our experiments find the 25% threshold to
be safe.

4.3 Step 3: EOB identification
In the ALC scheme, since the codeword lengths are fixed,
we do not use the EOB symbol, described in Section 3.2.
Instead, for each block, we record the number of codewords
in the block for block alignment. Fig. 11 shows the number
of blocks with up to k codewords, for various values of k
along the x-axis. This indicates that if we limit the number

6



of codewords in each block to 32, over 95% of all blocks
can be covered. Therefore, we choose to use 5 bits to record
the number of codewords in a block. If the number of
codewords is larger than 32, the higher coefficients are
discarded, and we empirically observe that this results in
minimal quality degradation.

Fig. 11: The cumulative distribution function of the number
of codewords in each block.

Note that recording the number of codewords can pre-
vent errors propagating to other blocks. For example, a bit
flip in the RL field could shift the coefficients to an incorrect
frequency band. However, since we store the number of
codewords per block, and each codeword has a known
length, such an error can be limited to the block and will
not corrupt subsequent blocks.

5 PARTITIONING DATA BETWEEN RELIABLE AND
APPROXIMATE STORAGE

The image data is partitioned into two parts, one into
reliable storage and the other into the approximate storage.
An error in the more important data, such as the DC
coefficients, could cause a critical failure. Consequently, this
data is placed in the reliable storage using the conventional
VLC coding. Critical data for the AC coefficients, such as
the number of codewords in each block, also are placed
in reliable storage. However, the remaining AC coefficient
data, which requires a large number of bits, can be placed
in the less expensive approximate storage. The decision to
place specific data into the reliable or approximate storage
areas is based on the quality requirement and the cost of the
approximate storage relative to the reliable storage.

Fig. 12: The sequence of data partitioning patterns based on
the importance order of bits in Class I and Class II, where the
blue and white bits are stored in reliable and approximate
storage, respectively.

Fig. 12 shows ten different patterns that partition data
bits between reliable and approximate storage. As we go

(a) For Class I (b) For Class II

Fig. 13: The two cases for geneating the second pattern: one
more bit should be added in reliable storage, either for Class
I or for Class II, compared with the first pattern.

from the first to the tenth pattern, the quality of the image
will improve, at the cost of increased storage costs. In our
approach, the final data partitioning pattern between reli-
able and approximate storage is determined by sequentially
trying the patterns in Fig. 12 until the quality requirement
is met. Once the pattern has been determined, it will be
applied to all codewords in Class I and Class II. To restore
an image, we have to access both reliable and approximate
storage to get the bits of each codeword according to the
data partitioning pattern.

Typically, the MSBs of a codeword are more likely to be
placed in reliable storage, and the ten patterns successively
place larger numbers of MSBs in Class I and Class II in
reliable storage. The precise sequence is obtained based
on the importance order of bits in Class I and Class II,
which have different impacts on output quality, as tested
on the sample images, Girlface, Peppers, Tiger and Bird. For
example, if we want to generate the second pattern, one
more bit should be added in reliable storage compared with
the first pattern. As shown in Fig. 13, there are two cases: one
is placing the first two MSBs in Class I and MSB in Class II
in reliable storage for all codewords; the other is placing the
MSB in Class I and the first two MSBs in Class II in reliable
storage. Under a given error rate (1% error rate is used in
this work), the case with higher quality will be chosen as the
second pattern. The sequence of data partitioning patterns
is derived following this process.

For data partitioning patterns, we assume the length of
codewords in Class II are fixed to simplify the complexity.
As explained in Section 4.2, only the first few codewords
have variable length due to additional bits. The lengths of
the codewords are adaptively changed for different images.
Thus, the data partitioning patterns should be varied for
different codewords and images. The data partitioning pro-
cess will be less complicated if we assume the lengths of all
codewords are fixed. Ignoring these additional bits in the
data partitioning pattern will lead to always placing them
in approximate storage. However, the errors that occur in
these additional bits have a small impact on the final results,
since these additional bits are used to compensate for the
least significant bits of the magnitude. Therefore, it is likely
to put these additional bits in approximate storage and our
simplification for the length of codewords is acceptable.

6 THE IMPACT OF DIVIDING THE SYMBOLS INTO
MORE CLASSES

If we divide the symbols into three classes and have three
fixed lengths as shown in Figure. 14a: Class I corresponds
to the shortest fixed codeword length for the most frequent
symbols, (0,1), (0,2), and (1,1); Class II corresponds to the

7



middle fixed codeword length for the following most fre-
quent symbol (0,3) and a part of symbol (0,4); Class III
consists of all other symbols, which are encoded using a
longer fixed-length. We optimize the number of bits when
using these three classes in the same manner as the previous
sections. For Class I, the encoding process is the same as
Table II. For class II, the three bits for the magnitude can use
000 111 to represent the values from 4 to 11. For class III,
when RL=0, the four bits can be used to store magnitudes
ranging from 12 to 27. If the actual coefficient magnitude
exceeds 27, the value 27 is stored. When RL 6=0, the process
is the same as the case with two classes.

(a)

(b)

Fig. 14: (a) Bit assignment for three-class scheme (b)The
distribution of images with different improvement in the
total number of bits.

However, if we compare the three-class scheme with the
two-class scheme in the previous section, the improvement
is quite limited. First, one more bit is required for class iden-
tification. In our methodology, the bit for class identification
of a codeword is always placed in reliable storage to make
sure the size of the codeword is always known accurately.
Therefore, the amount of reliable storage needed to store the
class identification bits increases as more classes are used.
Second, adding the additional class for symbol (0,3) and a
part of symbol (0,4) comes at the expense of adding one
more bit for the other symbols in Class III. Fig. 14b shows
that the distribution of images with different improvements
in the total number of bits. The x-axis represents the im-
provement of the number of bits compared with using only
the two-class scheme. It shows that the benefit of adding
the additional class to reduce the total number of bits is
very limited.

Considering that we obtain good improvement with
only two fixed lengths, and that adding more classes will
not produce a large benefit, especially for low-cost ratio, we
see that there is no benefit in using three or more lengths.

7 EVALUATION METHODOLOGY

To evaluate the performance of ALC-based storage com-
pared to traditional JPEG-based storage, the following error
injection and error correction models for storage are devel-
oped and the criteria for the quality of the result and the
storage cost are also described.

7.1 Error model
The data array organization is based on the structure in
NAND Flash memories and is a reasonable representation
for a storage system built from any technology. A logical
page is the smallest addressable unit for reading and writ-
ing, and each page is typically made up of a main area for
data and a spare area for ECC [32].

We apply an error model based on [33] where the errors
are randomly distributed in one page, which follows the
random bit-error characteristics of NAND Flash memory. If
the error rate of a storage bit-cell is p, then the probability
that n cells fail in a storage array with size M follows the
binomial distribution:

P (N = n) =

(
M

n

)
pn (1− p)M−n (1)

7.2 Protection of error correction codes
Bose-Chaudhuri-Hocquenghem (BCH) codes are commonly
used in storage [33] because they are efficient in correcting
single-bit errors. If the BCH error correction capability is t
bits, and the number of failed cells is n, which follows the
distribution in Eq. (1), then the failure probability of error
correction can be defined as:

P (n > t) =

M∑
n=t+1

(
M

n

)
pn (1− p)M−n (2)

The BCH scheme can construct a code with length 2m − 1,
which includes data bits and parity bits, over the Galois
Field GF (2m). The number of parity bits required for BCH
can be computed as mt with error correction capability
t [34]. In our case, the errors can occur in both data bits
and parity bits with the same error rate, p.

7.3 Evaluation criteria
The quality of the image retrieved from the storage system,
and the total cost in bits of the storage system, are used to
compare the different coding schemes. In our evaluation,
SSIM is used to measure the quality of the decompressed
images. The SSIM is an index measuring the structural
similarity between two images. It is a well-known objective
image quality metric [35] [36]and is defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where µx is the average of x, µy is the average of y, σxy
is the covariance of x and y, σ2

x is the variance of x, σ2
y is

the variance of y, c1 and c2 are two variables to stabilize
the division with a weak denominator. It is valued between
-1 and 1. When two images are nearly identical, their SSIM
is close to 1 [31]. The baseline image for comparison is a
conventional JPEG-compressed image with a quality factor
of Q = 90, which we denote as SSIMQ90

. If the quality of
the image using our scheme is given by SSIMimage, then the
percentage degradation is:

Quality Degradation =
SSIMQ90 − SSIMimage

SSIMQ90

× 100% (4)

Our evaluation places a user-specified limit on the max-
imum acceptable percentage quality degradation. Image

8



data is stored in both inexpensive approximate storage and
more expensive reliable storage. Therefore, Ctotal, the total
cost of storing data, is the sum of the total cost associated
with reliable and approximate storage. The cost of each of
these components can be defined as the product of the cost
per bit and the number of bits used in this type of storage. In
other words, if we store Nr (Na) data bits and Er (Ea) ECC
bits in reliable (approximate) storage, then the total cost is
given by:

(Nr + Er)× Cbit
r + (Na + Ea)× Cbit

a (5)

where Cbit
r and Cbit

a are, respectively, the cost per bit for
reliable and approximate storage. Since our objective is to
minimize Eq. (5), it is the relative cost between these com-
ponents that is important, and therefore this minimization
is equivalent to minimizing the function:

Ctotal = (Nr + Er) + (Na + Ea)× r (6)

where the cost ratio r can be defined as

r =
Cbit

a

Cbit
r

(7)

We now consider the cost of various types of image
storage schemes:
Conventional VLC-based JPEG image storage method:
This uses VLC to store Huffman-coded compressed JPEG
images. The high sensitivity to error (demonstrated in Fig. 1)
implies that all data must be stored in reliable storage, i.e.,
Na = Ea = 0, and Er is determined by the number of BCH
protection bits that are used.
Our basic approximate storage scheme: We use ALC en-
coding to enhance the error-resilience of data stored in
approximate memory. This implies that Nr is relatively
small and most of the stored image data corresponds to Na.
Specifically, the bits stored in reliable storage correspond to:

• The number of additional bits and the number of
codewords with these additional bits, which are the
same for all blocks.

• The DC coefficients, stored using VLC.
• Five bits per block that represent the number of

symbols in the block, as described in Section 4.3.
• Critical data for the AC coefficients, as described in

Section 5.

For a given image with cost Ctotal,image, we define the
percentage cost improvement relative to the Ctotal,Q90 , the
cost of conventional VLC-based JPEG image storage with
Q = 90 as:

Cost Improvement =
Ctotal,Q90 − Ctotal,image

Ctotal,Q90

× 100% (8)

8 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed ALC algo-
rithm using the basic structure of a generic NAND flash
memory [32]. The main area of a page contains 2KB data
and it will be further split into four subpages. Each subpage
contains 4096 bits of data. ECC is applied to each subpage.
The organization of a page is depicted in Fig. 15. The four
subpages are continuous in a page and their corresponding
ECC parity bits are located in spare area at the end.

Fig. 15: Organization of a page with the large page divided
into small subpages to better implement ECC.

The error rate, p, of reliable storage is 10−6 and the
common storage industry reliability requirement corrects bit
errors to reach a failure probability of 10−15 [37]. To satisfy
this reliability requirement, eq. (2) indicates that we need
an error correction capability of t = 4. In our experiments,
we evaluate approximate storage at error rates of p = 0.1%,
0.5%, 1% and 1.5%. These error rates are much higher than
normal storage as our scheme investigates the use of low-
cost, low-reliability storage in order to reduce the overall
cost. If the approximate storage tries to reach 10−15 failure
probability by using ECC, the number of required parity
bits becomes prohibitive. For example, when e = 1%, there
is a 10−15 probability that the number of bit flips will be
greater than 123 based on Eq. (2). In other words, we should
set the error correction capability parameter to t = 123
to ensure the reliability of approximate storage. Based on
Section 7.2, for each 4096 bits of data (GF (213) andm = 13),
123×13 = 1599 parity bits are required, corresponding to an
overhead of 39% for ECC (i.e., 71% efficiency). In contrast,
for the same value of e, in our method, reliable storage
requires 52 parity bits, with an overhead of 1% (i.e., 99%
efficiency). At a cost ratio of r = 0.9, our unreliable storage
requires no ECC bits for this error rate, and thus has an
overhead of 0% (i.e., 100% efficiency); when r = 0.3, the
overhead is 12% (i.e., 89.5% efficiency).

Therefore, only weak ECC protection is applied to ap-
proximate storage. If the number of errors is beyond the
ECC error correction capability, all the errors in this subpage
cannot be corrected. For traditional SSD, once this situation
happens, the operating system will be notified that these
data are corrupted. However, in our approximate storage
scheme, we allow errors to happen and the operating system
does not need to be notified [4]. Therefore, for approximate
storage, various values of t for BCH map to different failure
probabilities of each subpage, as shown in Fig. 16, which
is generated using Eq. (1) and Eq. (2). The weak ECC
protection results in a higher failure probability than high-
reliability storage. For example, when e = 0.5%, a choice
of t = 20 can correct 40% of the errors in the subpages
successfully. For different cost ratios, r, defined in Eq. (7),
the capability t is varied to find the minimum total cost, as
described in Section 7.2.

Our simulations inject errors into 500 image samples
from the Imagenet dataset [30]. The resolutions of these
image samples range from 1600×520 to 144×144. Since we
used the images Girlface, Peppers, Tiger and Bird to set the
parameters of the ALC scheme, for a fair evaluation, these
images are excluded from the set of 500 images that are used
in our evaluation.

We compare our JPEG-based ALC scheme only with the
JPEG-based VLC scheme in the evaluation. Our objective is
to place the data into approximate storage, while maintain-
ing an acceptable quality and compression efficiency. Thus,

9



Fig. 16: Failure probability of error correction for different
error rates, p, as a function of the error correction capability,
t.

our objective is fundamentally different from prior methods
described in Section 1, such as [7], which stores raw images
(instead of JPEG), or [4], which uses the relatively rarely-
used PTC compression format. Moreover, the impact of
the block-based errors is large when techniques such as
[5] [16]–[23], described in Section 2, are used. Therefore,
only traditional JPEG and JPEG with a reduced Q [2] are
compared in this section.

8.1 Quality degradation of ALC algorithm
8.1.1 Inherent quality degradation
As illustrated in Section 4, ALC-based storage results in
inherent quality degradation due to approximations in rep-
resentation and the impact of some discarded coefficients.
Fig. 17a shows the distribution of quality degradation for
the above set of 500 images, considering only ALC-inherent
information loss. We also show the quality in terms of
peak signal-to-noise ratio (PSNR) as the comparison for
the SSIM degradation results, as shown in Fig. 17b. In the
absence of errors, we usemedian value+α×(max value−
median value) with α = 0.25 to find the additional bits and
apply it to the first T = 10 AC codewords to achieve the
minimum degradation for each image. This is the largest
value in our experiments, as described in Section 4.2. The
figures indicate that the image quality histograms for these
images are concentrated around the small values of the
degradation metric or large value for PSNR, so that the ALC
algorithm can effectively maintain most of the information
for each image.

Fig. 17: The distributions of ALC inherent quality degrada-
tion based on SSIM and based on PSNR caused only by the
approximate representation for 500 different images.

8.1.2 Quality degradation for various error locations
Additionally, for the same number of errors caused by
approximate storage and a fixed data partition between reli-
able and approximate storage, we perform 104 Monte Carlo
samples on one randomly selected image (other images
show similar results). The difference between the samples
is in the error locations, which are randomly distributed. In
our simulation, we use the expected value of the number of

Fig. 18: The distributions of 104 Monte Carlo samples on one
image with different error locations caused by approximate
storage.

errors with 1% error rate, so that the number of errors in
each sample is fixed. Each sample uses the original image
and the errors will be randomly distributed again. The
quality degradation for each sample will be computed and
we get the histograms of these degradation values, as shown
in Fig. 18a. The quality degradation of these samples are
seen to vary within a small range, as shown in Fig. 18a.
Therefore, unlike traditional VLC-encoded JPEG, the ALC
algorithm is less sensitive to the location of the errors that
occur in less important data. In other words, the quality
degradation of an image in ALC can be controlled.

8.1.3 Visual output of ALC scheme
Fig. 19 shows the results of using the ALC scheme to store
the Girlface image under a 1% error rate. The three images
correspond to different data partitions between reliable and
approximate storage, resulting in different levels of quality
degradation, as computed using Eq. (4), of approximately
5%, 10% and 20%. The values of PSNR also decrease for the
larger degradation and the quality performance in terms of
PSNR shows the same trend compared with SSIM. There-
fore, only SSIM degradation is shown in the following
parts. It can be seen from the figures that the errors in
the former two cases are barely discernible. Even for the
latter case, due to the built-in error-resilience of ALC, the
errors affect the quality only in a localized manner instead
of affecting the image globally, as in the VLC cases shown
in Fig. 1. As the degradation increases, more obvious errors
appear in the image, as shown in the zoomed-in details. For
our other test images, Peppers, Tiger and Bird, the quality
degradation results (not shown here) are similar, leading to
the conclusion that a quality degradation of at most 10% is
acceptable.

8.1.4 Compatibility with various quantization table JPEG
techniques
More sophisticated JPEG techniques have been proposed,
that use image-specific quantization tables [15] or that
directly reduce the quality factor Q of the quantization
table [2] to achieve further compression efficiency. Our ALC-
based scheme is orthogonal to these techniques. Fig. 20
shows the quality degradation of ALC and JPEG schemes
for various quality factor Q of the quantization table. These
results show the average value of all 500 images from the
dataset. For each image, the number of bits for the ALC
scheme is constrained to be nearly the same but no larger
than JPEG-based scheme. Our goal in this section is to
quantify the quality degradation caused by quantization,
and therefore, the impact of errors in approximate storage is
not considered. For large quality factor Q, the ALC scheme

10



(a) 4.44% degradation
PSNR=37.1455

(b) 9.63% degradation
PSNR=35.7241

(c) 19.81% degradation
PSNR=34.5008

Fig. 19: Visual output of the ALC scheme using 1% error injection under different quality degradations in the original form
(upper) and zoomed in on the details (lower). Due to space constraints, the upper row of figures is shrunk from the original
size of the image. However, the errors can be observed at original size and more obvious errors occur in the figures with
larger quality degradation.

has greater quality degradation than JPEG due to approx-
imations in representation of the values. However, thanks
to the additional bits adaptively added to compensate for
quality loss, the degradation of JPEG can be followed by the
ALC scheme closely. As the quality factor Q decreases, the
limited length of codewords for the ALC scheme can cover
most situations and the degradation of the ALC scheme is
dominated by the quantization. Therefore, the number of
bits for ALC-encoded images can be further reduced by
decreasing the quality factor, as is done with JPEG.

Fig. 20: Quality degradation for ALC scheme and JPEG with
the same number of bits.

8.2 Impact of the error rate on ALC-based storage
For the case of a mainstream non-volatile storage technol-
ogy, at different error rates, p, in approximate storage, Fig. 21
shows the number of bits is placed in reliable and approx-
imate storage using the ALC algorithm and JPEG with a
same quality degradation. The results are generated based
on a representative image out of the 500 evaluated testcases
in Imagenet. Other images show similar trends. Due to the
sensitivity of VLC to errors, all of the data for JPEG must be
saved in reliable storage. Thus, the number of bits for JPEG
is independent of the error rates in approximate storage and
remains constant for all cases.

Fig. 21: Number of bits in reliable and approximate storage
for the ALC scheme, as compared with VLC-encoded JPEG
using reliable storage.

We use a stacked bar chart to show the different fraction
of the number of bits in these two schemes with various
colors, where Er + Nr correspond to the total number of
bits in reliable storage, and Ea + Na correspond to the bits
in approximate storage. For each subfigure, the left stacked
bar represents our ALC scheme and the right one represents
the JPEG scheme. With a degradation specification of 10%,
evaluated according to Eq. (4), the total number of bits
for our ALC-based scheme is nearly the same as JPEG at
r = 0.9 and not more than 11% compared with JPEG in
the worst case at r = 0.3. Moreover, the increase for the
total number of bits is caused by Ea for the low-cost ratio
r = 0.3 scenario.

When cost ratio r is large, for example r = 0.9, it is
difficult to obtain a cost benefit for the weak ECC in the
approximate storage compared to directly placing the data
in reliable storage. Therefore, the limited or even no ECC is
applied when r is large. For different error rates, the various
data partitioning patterns are used to satisfy the quality
requirement instead of changing the capability of the weak

11



ECC. As the error rate decreases along the x-axis, the total
number of bits stays nearly the same and the percentage
of bits that can be placed in reliable storage decreases from
68.0% at e = 1.5% to 29.9% at e = 0.1%, as shown in Fig. 21.

When the cost ratio r is small, for example r = 0.3,
the weak ECC protection allows fewer data to placed in
reliable storage and the large cost difference between ap-
proximate storage and reliable storage can compensate for
the cost of the parity bits for the weak ECC. As shown in
Fig. 21b, for different error rates, the number of bits placed
in reliable storage remains the same, using only the first
data partitioning pattern defined in Section 5. As the error
rate decreases, the number of parity bits required for the
weak ECC decreases, so the number of bits placed in the
approximate storage decreases.

8.3 Impact of the cost ratio r on ALC-based storage
For any non-volatile memory technology, the relationship
between the error rate, p, and the cost ratio, r, are strongly
context-dependent. Even for the same type of storage tech-
nology, this relationship may vary from manufacturer to
manufacturer, or from year to year. Meanwhile, the target
of our paper is providing a methodology to allow the image
to be compressed and placed in approximate storage. To
preserve the generality of the approach and to provide a
clear view of the landscape, we do not use the specific cost
ratio or price, so that anyone can use any ratio when im-
plementing our methodology. Therefore, rather than using
a fixed function that maps p to r, we evaluate the proposed
ALC-based storage scheme for general non-volatile solid-
state storage by conducting a sweep of the value of the cost
ratio, r, for different error rates, p.

Using the original JPEG scheme as the baseline, Fig. 22
shows the cost improvement for our approach compared
to the VLC-based JPEG approach that uses a reduced Q
value, which has a similar concept in [2]. In both cases, the
quality degradation is constrained to be under 5% (Fig. 22a)
and 10% (Fig. 22b). The results show the average of all 500
images from the Imagenet dataset. We sweep the value of r
from 1 to 0 and also zoom in on the range from 10−1 to 10−5

to show the details for these smaller possible values. The
dashed green line represents the conventional JPEG scheme
with the adaptively reduced Q factor. The remaining lines
show the ALC scheme with different error rates, p.

The JPEG version with a reduced Q value lowers the
cost compared to the baseline due to its reduced storage
requirements. This improvement is independent of r and
p since all data are placed in reliable storage. When the
degradation is constrained to be less than 5% and 10%,
the results of reducing the Q value in the JPEG encoding
changes the texture of the image, as shown in Fig. 23, but
the image stills appears acceptable. The other test images,
Girlface and Peppers, show similar results and are not
included here due to space limitations.

For our ALC-based storage scheme, when r is large,
there is no advantage compared to using JPEG with a
smaller Q value since the data volume is similar or even
larger than the reduced-Q JPEG case. However, as the
cost ratio, r, gets smaller, the benefit of using approximate
storage increases due to its lower cost, as shown in Fig. 22a
and Fig. 22b.

Section 8.2 showed that, when r is close to 1, there is
no advantage to partitioning the data between reliable and

(a) 5% degradation

(b) 10% degradation

Fig. 22: Cost improvement for various values of r and p for
the ALC scheme (left). The right graph expands the range
from 10−1 to 10−5.

approximate memory since they cost about the same. When
r is close to 0, the weak ECC protection in the approximate
storage allows the first pattern of data partitioning for any
error rate, which means that the number of bits placed in
reliable storage is fixed. When the cost of the approximate
storage is very low relative to the reliable storage, the total
cost of the storage system is dominated by the number of
bits in reliable storage. Therefore, the cost improvement
converges as r approaches 0 so that all of the curves for
the different error rates nearly coincide with each other in
Fig. 22.

8.4 Limit to ALC-based storage
According to the analysis in Section 8.3, when the cost ratio
is small, the entire cost of the storage system is dominated
by the number of bits stored in reliable storage, which
contains all of the DC coefficients, the block information,
and critical data for the AC coefficients. For each image, the
block information is fixed. When the cost ratio is small, the
first pattern of data partitioning is always used, which fixes
the critical data for the AC coefficients. To further reduce the
cost, the only thing we can do is decrease the number of bits
used to store the DC coefficients in the reliable storage.

In our case, all DC coefficients are still stored in reliable
storage encoded using VLC, but the total number of bits

12



(a) Q = 85, 4.61% degradation

(b) Q = 75, 9.61% degradation

Fig. 23: Visual output of the JPEG encoded images with
variousQ factor reductions showing different quality degra-
dations (Eq. (4)) in the original form (upper) and zoomed in
on the details (lower). There is a slight degradation from (a)
to (b), but both are acceptable.

Fig. 24: Impact of the value of the first entry of the quanti-
zation matrix on the image quality and the number of bits
for the DC coefficients.

allocated to the DC coefficients is decreased by reducing the
resolution of the values. This requires a custom quantization
matrix in which only the first entry (1, 1) is changed to a
larger value compared to the default matrix. If we increase
only the first entry while keeping the other entries the same
as the Q = 90 matrix, the quality will degrade and the num-
ber of bits used to store the DC coefficients will decrease, as
shown in Fig. 24. The first entry in the default quantization
matrix withQ = 90 is 3, so the simulation starts from 3. This
point has no quality degradation and requires the largest
number of bits to store the DC coefficients. This figure shows
that, when the value of the first entry increases to 16, the
quality degrades less than 2% for all four images, while the
number of bits decreases at least 34%. Fig. 25 shows that,
when the first entry is 16, the visual output maintains an
acceptable quality with only limited texture loss.

Fig. 25: The visual output for changing the first entry of the
Q = 90 quantization matrix to 16.

We conclude, directly increasing the size of the first entry
of the quantization table to decrease the total number of bits
used for the DC coefficients can further improve the cost of
the ALC encoding.

9 CONCLUSION

This work has introduced a new adaptive-length coding
(ALC) algorithm that can be used to reduce the cost of a
long-term “cold storage” system for image data by taking
advantage of low cost memory devices that can have ex-
tremely high bit error rates. The ALC scheme partitions the
bits used to store the encoded image into two classes – the
most significant data that needs to be highly reliable, and
the less important data that can tolerate some errors. Due
to the built-in error-resilience of the ALC scheme, the errors
that occur in the less important data, which is placed in low-
cost approximate storage, affects the quality of the retrieved
image in only a localized manner so that any changes in the
images due to errors are barely discernible. Furthermore,
when the difference in cost between the reliable storage and
the unreliable (approximate) storage is large, the fraction of
each encoded block that should be placed in the approxi-
mate storage depends on the error rate of the memory and
the quality degradation limit desired by the user. Finally, the
cost improvement of the ALC encoding increases as the cost
ratio reduces and, when larger quality degradation can be
tolerated, ALC can achieve even greater cost benefits.

The target of our paper is providing a methodology to
allow the image to be stored in a compressed format and
placed in approximate storage. Thus, we develop a new
error resilient coding scheme. In this work, we examine
only the fundamental idea instead of addressing system-
level issues. Our objective is to make it clear that there is
a viable trade-off between storage cost and image quality.
Details of the implementation are specific to the precise
storage scheme used and involve many subtleties beyond
what can be considered in a single paper. These system-level
concerns are a topic for future work.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation grant no. CCF-1438286. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF.

13



REFERENCES

[1] “Mary meeker’s annual internet trends report,” 2014.
[2] E. Yan, et al., “Customizing progressive jpeg for efficient image

storage,” in USENIX Workshop on Hot Topics in Storage and File
Systems, 2017.

[3] D. Beaver, et al., “Finding a needle in haystack: Facebook’s photo
storage,” in USENIX Symposium on Operating Systems Design and
Implementation, vol. 10, pp. 1–8, 2010.

[4] Q. Guo, et al., “High-density image storage using approximate
memory cells,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 413–426,
2016.

[5] D. Jevdjic, et al., “Approximate storage of compressed and en-
crypted videos,” in Proceedings of the ACM Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 361–373, 2017.

[6] A. Ranjan, et al., “Approximate storage for energy efficient spin-
tronic memories,” in Proceedings of the ACM Conference on Design
Automation Conference, p. 195, 2015.

[7] H. Zhao, et al., “Approximate image storage with multi-level cell
stt-mram main memory,” in Proceedings of the IEEE International
Conference on Computer-Aided Design, pp. 268–275, 2017.

[8] “Apple worldwide developers conference: High efficiency image
file format,” 2017.

[9] D. R. Horn, et al., “The design, implementation, and deployment
of a system to transparently compress hundreds of petabytes of
image files for a file-storage service,” in USENIX Symposium on
Networked Systems Design and Implementation, pp. 1–15, 2017.

[10] “W3techs reports,” 2018.
[11] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compres-

sion standard. New York, NY: Van Nostrand Reinhold, 1992.
[12] “Google photos: High quality,” 2018.
[13] C. E. Shannon, “A mathematical theory of communication,” ACM

SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3–55, 2001.

[14] C.-H. Huang, et al., “Acoco: Adaptive coding for approximate
computing on faulty memories,” IEEE Transactions on Communi-
cations, vol. 63, no. 12, pp. 4615–4628, 2015.

[15] “Jpegmini,” 2018.
[16] D. W. Redmill and N. G. Kingsbury, “The EREC: An error-resilient

technique for coding variable-length blocks of data,” IEEE Trans-
actions on Image Processing, vol. 5, no. 4, pp. 565–574, 1996.

[17] Y. Yoo and A. Ortega, “Constrained bit allocation for error resilient
JPEG coding,” in Proceedings of the IEEE Signals, Systems & Com-
puters, vol. 2, pp. 985–989, 1997.

[18] Y. Fang, “Erec-based length coding of variable-length data blocks,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 20, no. 10, pp. 1358–1366, 2010.

[19] Y.-S. Lee, et al., “Error-resilient image coding (eric) with smart-idct
error concealment technique for wireless multimedia transmis-
sion,” IEEE transactions on circuits and systems for video technology,
vol. 13, no. 2, pp. 176–181, 2003.

[20] L.-W. Kang and J.-J. Leou, “An error resilient coding scheme for
jpeg image transmission based on data embedding and side-match
vector quantization,” Journal of Visual Communication and Image
Representation, vol. 17, no. 4, pp. 876–891, 2006.

[21] Y.-S. Lee, et al., “Hvlc: Error correctable hybrid variable length
code for image coding in wireless transmission,” in Proceedings of
the IEEE Acoustics, Speech, and Signal Processing, vol. 4, pp. 2103–
2106, 2000.

[22] H. Cai, et al., “Error-resilient unequal error protection of fine gran-
ularity scalable video bitstreams,” EURASIP Journal on Advances in
Signal Processing, vol. 2006, no. 1, p. 045412, 2006.

[23] Z. Xue, et al., “Error-resilient scheme for wavelet video codec using
automatic roi detection and wyner-ziv coding over packet erasure
channel,” IEEE Transactions on Broadcasting, 2010.

[24] S. Jakubczak and D. Katabi, “Softcast: One-size-fits-all wireless
video,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 449–450, 2011.

[25] S. Roman, Introduction to Coding and Information Theory. New York,
NY: Springer-Verlag, 1997.

[26] H. Hashempour, et al., “Error-resilient test data compression using
tunstall codes,” in Proceedings of the IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pp. 316–323, 2004.

[27] G. Dong, et al., “Estimating information-theoretical nand flash
memory storage capacity and its implication to memory system
design space exploration,” IEEE Transactions on VLSI Systems,
vol. 20, no. 9, pp. 1705–1714, 2012.

[28] K. Cabeen and P. Gent, “Image compression and the discrete
cosine transform, Math 45 Project, College of the Redwoods,
Eureka, CA,” 1998.

[29] M. Ghanbari, Standard Codecs: Image Compression to Advanced Video
Coding. London,UK: The Institution of Engineering and Technol-
ogy, 3rd ed., 2011.

[30] “Imagenet large scale visual recognition challenge,” 2016.
[31] Z. Wang, et al., “Image quality assessment: From error visibility to

structural similarity,” IEEE transactions on image processing, vol. 13,
no. 4, pp. 600–612, 2004.

[32] R. Micheloni, et al., Inside Solid State Drives (SSDs). New York, NY:
Springer Dordrecht, 2012.

[33] H. Choi, et al., “Vlsi implementation of bch error correction for
multilevel cell nand flash memory,” IEEE Transactions on VLSI
Systems, vol. 18, no. 5, pp. 843–847, 2010.

[34] R. Micheloni, et al., Error correction codes for non-volatile memories.
New York, NY: Springer Dordrecht, 2012.

[35] S. S. Channappayya, et al., “Rate bounds on ssim index of quan-
tized images,” IEEE Transactions on Image Processing, vol. 17, no. 9,
pp. 1624–1639, 2008.

[36] S. Wang, et al., “Ssim-motivated rate-distortion optimization for
video coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 4, pp. 516–529, 2012.

[37] Y. Cai, et al., “Flash correct-and-refresh: Retention-aware error
management for increased flash memory lifetime,” in Proceedings
of the IEEE International Conference on Computer Design, pp. 94–101,
2012.

Qianqian Fan received the B.S. degree in elec-
tronic engineering from Shandong University,
China, in 2013, and the M.S. degree in electri-
cal engineering from University of Minnesota in
2015. Since June 2015, she has been working
toward the Ph.D. degree at the University of
Minnesota. Her research focuses on the stor-
ing error-resilient data into approximate mem-
ory or approximate storage, communication in
extreme-scale systems, and corresponding per-
formance evaluation and optimization.

David J. Lilja received the B.S. degree in com-
puter engineering from Iowa State University in
Ames, IA, USA, and the M.S. and Ph.D. de-
grees in electrical engineering from the Univer-
sity of Illinois at Urbana-Champaign in Urbana,
IL, USA. He is currently a Professor of Electrical
and Computer Engineering at the University of
Minnesota in Minneapolis, MN, USA, where he
also serves as a member of the graduate fac-
ulties in Computer Science, Scientific Compu-
tation, and Data Science. Previously, he served

ten years as the head of the ECE department at the University of Min-
nesota, and worked as a research assistant at the Center for Supercom-
puting Research and Development at the University of Illinois, and as a
development engineer at Tandem Computers Incorporated in Cupertino,
California. He was elected a Fellow of the Institute of Electrical and
Electronics Engineers (IEEE) and a Fellow of the American Association
for the Advancement of Science (AAAS).

Sachin S. Sapatnekar (S’86, M’93, F’03) re-
ceived the B. Tech. degree from the Indian In-
stitute of Technology, Bombay, the M.S. degree
from Syracuse University, and the Ph.D. degree
from the University of Illinois. He taught at Iowa
State University from 1992 to 1997 and has been
at the University of Minnesota since 1997, where
he holds the Distinguished McKnight Univer-
sity Professorship and the Robert and Marjorie
Henle Chair in the Department of Electrical and
Computer Engineering. He has received seven

conference Best Paper awards, a Best Poster Award, two ICCAD 10-
year Retrospective Most Influential Paper Awards, the SRC Technical
Excellence award and the SI University Research Award. He is a Fellow
of the ACM and the IEEE.

14


