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Abstract— Process variations are of increasing concern in taking the statistical distribution of parametric varmeis into

today's technologies, and can significantly affect circuitper-
formance. We present an efficient statistical timing analyis
algorithm that predicts the probability distribution of th e circuit
delay considering both inter-die and intra-die variations while
accounting for the effects of spatial correlations of intradie
parameter variations. The procedure uses a first-order Taybr
series expansion to approximate the gate and interconnecethys.
Next, principal component analysis techniques are emplogeto
transform the set of correlated parameters into an uncorreated
set. The statistical timing computation is then easily pedrmed
with a PERT-like circuit graph traversal. The run-time of our
algorithm is linear in the number of gates and interconnects as
well as the number of varying parameters and grid partitions
that are used to model spatial correlations. The accuracy ofhe
method is verified with Monte Carlo simulation. On average, ér
100nm technology, the errors of mean and standard deviation
values computed by the proposed method aré.06% and —4.34%
respectively, and the errors of predicting the 99% and 1%
confidence point are —2.46% and —0.99% respectively . A
testcase with about 17,800 gates was solved in abdift) seconds,
with high accuracy as compared to a Monte Carlo simulation ttat
required more than 15 hours.
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I. INTRODUCTION

P

parameters such as physical dimensions show variabifigy,
prediction of circuit performance is becoming a challeggi

task. Conventional static timing analysis (STA) handles t
problem of variability by analyzing a circuit at multiple
process corners. However, it is generally accepted thét anc
approach is inadequate, since the complexity of the variati
in the performance space implies that if a small number

process corners is to be chosen, these corners must be

conservative and pessimistic. For true accuracy, this @n
overcome by using a larger number of process corners, but t
the number of corners that must be considered for an accura

modeling will be too large for computational efficiency.

The limitations of traditional STA techniques lie in thei

deterministic nature. An alternative approach that overe®

these problems is statistical STA, which treats delays sot
fixed numbers, but as probability density functions (PDF’sﬁl

This work was supported in part by the NSF under award CCR22D
and by the SRC under contract 2003-TJ-1092.

Hongliang Chang is with Department of Computer Science argirieering
and Sachin S. Sapatnekar is with Department of Electrical @omputer
Engineering, both in the University of Minnesota.

ROCESS variations have become an increasing concer
integrated circuits as circuit sizes continue to increask a
feature sizes continue to shrink. As device and intercannec

n i . : .
in Synopsys'’s PrimeTime and the LCD (Linear Combination

consideration while analyzing the circuit.

Process variations can be classified into the following-cate
gories:inter-die variationsare the variations from die to die,
while intra-die variationscorrespond to variability within a
single chip. Inter-die variations affect all the devicessame
chip in the same way, e.g., making the transistor gate Iasngth
of devices on the same chip all larger or all smaller, while
the intra-die variations may affect different devices eliéntly
on the same chip, e.g., making some devices have smaller
transistor gate lengths and others larger transistor gatghs.

It used to be the case that the inter-die variations domihate
intra-die variations, so that the latter could be safelylectgd.
However, in modern technologies, intra-die variations are
rapidly and steadily growing and can significantly affeat th
variability of performance parameters on a chip [1]. The
increase in intra-chip parameter variations is due to thectsf
such as micro-loading in the etch, variation in photoresist
thickness, optical proximity effects and stepper withilefi
aberrations as the manufacturing sizes approach the bptica
resolution limit [2]. Intra-die variation is spatially calated:
it is locally layout-dependent and circuit-specific, igevices
with similar layout patterns and proximity structures tend
have similar characteristics; it is globally location-dapent,
ﬁfﬁ devices located close to each other are more likelyate h
the similar characteristics than those placed far away.

Due to the increasing effect of intra-die variations, saler
commercial flows have begun to include intra-die variations

tthe last few years, e.g., the OCV (On-Chip Variation) arnialys

of Delay) mode of IBM’s EinsTimer. In literature, a number
of studies on statistical timing analysis have focused on
circuit performance prediction considering intra-dieiation.
ntinuous methods [3]-[6] use analytical approaches t fin
\él; ed-form expressions for the PDF of the circuit delay. Fo
plicity, these methods often assume a normal distobuti
ar the gate delay, but even so, finding the closed-from expre
folg of the circuit distribution is still not an easy tasksbiete
methods [7]-[9] are not limited to normal distributions,dan
[can discretize any arbitrary delay distribution as a setplts,
each corresponding to a discrete delay and its probabilitg.
%iscrete probabilities are propagated through the citouind
discrete PDF for the circuit delay. However, this method is
able to suffer from the problem of having to propagate an
exponential number of discrete point probabilities. In][h
efficient method was proposed by modeling arrival times as
cumulative density functions and delays as probabilitysitgn
functions and by defining operations afld and maxon these



functions. Alternatively, instead of finding the distrilmrnt of The remainder of the paper is organized as follows. Sec-
circuit delay directly, several attempts have been madetb fition 1l formally formulates the problem to be solved in this
upper and lower bounds for the circuit delay distributiof [5work. Section Il explains the model used for process vimmat
[7], [11]. and spatial correlation of intra-die variation. The altfom is

Although many prior works have dealt with intra-chip variapresented in Section IV and its run time complexity analissis
tions, most of them have ignored intra-chip spatial cotiefes given in the following section. The extension to handleiinte
by simply assuming zero correlations among devices on tbleip variation and spatially uncorrelated intra-chip caments
chip. The difficulty in considering spatial correlationdween is introduced in Section VI. The extension to compute min-
parameters is that it can result in complicated path cdiogla imum of delays is also presented in Section VI. Finally, a
structures that are hard to deal with. The authors of [@$t of experimental results and their analysis are shown in
consider correlation between delays among the transist&wmction VII.
inside a single gate (but not correlations between gatds). T
work in [12] uses a Monte Carlo sampling-based framework
to analyze circuit timing on a set of selected sensitizatle t
paths. Another method in [5] computes path correlationdient Under process variations, parameter values such as the gate
basis of pair-wise gate delay covariances and used an @nal{@ngth, the gate width, the metal line width and the meta lin
method to derive lower and upper bounds of circuit delay. T ight are random variables. Some of these variations such
statistical timing analyzer in [13] takes into account azfpze @S across-chip linewidth variations (ACLV) are deterntinjs
coupling and intra-die process variation to estimate thestvoWhile others are random: this work will focus on the effedts o
case de'ay of critical path Two parameter space techn,iqu@]dom Va.riations, and will model these parameters as rando
namely, the parallelepiped method and the ellipsoid methogriables. The gate and interconnect delays, as functiéns o
and a performance-space procedure, the binding prot;abi”'t‘ese parameters, also become random variables. Giveo-appr
method, were proposed in [14] to find either bounds or tH¥iate modeling of process parameters or gate and inteebnn
exact distribution of the minimum slack of a selected set g€lays, the task of statistical STA is to find the PDF of the
paths. The approach in [3] proposes a model for spatial corfdrcuit delay.
lation and a method of statistical timing analysis to coreput The static timing analysis works with the usual translation
the delay distribution of a specific critical path. Howewte from a combinational circuit to a timing graph [16]. The nede
PDF for a critical path may not be a good predictor of thi# this graph correspond to the circuit primary inputs/aisp
distribution of the circuit delay (which is the maximum of aland gate input/output pins. The edges are of two types: one
path delays), as explained in Section Il. Moreover, the orkthSet corresponds to the pin-to-pin delay arcs within a gate, a
may be computationally expensive when the number of ctitickhe other set to interconnections from the drivers to remsiv
paths is too large. In [15], the authors further extendedr thd he edges are weighted by the pin-to-pin gate delay, and
work in [3], [7] to compute an upper bound on the distributiofiterconnect delay, respectively. The primary inputs of th
of exact circuit delay. combinational circuit are connected to a virtual sourceenod

In this paper, we will propose an a|gorithm for Statisticﬂnd the primary OutputS to a virtual sink node with directed
STA that computes the distribution of circuit delay whileneo Virtual edges. In the case that primary inputs arrive aedgfft
sidering spatial correlations. We will model the circuitaje times, the virtual edges from the virtual source to the prima
as a correlated multivariate normal distribution, consitp inputs are assigned weights of the arrival times. Likewife,
both gate and wire delay variations. In order to manipulatBe required times at the primary outputs are different, the
the complicated correlation structure, the Principal Corgmt Weights of the edges from the outputs to the virtual sink are
Analysis (PCA) technique is employed to transform the sedpropriately chosen.
of correlated parameters into sets of uncorrelated ones. ThFor a combinational logic circuit, the problem of static
statistical timing computation is then performed with a FER timing analysis is to compute the longest path delay in the
like circuit graph traversal. The complexity of the algbnit Circuit from any primary input to any primary output, which
is O(p x n x (N, + Ny)), which is linear in the number of corresponds to length of the longest path in the timing graph
gatesN, and interconnectd’;, and also linear in the numberIn static timing analysis, the technique that is commonly
of varying parameterg and the number of grid squares referred to in the literature as PERT (Program Evaluatich an
that are used to model variational regions. In other woltds, tReview Technique) is commonly used'his procedure starts
cost is, at worstp x n times the cost of a deterministic STA.from the source node to traverse the graph in a topological
We believe that this is the first method that can fully handlrder and uses sumoperation ormaxoperation (at a multi-
spatially correlated distributions under reasonably geres- fanin node) to find the longest path at the sink node. For
sumptions, with a complexity that is comparable to tradigio details, the reader may refer to [16], [17].
deterministic STA. This work can also be extended, using theSince we will employ a PERT-like traversal to analyze the
same framework of maximum of delays (Section IV-C), to fin@istribution of circuit delay, we define a statistical tigigraph
the distribution of minimum of delays which can be applie@f a circuit, as in the case of deterministic STA.
to analysis such as computing minimum delay distributions, _ o - _ _
for short-path analvsis (to check for hold time violatiarfs In reality, this is actua!ly the _crltlc_al path meth“od (CI?MD dperations

p y ( Q )’ research. However, we will persist with the term “PERT,” ehiis widely

required arrival time (RAT) analysis, etc. used in the static timing analysis literature.

Il. PROBLEM FORMULATION



Definition 2.1: Let G; = (V, E) be a timing graph for [1l. M ODELING PARAMETER VARIATIONS
a circuit with a single source node and a single sink node,|n this section, we will introduce the model used for
wherel" is a set of nodes anfl a set of directed edges. Thejntra-chip variations with spatial correlation. Althoughe
graphG, is called a statistical timing graph if each edgis consider only intra-die variations of parameters at thispo

assigned a weight;, whered; is a random variable, wherene extension of this work to handle inter-die variationdl wi
the random variables may be uncorrelated or correlated. Th introduced later in Section VI-A.

weight associated with an edge corresponds to gate delay or
interconnect delay. For a virtual edge, the weight is randoip
variables with mean of its deterministic value and standard . ] . o
deviation of zero and it is independent from any other edges.Thg _mtrat-]chlp parametric varc;auoﬂn_m Panl t;)e Idecom—
Definition 2.2: Let a pathp; be a set of ordered edgesDose Into three components, a deterministic global corpion

from the source node to the sink nodeGh, and D; be the Oglobat, @ deterministic local component,.,; and a random
path length distribution ofy;, computed as the sum of thecomponentc, [18]

weightsdy, for all edgest on the path. Finding the distribution Sintra = Oglobal + Olocal + €. Q)
of Dyae = mazx(Dy,...,D;,..., Dy, ,,.) among all paths
(indexed from 1 ton,.:s) in the graphG; is referred to as
the problem of statistical static timing analysis (SSTA)aof

circuit.

Note that for the same nominal design, the identity of the dgiobal (T,y) = 0o + 0z + 6yy, (2)
longest path may change, depending on the random values

taken by the process parameters. Therefore, finding the dela rearriu(;tcé??ngsicﬁindIir:gcsat;:t?é?ﬁ/a?:;?igasa;? g;?:r:?g; of
distribution of one critical path at a time is not enough, anp 9 P P @

. ) 2 e x andy directions respectively.
correlations between paths must be considered in finding tthel_ge Iocyal componentép isyproximity dependent and
locals -

max of the PDF’s of all paths. Such an analysis is essentfgl out-specific. The random component, stands for the
for finding the probability of failure of a circuit, which is Y P : b '

. . ; i random intra-chip variation and the vector of all random
available from the cumulative density function (CDF) of the P he chi icle field h lated
circuit delay, components across the chip or reticle fie as a correlate

] o o multivariate normal distribution due to spatial corradatiof
For an edge-triggered sequential circuit, the statistioal  ihe jntra-chip variation

ing graph can be constructed similarly by breaking the dircu .
into a set of combinational blocks between latches, and the €~ N(0,%), 3)

analysis includes statistical checks on setup and hold tifgerey: is the covariance matrix of parameters. The detailed
violations. The former requires the computation of the dignoqel for this covariance matrix will be described in the
tribution of the maximum arrival time at the latches, which o+ section. For spatially uncorrelated paramet@isecomes
requires the solution of the SSTA problem as defined abovg.yiagonal matrix where the entries represent variances. If
On the other hand, the latter problem needs the distributigil, \ariances of the parameters described by this matrix are

of the minimum arrival time at the latches to be computedes,med to be uniform across the chip, theis a multiple
and this can be solved by a trivial extension of the framewog i, identity matrix. ’

for the SSTA problem proposed in the paper, using miNiMUM |, g naper, we will only consider the impact of global and

operators, as will be mentioned in Section VI-C, instead @fnqom components. However, the local component can also
maximum operators. be included in the model, given, for instance, the chip layou

Our approach to solve the SSTA problem is based @imd pre-characterized spatial maps of parameters as in [19]
the following assumption on the distribution of the process Under intra-die variation, the value of paramegelocated
parameter values: at (x,y) can be modeled as

Components of Intra-Chip Variations

The global componentdgiopa, is location-dependent.
Across the die or reticle field, it can be modeled by a slanted
plane and expressed as a simple function of its location

Assumpienptocess parameter values are assumed to be p = p+gx+dy+ N0 0), 4)

normally distributed random variables. . . . . .
wherep is the nominal design parameter value at die location

The gate and interconnect delays, being functions of the fu, 0).

damental process parameters, are approximated using-a firstn this way, all parameter variations are modeled as lonatio
order Taylor series expansion. We will show that as a resdkpendent normally distributed random variables.

of this, all edges in grapty¥s are normally distributed random In this work, for transistors, we consider the following
variables. Since we consider spatial correlations of tloegss process parameters [20] as random variables: transistgtie
parameters, it turns out that some of the delays are coetklal, and width1V,, gate oxide thicknes%,,, doping concen-
random variables. Furthermore, the circuit deldy,., is tration densityN,; for interconnect, at each metal layer, we
modeled as a multivariate normal distribution. Althougle thconsider the following parameters: metal width,,;,, metal
closed form of circuit delay distribution is not normal, wehicknessl’,;, and ILD thicknes¥4;;,p,, where the subscript
show that the loss of accuracy is not significant under thisrepresents that the random variable is of layemwhere
approximation. I =1...nyrs. Among all the parameters listed above,



u '\), For example, theL, values for transistors in a grid are
: 2_@&% B i/g correlated with those in nearby grids, but are uncorrelatéd
(L1 (1,2) (1,3) (1,4) other parameters such &g, or W,;, in any grid. (Note here
that we consider interconnect parameters in differentriaye
be “different types of parameters,” e.§i;,,;, andW,;, are

@l @2) @3) @4 uncorrelated.)
Under this model, the parametric variation for a spatially
(3,1) (3,2) (3.3) (3.4 correlated parameter in a single grid at locat{eny) can be
A modeled using a single random variable:, y). In total, this
V representation requires random variables, each representing
(4.1) (4,2) 4,3 (4,4

the value of a parameter in one of thgrids, and a covariance
matrix of sizen xn representing the spatial correlations among
the grids. The covariance matrix could be determined from
data extracted from manufactured wafers. For example,ta tes
is observed to exhibit largest parameter variability argb alstructure methodology was developed to support the evafuat
has the most important impact on circuit performance wheri process parameter variations in [22]. The number of grid
it shows variations [20]. We believe that this framework isegions divided can be also determined using the test steict
general enough that it can be applied to handle variationsméthodology by refining the number of grids until delay

Fig. 1. Grid model for spatial correlations

other parameters as well. distribution of test structure converges or changes ontpiwi
a small tolerance range. In this work, due to the lack of acces
B. Spatial Correlations to real wafer data, we use the correlation matrix derivechfro

To model the intra-die spatial correlations of parametees, the spatial correlation model in [3]. However, we believatth
partition the region of die or reticle fildnto nrowxncol = . OUr modelis more general than the model used in [3], since it
grids. Since devices [wires] close to each other are mdfePurely based on neighborhood. For example, considenagai
likely to have more similar characteristics than those @dac the case in Figure 1, by our model, the parameter in @rid)
far away, we assume perfect correlations among the devié@s equal correlations with that in gritl, 1) and(1, 3). While
[wires] in the same grid, high correlations among those Ry the model of [3], it will have higher correlation with grid
close grids and low or zero correlations in far-away grias. F(1,1) than grid(1,3), i.e., the correlations are uneven at the
example, in Figure 1, gatesandb (whose sizes are showntwo neighbors of grid1, 2).
to be exaggeratedly large) are located in the same grid sguar For clarity of presentation, we here assume that all types
and it is assumed that their parameter variations (sucheas @ Parameters have spatial correlations. In manufacturing
variations of their gate length), are always identical. €5at due to effects such as random dopant fluctuations, the intra-
andc lie in neighboring grids, and their parameter variation@hip variations of some parameters are truly uncorrelated
are not identical but highly correlated due to their Spaﬂg]om transistor to transistor. The extension of this work to
proximity (for example, when gatehas a larger than nominal incorporate the effect of spatially uncorrelated paransatell
gate length, it is highly probable that gatevill have a larger Pe shown in Section VI.
than nominal gate length, and less probable that it will leave
smaller than nominal gate length). On the other hand, gates  |V. STATISTICAL TIMING ANALYSIS ALGORITHM

andd are far away from each other, their parameters may bethe core statistical STA method is described in this section

uncorrelated, (e.g., when gatehas a larger than nominal gateand its description is organized as follows. At first, in sec-
length, the gate length fof may be either larger or smallertjon |v-A, we will describe how we model the distributions

than nominal). _ ~of gate and interconnect delays as normal distributiongryi
~ Our algorithm makes a second assumption on the distrighe PDF’s that describe the variations of various pararseter
tion of process parameters: In general, these PDF’'s will be correlated with each other.

Assuniptisna2sumed that nonzero correlations may exig§ section IV-B, we will show how we can simplify the
only among the same type of process parametersgdmplicated correlated structure of parameters by orthabo
different grids, and there is no correlation betweeflansformations. Section IV-C will describe the PERT-like
different types of process paramefers traversal algorithm on the statistical timing graph by demo

°The same model can be used to model the parameter variationssaa strating the procedure for the computationroéx and sum

reticle field containing multiple chips, in which case, taesultiple chips can functions. Finally, Section IV-D will explain why orthogah

be analyzed simultaneously and the maximum of the delaysealPOs of all {ransformations are important in our method.
chips is the distribution of chip delay. This does not chatige complexity
of the algorithm, since the number of dies in a reticle fiela ismall integer.
3This assumption is not critical to the correctness of ourcedore, A. Modeling Gate/lnterconnect Delay PDF’s
but is used in our experimental results. In case the assamp$ not
strictly true [21], our method is still general enough to tiiencorrelations In this section, we will show how the variations in the

between parameters of different types, either by decompatie correlated process parameters are translated into PDF’s that deshgbe

parameters into an uncorrelated set using an orthogonaftramation such . . .
as the principal component analysis (PCA) technique, or dnsttucting a variations in the gate and interconnect delays that CO(DﬂI!;p

covariance matrix for all correlated parameters. to the weights on edges of the statistical timing graph.



In section Ill, the geometrical parameters associated witising the chain’s rule

the gate and interconnect are modeled as normally distdbut 5., , 3 Z ODint ORu, N Z ODint OClu,

random variables. Before we introduce how the distribigion 75,,~ ~ IR Opi Cw, Op;
. . . 4 - W z N wp i
of gate and interconnect delays will be modeled, let us first VRuw), €Ruw V0w, €Cw
consider an arbitrary functiod = F'(P) that is assumed to + Z ODjnt OCy, )
be a function on a set of parametdrs where eactp; € P 9Cq,  Opi

. . . L ' . vC,, €C
is a random variable with a normal distribution given fyy~ TR

N(pip;,0p,). The distribution of interconn_ept_ Qelay can then be approxi-
We can approximate the functiof linearly using a first Mated on the computed sensitivities.
order Taylor expansion We will now specifically c_on5|der_ the facto_rs that_ aff_ect
the interconnect delay associated with edges in the stafist
OF timing graph. Recall that under our model, we divide the
d = do+ Z { } Ap;, (5) chip area into grids so that the parameter variations within
v parameters; 0 a grid are identical, but those in different grids exhibiatal
correlations. Now consider an interconnect tree with ssver
whered, is the nominal value ofl, calculated at the nominal different segments that reside in different grids. The ylela
values of parameters i, S is computed at the nominal variations in the tree are affected by the parameter variaif
values ofp;, Ap; = p; — i, is @ normally distributed random wires in all grids that the tree traverses. For example, gufé
variable andAp; ~ N(0,0,). 1, consider the two segmenis) and pq in the interconnect
In this approximationd is modeled as a normal distribution tree driven by gater. Segmentuv passes through the grid
since it is a linear combination of normally distributeddam (1,1) andpq through the grid(1,2). Then the resistance and

variables. Its meap,, and variancer; are capacitance of segment should be calculated based on the

process parameters of grid, 1), while the resistance and
pa = do (6) capacitance of segmept; should be based on those of grid
9F 12 OF OF (1,2). Hence, the distribution of the interconnect tree delay

2 _ 2 e . . . .
Oq = E [—} oy 2 E [—} {—} cov(pi, piT) is actually a function of random variables of interconnect
~ | Opi 0 — | Op; 0 apj 0 . - .
Vi Vi ] parameters in both grid1,1) and grid (1,2), and should

incorporate any correlations between these random vasabl
wherecov(p;, p;) is the covariance of; andp;. Similarly, if the gates that the interconnect tree driveside
It is reasonable to ask whether the approximation/@s in different grid locations, the interconnect delay to aimks
a normal distribution is valid, since the distributiondfay, is also a function of random variables of gate parameters of
strictly speaking, not be Gaussian. We can say that wken all grids in which the receivers are located.

has relatively small variations, the first order Taylor exgian N summary, the distribution of interconnect delay funetio

is adequate and the approximation is acceptable with late can be approximated by

of accuracy. This is generally true of intra-chip variaion .., - 0, +3" [%] N [O;’Tf] aw} a0

where the process parameter variations are relativelysmal icr, 9 J0 ot e

in comparison with the nominal values. For this reason, as Mayer

functions of process parameters, the gate and interconnect +Z [";)T—*] AT 4 Z { Z L‘)V’V’—"t} awl,,

delays can be approximated as a sum of normal distributions icry 7 7° =1 licrin: mhido

(which is also normal) applying equation (5). b, l oD, )
Computing the PDF of interconnect delaln this work, we * Z [OT;M,LM""" * Z [OH;,‘D,LAH”‘”'}'

1ChGnt 1ChGnt

use the Elmore delay model for simplicity to calculate the in
terconnect delays Under the EImore model, the interconnectwhere dj, , is the interconnect delay value calculated with
delay is a function of the vector of resistancés,, the vector nominal values of parameteiS, is the set of indices of grids
of capacitances(,,, of all wire segments in the interconnecthat all the receivers reside it is the set of indices of
tree, and the vector of input load capacitana€s, of the grids that the interconnect tree traverses, Ad, = Ly—prs

fanout gates, or receivers: whereLg is the random variable representing transistor length
in the:'" grid. The parameterd W/, AT.,, AW} ., AT},
dint = Diny (R, Ch, éq). (8) andAHj, , aresimilarly defined. As before, the subscrigt *

next to each sensitivity represents the fact that it is extal
Since the resistances and capacitances above are detgébygineat the nominal point.
the process paramete%of the interconnect and the receivers, Computing the PDFs of gate delay and output signal
such asWVins,, Tint,, Hipp,, Wy, Ly andT,,, the sensitivities transition time: The distribution of gate delay and output
of the interconnect delay to a parameggrcan be found by gjgna transition time at the gate output can be approxichate
in a similar manner as described above, given the sensvit
“However, it should be emphasized that any delay model maysée, @and of the gate delay to the process parameters.

all that is needed is the sensitivity of the delay to the pgsgearameters. For ; ol in;
example, through a full circuit simulation, the sensitadt may be computed Consider a muIt|pIe Input gate’plg;;ate be the gate delay

by performing adjoint sensitivity analysis. from thei!" input to the output and?’’}* be the corresponding



output signal transition time. In general, b@tﬁ’;j? and ngft“ obstacle. When the spatial correlation of process paramiste
can be written as a function of the process parameterf ~ also taken into consideration, the correlation structeoimes

the gate, the loading capacitance of the driving interconngven more complicated. To make the problem tractable, we use
tree C,, and the succeeding gates that it drivés and the the Principal Component Analysis (PCA) technique [23] to

input signal transition tim&g%"z at this input pin of the gate transform the set of correlated parameters into an unctee!

. Y o o : set.

pI; pLn;

dgaz?e - Dﬁate(Pvcwvcﬁ7Sin_ ) (11) PCA is a method that can be employed to examine the
Sht = Sgate (P, Chy, Cy, S, (12) relationship among a set of correlated variables. Giventa se

of correlated random variable$ with a covariance matrix,
F{lgA can transform the séf into a set of mutually orthogonal
random variablesX’, such that each member &f’ has zero
mean and unit variance. The elements of theXseare called

principal components in PCA, and the sizeXof is no larger
gate

gat )+ han the size of. Any variablez; € X can then be expressed
parameters can be computed applying the chain’s rule. T.

o o iNSterms of the principal componenfé” as follows:
derivatives ofC,, and C, to the process parameters can be

easily computed, ag’,, and C, are functions of process X = (E VA i - ) o + g, (14)
parameters. The input signal transition tin%g,, is a function j
of the o.utputtransnlonume o_fthe precedmg.gate and thayde herea!, is a principal component in set’, ), is the jt*
of the interconnect connecting the preceding gates and this J . . th
. . . . elgenvalue of the covariance matt¥ v;; is thei"™ element

gate, where both interconnect delay (as discussed eaatielr) th .

e " . of the j** eigenvector ofR, ando; and p; are, respectively,
output transition time of the preceding gate (as will be sho o
) . - he mean and standard deviationagf
in the next paragraph) are Gaussian random variables t

: i L ince we assume that different types of parameters are
can be expressed as a linear function of parameter vargtion .
: . . o uncorrelated, we can group the random variables of parasete
Therefore, at a gate input, the input signal transition tisne

.by types and perform principal component analysis in each

is always given as a normally distributed random variablé wi fouD separatelv ie. we compute the brincioal companent
a mean and first-order sensitivities to the parameter vanigit group separaiely, €., } Py b P P

To consider the effect of non-ideal input signal on ga#®r Lg» Wy, Toz, Na, Wint, and Tiny, individually. Clearly,
delay, the output signal transition tin$g,,; at each gate output not only are the principal components of the same type of
ne;e SI to be Ccil_”ﬂpulte? l_n ?dc_hnon tol p;gto_—pln Sflggﬂ?f thearameters independent, but so are the principal compenent
gate. In conventional static timing analys$,,; is set toS;,;" ;
if the path ending at the output of the néate travergmg tﬁ)é dlffe_rent type of parameters. .

For instance, letfL, be a random vector representing tran-

it" input pin has the longest path deldy,;,. In statistical S ‘ _ =t S

static ti_min% analysis, each of the paths through diffegate Sistor gatg Igngt_h vangtlons in gll grids anpl it is of m_qalhrate
input pins has a certain probability to be the longest pathormal distribution with covariance matrig,,,. Let L', be
T_her.e O.re’s"“t Smyld be computet_j as a weighted sum O.f .ﬂ}ﬁe set of principal components computed by PCA. Then any
distributions ofS where the weight equals the probab|I|tyL¢ € Eg representing the variation of transistor gate length of

out
ghoo ;
mﬁértge path through the™ pin is the longest among all the i'" grid can then be expressed as a linear function of the

The distributions ofd”.;. and S/, can be approximated as
Gaussians using linear expressions of parameters, where

mean values of”’7: or S”'™ can be found by using the

‘gate mn

mean values of, C,,, C; and Sf;” in functions D g4, OF
S.ate, and the sensitivities of eithef’”: or S”'™ to process
g9 mn

; principal components
Sout = D {Probldyain; > mavy;zidparn; )] x ST}, (13)

Vinput pin i Ly = ppi +ain % D+ a1 (15)
whered,,p, is the random path delay variable at the gate out- . PR o .
put through the” input pin. The result ofnazyzi(dparn, )] V_Yherelll;;l is the mean ofl;, [ is a principal component in
is a random variable representing for the distribution dfy» all{; are independent with zero means and unit variances,
maximum of multiple paths. As will be discussed later imndt is the total number of principal componentsiit,.

Section IV-C, dyatn, and mawy;zi(dpain,) can be approxi- In this way, any random variable iWV,, To., Nu, Wint,,
mated as Gaussians usisgm and max operators, and their 7in;, and f;.p, can be expressed as a linear function of the
correlation can easily be computed. Therefore, finding tie@rresponding principal components i, 17,, Ni, Wi,
value of Prob[dp.in, > mawyjzi(dpatn, ), i.€. Probldyatn, — Ti’n,, and H;LD,. Superposing the set of rotated random
may;i(dyatn, > 0) becomes computing the probability of avariables of parameters on the original random variables in
Gaussian random variable greater than zero, which caryeagifte or interconnect delay in equation (10), the expression
be found from a look-up table. As ead{,;’ is a Gaussian of gate or interconnect delay is then changed to the linear
random variable in linear combination of parameter vasiaj combination of principal components of all parameters

S,.t 1S therefore also a Gaussian distributed random variable

/ !
and its sensitivities to all process parameléfrg—* can easily d n do + kv X py A+ A R X Py, (16)
be found from its linear expression of parameters. wherep, € P’ and P = L, UW, UT!, U N, U Wlm, U f{nt, g
. _ it1.p, andm is the size ofP".
B. Orthogonal Transformation of Correlated Variables Note that all of the principal componenis that appear in

In statistical timing analysis without spatial correlat®y equation (16) are independent. Equation (16) has the foilpw
correlations due to reconvergent paths has long been moperties:



Prope®jnte allp, are orthogonal, the variance dfcan be The mearu s..» and variances2_  of the sumare given by
simply computed as

l
m P = D_d, (22)
op=> k. (17) i=
i=1 m
. . Ot = DD K (23)
PropefMh@ covariance betweehand any principal compo- J=1i=1

PR
nentp; is given by Computing the distribution of themax function: The max

coo(d, pl) = km; ~ k. (18) function of n normally distribute(_j random varia_ble:‘@‘,mC =
max(dy, - -, dy) is, strictly speaking, not Gaussian. However,
we have found that, in practice, it can be approximated Glose
by a Gaussian. This idea is similar in spirit to Berkelaar's
approach in [4], [24], although it is more general since Berk
laar's work restricted its attention to delay random vadab
di = d+kiy x P+ + ki x pl, (19) that were uncorrelaté_dln this work, we use the Gaussian
distribution to approximate the result of max function, so
thatd, o ~ N(tta,,,.0d,.. ) We also approximaté,,,, as
a linear function of all the principal components: - - p!,

In other words, the coefficient gf; is exactly the
covariance betweet andp!.
Propelltgt3d; andd; be two random variables:

dj = d?+k]1><p']++k]m><plm(20)

The covariance ofd; and d;, cov(d;,d;), can be

CompUtEd by dma.r = HMd,as + alp’] + -+ Umpfm (24)
m Therefore, determining this approximation @y, is equiv-
coo(ds, d;) = kirkyy. (21)  alent to finding the values qf,, .. and alla,’s.
r=1 From Property 2 of Section IV-B, we know that the co-

In comparison, without an orthogonal transformatiorgfficient a, equalscov(dmaz, p).). Then the variance of the
the value ofcov(d;,d;) has to be computed by a€xpression on the right hand side of equation (24) is congpute

: ; . . 2 _ ym 2 2 i is i
more complicated formula as will be described iRS 56 = 21 @ = D2,y COV™(dmag, ). Since this is
section IV-D. merely an approximation, there may be a difference between

the valuesj and the actual variance]  of dya.. TO
diminish the difference, we can normalize the valueiptby
C. PERT-like Traversal of Statistical STA setting 1t as
Od

Do, (25)

Using the techniques discussed up to this point, all edges ar = cov(dmaz, ;) - 5
0

of the statistical timing graph may be modeled as normally i i o
distributed random variables. In this section, we will dége e can see now that to find the linear approximation for

a procedure for finding the distribution of the statisticaigest Amaz the values ofug,,,., T apd cov(dpmaz, Pi) are
path in the graph. required. In the work of [6], similar inputs were required in

Weir algorithm and the results from [25] were applied and
en to provide good results. In this work, we have borrowed
the same analytical formula from [25] for the computation of

] the max function.
« the sumfunction, and According to [25], if ¢ and# are two random variables,
« the maxfunction. &~ N(ui,01), n ~ N(us,09), with a correlation coefficient

" _ i 2 —
In our statistical timing analysis, a PERT-like traverssl iga;((%_%)) o ttaheegptgfo%g?g dat)nyd the variance; of ¢ =

employed to find the distribution of circuit delay. However,

In conventional deterministic STA, the PERT algorithm ca
be used to find the longest path in a graph by traversing it
topological order using two types of functions:

unlike deterministic STA, theumandmaxoperations here are f‘; = u12- q’(@ T e <1>(—62) + 0‘2' p(B); (26)
functions of a set of correlated multivariate Gaussian oamd or = (p1+o1) ®(B)+ (k2 +03) ®(=5)
variables ins’gead of fixed values: +(pr + p2) - a-o(B) — pi, (27)
1) dsum = 32— di, and where
2) dimaz = max(dy, -+, d). > >
where d; is a Gaussian random variable representing either a=\/oi+o; =200, (28)
gate delay or wire delay expressed as linear functions of 8= M7 (29)
principal components in the form of equation (19), dni$ e,
the number of random variables theimor max function is o(x) = Lem _r (30)
. 9/ p 2 b

operating on. Var

Computlng the_dlstrlb_ut|on of theum_func;hon_. The com- ®(z) = 1 / exp {y_} dy. (31)
putation of the distribution osum function is simple. Since Ver ) oo

1 . . . .
the dsum = Zi:l d; 'S. a linear Fombmat'on Qf nom_]a”y 5Many researchers in the community were well aware of Beskislaesults
distributed random variableg,,, is a normal distribution. as early as 1997, though his work did not appear as an arghilagication.



The formula will not apply ifo; = o, andp = 1. However, Input: Process parameter variations
in this case, thenaxfunction is simply identical to the random Output: Distribution of circuit delay
variable with largest mean value.

Moreover, from [25], ify is another normally distributed

random variable and the correlation coefficiemts,v) = 2)
p1, r(n,v) = pe2, then the correlation between andt =

max(§,7) can be obtained by responding covariance matrix.
(t _o1-p1-®(B) + o2 p2- @(—5) 32 3) Perform an orthogonal transformation to represent
r(ty) = oy NCE) each random variable with a set of principal com-

Using the formula above, we can find all the values needed. ponents. i ,
For each gate and net connection, model their

As an example, let us see how this can be done by first start ng4) ; o o
with a two-variablemax function, dya, = mazx(d;, d;). Let delays as linear comblnauons of the principal cgm-
ponents generated in step 3.

dmae: be of the form of equation (24). We can find the ke e L
5) Map the circuit into a statistical timing graph hy

approximation ofd,, ., as follows: ; . J
. . . : adding one virtual-source node, one virtual-sink

1) Given the expressions df andd; each as linear combi- .
node and corresponding edges.

nations of the principal components, compute their mean 6) Using sum and max functions on Gaussian ran-

?ensd esézcglargsd(fe\z/;trli%g dvglltj)%ei;t' (fld'(;f 22%#56]&% dom variables, perform a PERT-like traversal on
P y perty ' the graph to find the distribution of the statistical

2) Find the correlation coefficient betwednandd, where longest path. This distribution achieved is the cirguit
cov(d;, d;), the covariance of; andd; can be computed delay distribl.Jtion
using Property 3in Section IV-B. i
Now if 7’(d¢,dj) =1 and o4, = 04, setd,, .. 10 be Fig. 2. Overall flow of our statistical timing analysis.
identical tod; or d;, whichever has larger mean value
and we can stop here; otherwise, we will continue to the

1) According to the size of the chip, partition the ch
region inton = nrow x ncol grids.

For each type of parameter, determine thgointly
normally distributed random variables and the cpr-

P

next step. Also, recall that we have a “normalization” step to diminish
3) Calculate the meap,,,,, and variancer;  of d,,,, the difference between the variance computed from therinea
using equations (26) and (27). form of maxapproximation and the real variance of timax

4) Find all coefficientsa, of p.. According to Property function. As in the case of approximating theaxas normal
2, a, = cov(dmaz,pl), also, cov(d;,p.) = k; and distribution, there is no theoretical proof about how tmer-
cov(d;j,pl) = kj,. Applying equation (32), the valuesmalization” step can affect the accuracy of the approxiomati
of cov(daz, p,) and thusa, can be calculated. Another option to diminish the difference is to move it into a

5) After all of the ar'S have been calculated, determinéndependent random Gaussian component, and it is difficult

= />~ a,?. Normalize the coefficient by reset-to state definitively which of these options is better. In our
tmg eacha, = a, d— work, we choose the former option and find that it provides

The calculation of the two-variablaxfunction can easily excellent accuracy, as will be shown in Section VII, where th
be extended to a multi-variabteaxfunction by repeating the Statistics of the “normalization” ratio for several testceiits
steps of the two-variable case recursively. are provided.

As mentioned at the beginning of this section, max of At this point, not only the edges, but also the results of
two Gaussian random variables is not strictly Gaussians Tiumand max functions are expressed as linear functions of
approximation can sometimes introduce serious error, etge principal components. Therefore, using a PERT traversa
when the two Gaussian random variables have the same mbgrincorporating the computation @m and max functions
and standard deviation and correlation value of -1, and tHescribed above, the distribution of arrival time at any enod
distribution of the maximum is a half Gaussian. During th# the timing graph becomes a linear function of principal
computation of multi-variablenaxfunction, some inaccuracy components, and so the distribution of circuit delay can be
could be introduced since we approximate mh@xfunction as computed at the virtual sink node.
normal even though it is not really normal, and proceed with The overall flow of our algorithm is shown in Figure 2. It
further recursive calculations. To the best of our knowkgdgis noticed that this work is in some sense parallel to the work
there is no theoretical analysis available in literaturat thof [14]: in [14], delays are represented as linear combamesti
quantifies the inaccuracies when a normal distribution edusof global random variables, while in our work, they are linea
to approximate the maximum of a set of Gaussian randdbmnctions of principal components; in [14], the max of delay
variables. However, a numerically based analysis was geali are reexpressed as linear functions using binding prababijl
in [25] which suggests that in some situations the errors cafile in our work, the linear functions are found by an
be great, but for many applications this approximate isequianalytical method from [25].
satisfactory. We will show results in Section VII that sugge To further speed up the process, the following technique
that such inaccuracies are not significant in the circuitedn may be used: During thmax operation of statistical STA, if
and we will see that our results match very well with théhe value ofu + 3 - o of one path has a lower delay than the
simulation results from a Monte Carlo analysis. value of — 3 - o of another path, we can simply calculate the



maxfunction ignoring the former path. on the paths are correlated or which parts are correlated.
For the same reason, in this algorithm, besides the spatial

D. The Utility of Principal Components correlations, path correlations due to reconvergencedsiral

. . . - correlations) can also be accounted for automatically by us
The previous sections described our statistical STA alg%— the orthogonal transformation on the spatially cotesla
rithm. The purpose of this section is to elaborate why thad g P Y

orthogonal transformation is needed to transform the set %qrameters. However, when spatially uncorrelated paemsiet

re involved in the computation, the structural correladidue
correlated process parameters to an uncorrelated set,cand . . .
. o L ..~ 10 these independent parameters can not be dealt with by this
it can simplify the problem of statistical STA considerin

spatial correlations. gmethodology. The extension of the work for handling sphtial

Let d, andd, be the distributions of two gate delays. l:Oruncorrelated parameters will be given in Section VI-B.
simplicity, we assume that the gate Iengtﬁ; are the only
spatially correlated parameters. We also assume d¢haind
d; are sensitive to the same set of correlated random variable§Ve present a run time complexity analysis here to show
of gate IengthsL}] ..... Ly. Using equation (10)¢; and d; which factors most greatly affect the CPU time of the algo-

V. COMPUTATIONAL COMPLEXITY

can be expressed as rithm.
The flow shown in Figure 2 can be divided into two parts:
di=d +ealy+...+cinly, (33)  model pre-characteriza?ion (steps 1, 2 and 3) and stgﬂistic
dj =d} +cpLy+...+cjnly. (34) static timing analysis (SSTA) (steps 4, 5 and 6). Model pre-
characterization consists of construction of parameteiava
tions and grid-based spatial correlation models, and tine-co
putation of Principal Components (PC) for spatially caated
parameters. The computation of PCs requires calculatibns o
eigenvectors and eigenvalues of the covariance matrixtand i
time complexity isO(p-n?), wheren is total number of grids
] ] divided andp is the number of parameters considered. While
In contrast, in our method, we first Eerform orthogonal trang, g step may seem to be a bottleneck of the algorithm, it is
formations onL,. Any elementL; € L, is expressed as 5 only one-time process. Once the models of parameter vari-
Lé _ Léo n a“l; Tt azmllgm. (36) ations are constructegl, they can.be repeatedly used tozanaly
any design. Meanwhile, for spatial correlated paramethes,
Next, by superposition we transford andd; to: PCs computed from the covariance matrix are only model-
0 " . dependent, so that for different designs analyzed with the
di = d + ki lf{ et kiml-‘{ ’ (37) sarae parameter model, the same set gf PCs ca};l be applied. In
dy =d + kpnl, + ...+ kjml,)". (38) other words, the step of model pre-characterization is @ fa
The value ofcou(d;, d;) can be simply computed using thed one-time library constructioq at early ste}ge and t.heeefor
L =, m - can be excluded from the run time complexity analysis of the
coefficients of L by cov(di,d;) = ., kiykj, in linear algorithm

time O(m). The advantage in this computation is that wé . . - L
do not need know which specific parametersdinand d, The run-time of the SSTA algorithm can be divided into:

are correlated. In fact, consider the coefficients bfin both 1) The time required to find the delay distribution of the

di anddj, ki = " cirap andk; = 32" cipap. It gate anq mtercon_ne?ctThls_ run time depends on how
many different grids the interconnect passes through

and how many grids the gates are located in, and in

general these numbers are bounded by constant numbers.

The run time is also proportional to the total number

of principal components, since we perform orthogonal

The direct computation of the covariance of path delays js ~ transformation at each wire segment of interconnect.
in a similar form. In general, the path delays are correlated ~FOr €ach random variable, the number of principal
when the gate delays on these paths are correlated. As shown COMPpOnents is no more than the total number of grids
in the work of [5], the path covariances can be computed on 7 Partitioned on the chip. The total number of principal
the basis of pair-wise gate delay covariances; however, the ~COomponentsis no more tham:. Thus, the time required
number of paths is numerous which makes it computationally € find the distribution of a single gate or wire can be
difficult to apply such a path-based method to large circuits ~ €stimated a&)(p-n). If N, is the total number of gates

In our method, with the orthogonal transformation, the ~ @ndN: the number of net connections in the circuit, the
covariances of path delays are manifested as the coeféicient  time Of this part can be estimated@p-n- (N, +N)).
of the independent principal components as in the case of) Thetime required to evaluate theaxfunction: The cost
correlated gate delays. The covariances of the paths can the ©f this operation is proportional to the number of random
be simply computed in linear time based on these CoeffiCiemsThe time to characterize the sensitivities of delay on patamvariations
only, and there is no need to worry about how the gat@sexcluded from this analysis.

Obviously, the covariance ef; andd; is decided by the co-
variance structure of ;. The direct calculation ofov(d;, d;)
is of a complicated form as in the work of [5]

cov(d;, d;) = Z Z (:m(:jbcm)(L;., LZ) (35)

a=1 b=1

can be seen that the covariance of gate lengths have all been
incorporated in the coefficient of the principal components
lgl., . .,liq”. For this reason, we ensure that the computation of
cov(d;, d;) can actually take the correlations of gate lengths
into consideration correctly.



10

variables involved in the max operation and the numbar separate random variable has to be used for each gate
of principal components of each random variable. ThHevire] to represent such independence, instead of a single
maxoperation is used at all multi-input gates and at thendom variable for all gates [wires] in the same grid for
last level (sink node) where the maximum circuit delathe spatial correlated parameters. Consequently, thendimi

is computed. This number can be upper bounded by thealysis framework introduced in previous sections must be
total number of net connectionlg; in the circuit. Thus, further extended to accommodate the spatially uncormtlate
the run time of this part i©)(p - n - Ny). parameters.

3) The time required to compute output transition time at As an example, let us consider the case that gate oxide
each gate output: For a gate with> 2 inputs, it requires thicknessT,, is the only spatially uncorrelated parameter.
k? max operations and: — 1 sum operations, which The idea described here can easily be extended to the case
are constant numbers ofiax and sumoperations. The where there is more than one uncorrelated parameter. With
computation is needed for all gates and thus the toiiater- and intra-chip variations, the variation'tf, for thei;,
cost isO(p - n - Ny). transistor can be expressed®s'“” + AT, whered?''" is

4) The time required to evaluate trsam function: The the random variable representing for the inter-chip vt
sum operation must be performed at all gates and imf 7,,, and AT?, the intra-chip variation of7,, of the
terconnects encountered during the PERT-like traversal, transistor. Accordingly, the expressions for device [{vire
A singlesumoperation require®(n), and therefore, the delays are reformulated by substituting'*” + AT, for
total complexity for this part i€)(p - n - (Ng + Np)). whereAT,, of thei,, transistor appears. Since the orthogonal

Therefore, the run time complexity of the algorithm@gp - transformations of parameters are performed only on djyatia
n-(N,+ Ny)), which isp-n times that of deterministic STA. correlated parameters, the variableg’*” and AT, are
preserved in the delay expressions of linear combination of
V1. EXTENDING THE METHOD TOHANDLE INTER-CHip  Principal components and either variable is independemh fr
VARIATIONS, SPATIALLY UNCORRELATEDINTRA-CHIP the principal components and any other random variables in

PARAMETERS, AND MIN-DELAY COMPUTATIONS the delay expressions. The timing propagation usingstima
andmaxoperators remains the same, except that after sach

In this section, we will first describe how this work Carbr maxoperation, the random variables for intra-die variations

bg d_et>_<tentde_dt to T\plude_t:\_e EﬁZCtbOf lnter-ttl:hlp vs\;att;)_ns lof spatially uncorrelated parameters7,’s, are merged into
addition to intra-chip variations. Subsequently, we widptain one random variable, so that, at each arrival time, only one

how spatially uncorrelated parameters can be incorporated independent random variable is kept for all intra-die s

th_e _currer:jt ?roposed ?I%onthm. Flnal_lly, k\)/ve_ will shovgl 39‘%1‘ spatially uncorrelated parameters. It is observed traniay
tmh!m]rcnum € a@/ computations can easily be incorporated infg adding this independent random variable to the standard
IS Tramework. form of the representation of arrival times is similar to the

“residual” variance’s lumping into the independently rand

A. Inter-Chip Variations part in [26].
In general, the process parametric variation can be modeled\lthough structural correlations can be automaticallyetak
as into account using orthogonal transformation on spatiediy
related parameters as explained in Section IV-D, the strakt
Ototal = Ointer + Ointra; (39)  correlations due to spatially uncorrelated parametersaidne

handled with the same technique because of the merging of
chip variation. As forditra, dinter is also modeled as a these random variables during the propagation. To reduee th
Gaussian random variable. inaccuracies caused, one can appeal to the availabletlitera

As introduced in Section I, inter-chip variation has a glob®n handling structural correlations in statistical STA, [H].
effect on all the transistors [wires] within a single chimda [10l- In this work, we have ignored the structural correlas

therefore a single random variabk,,;.,, can be applied to c_aused by the spatially uqcorrelated parameters. However,
all transistors [wires] to model the effect of inter-die iation. SINCe the structural correlations from spatially corretapa-

Consequently, the covariance matrix for each type of Swﬁiarameters are considered, the inaccuracies introducedtfrism

correlated parameter is changed by adding to all entries?§SUmption are not significant, as will be demonstrated in

value ofo2_ | the variance of inter-chip parametric variation>€ction VII.

Based on the new covariance matrices, the same statistical

STA methodology can still be applied to compute distributioc  pistribution of the Minimum of a Set of Gaussians
of chip delay.

whered; ¢, IS the inter-chip variation and,,;,, is the intra-

In circuit performance analysis, computations such as find-
) ing the required arrival time (RAT) for long-path analysis,
B. Spatially Uncorrelated Parameters and minimum delay computations for short-path analysis (to

In practice, it is observed that not all process parameteriseck for hold time violations) require the computation of
are spatially correlated. For example, the variationg'gf or the minimum of a set of delays, which becomes finding the
N, are independent from transistor to transistor. To modeistribution of the minimum of a set of random variables unde
the intra-die variation of spatially uncorrelated parasnet process variations.
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The procedure for calculation of maximum of a set of COF Curves
Gaussians can be utilized to compute the minimum of a set ‘
of Gaussian random variableg, - - - d;. Specifically,d,,;, = osl
min(dy, ...,d;) can be computed as

@

Probability
o
>

dmin = —maz(—dy, ..., —d;), (40) -
whered; is a normally distributed random variable anthx foo" 500 500 Dells)?ps) 1150 00 00
is the operator introduced is Section IV-C. o

0.04

VIl. EXPERIMENTAL RESULTS

=4

=

@
T

Probability

The proposed algorithm was implemented in C++ as the
software package'MinnSSTA" and tested on the edge-
triggered ISCAS89 benchmark circuits by working on the ™ ‘ ‘
combinational logic blocks between the latches. All exper- o0 500 e Deley ()
iments were run on a Linux PC with a 2.0GHz CPU and , _ o
256ME memory. We experimented with parameters of 100rf}, 2/ cemearison bisnsSTAsndtuc methocs sssuring fed vabes
technologies on a 2-metal layer interconnect model. TR results oMinnSSTAwhile the plot marked by the starred lines denotes
process parameters (Table I) used here are based on pradicthe results oMC.

from [20], [27].

Since t.he computation requires physical information aboﬁlfc methods are plotted in Figure 4, It can be seen that,
the locations of the gates and interconnects, all cells @ t . S
t the range of lower and higher circuit delay values, the

cireuit were first placed using the placement tool, Capo.'[28jircuit delay distribution computed frominnSSTAmatches
Global routing was then performed to route all the nets in the

circuits. Depending on the size of circuit, we divided thépch well with that of the Monte-Carlo simulation, although ther

. . . . . . are some deviations in the central portion. As mentioned
area into different sizes of grids, so that each grid costam . . :
. in_Section VI-B, some error may be introduced from the
more than a hundred cells. Again, due to the lack of access {o . : :
; . . L structural correlations, which are not handled exactlyha t
real wafer data, the covariance matrix for intra-die vioizd

used in this work were derived from the spatial correlatio%;easle;geo(f)ftﬁgCg;reéit:r’gr']?stra\;vdéeﬁ%%nlﬁg?etﬂés'cgszgdf;ntﬁg
model used in [3] by equally splitting the variance into afnay b !

small error that is introduced here is primarily becauseiour
levels. lementation does not handle structural correlations &etw
To verify the results of our methoMinnSSTA we used b . : o
. . . he uncorrelated variables. We believe that, by appenditay i
Monte Carlo MC) simulations based on the same grid mode% o .
: . e existing framework an algorithm that handles strudtura
for comparison. To balance the accuracy and run time, we . )
) . : ._correlation [7], [9], [10], the error of the results in Takl¢
chose to run 10,000 iterations for the Monte Carlo simultatio
. . . can be further reduced.
We first present the experimental results assuming that al
parameters are spatially correlated while using fixed \&alue ) COF Curves
for the spatially uncorrelated parametefs,( and N,). Table ‘ :
II shows a comparison of the results ®C with those
from MinnSSTA For each test case, the mean and standard
deviation (SD) values for both methods are listed. The tesul
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of MinnSSTAcan be seen to be very close to M€ results: o2f
the average error is-0.23% for the mean and—0.32% oL i — ]
for the standard deviation. In Figure 3, for the largest test Detay (ps)
case s38417, the plots of the PDF and CDF of the circuit o4 : : orcunes
delay for bothMinnSSTAand MC methods are provided. oosf
It is observed that the curves almost perfectly match each oo
other. This demonstrates the accuracy of the PCA approach Zoot
for correlated parameters, including its ability to accofor * ooz
structural correlations. 0oL
Next, the results for considering the variations of the spa- fo oo 00 a0 mo oo e a0

Delay (ps)

tially uncorrelated parameterg,(, andN,) are given in Table
lll. On average, the error i$.06% for the mean value and Fig. 4. A comparison oMinnSSTAand MC methods for circuit 38417,

—4.34% for the standard deviation. In Table VIII, th&%  considering all sources of variation, some of which areiafhatcorrelated
. and some of which are not. The curve marked by the solid limots the

and1% C(_)nﬁdence points achieved IMC andMinnSSTAare results ofMinnSSTA while the plot marked by the starred lines denotes the
also provided and the average errors ate46% and—0.99%  results ofMC.

respectively. Again, for the largest test case s38417, iie P
and CDF curves of the circuit delay for boMinnSSTAand In Table 1ll, the CPU times for both methods are provided.
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TABLE |
PARAMETERS USED IN THE EXPERIMENTS

Parameters Lg Wy Toz | Nag (x1017cm=3) | Wine Tint | Hrp
(nm) (nm) | (nm) nmos/pmos (nm) | (nm) (nm)
D 60.0 | 150.000 | 2.500 | 9.70000/10.04000] 150.0 | 500.0 | 300.0
30inter 9.0 11.250 | 0.250 0.72750 15.0 [ 25.0 22.50
30intra 45 5.625| 0.125 0.36375 7.5 125 11.25
dzTmaz + OyYmaz 45 5.625 | 0.125 0.36375 7.5 125 11.25

TABLE Il

COMPARISON RESULTS ASSUMING FIXED VALUES OH,; AND N,

Benchmark | Monte-Carlo (MC) MinnSSTA OinnSSTA— M)
Name Mean(ps) | SD(ps) | Mean(ps) | SD(ps) Mean SD
s38417 988.6 91.0 985.8 90.8 | -0.28% -0.22%
s38584 1726.9 153.1 1720.9 151.6 | -0.35% -0.98%
535932 1165.5 101.6 1162.7 101.3 | -0.24% -0.30%
515850 1370.2 131.1 1367.2 129.6 | -0.22% -1.14%
513207 1219.9 116.1 1217.3 116.2 | -0.21% 0.09%
59234 674.6 65.4 673.7 64.8 | -0.13% -0.92%
s5378 413.1 38.5 411.8 38.4 | -0.31% -0.26%
s1196 499.9 45.8 499.3 46.2 | -0.12% 0.87%

s27 102.5 9.9 102.3 9.9 | -0.20% 0.00%
TABLE Il

COMPARISON RESULTS OF THE PROPOSED METHOD ANBIONTE-CARLO SIMULATION METHOD

Benchmark Monte-Carlo (MC) MinnSSTA OinnSSTA M)

Name | #Cells | #Grids | Mean(ps) | SD(ps) | CPU-time(s) | Mean(ps) | SD(ps) | CPU-time(s) | PCA-time(s) Mean SD
s38417 [ 23815 256 995.6 130.3 21005 1022.0 125.4 406.11 0.15 2.65% -3.76%
s38584 [ 20705 256 1738.4 226.4 24039 1798.2 215.6 460.36 0.15 3.44% -4.77%
s35932 | 17793 256 1214.7 161.8 53922 1251.2 1447 505.71 0.15 | 3.00% -10.57 %
s15850 | 10369 256 1388.2 178.9 8856 1397.8 172.1 175.96 0.15 | 0.69% -3.80%
s13207 | 8260 256 1230.7 158.8 9060 1239.7 154.9 172.62 0.15 | 0.73% -2.46%
59234 5825 64 688.6 90.6 5346 690.6 85.2 32.23 0.02 | 0.29% -5.96%
s5378 2958 64 421.1 54.3 3907 420.8 51.8 27.41 0.02 | -0.07% -4.60%
s1196 547 16 505.9 66.0 781 502.7 64.4 1.51 0.01 | -0.63% -2.42%
s27 13 4 103.6 13.7 9 103.0 13.6 0.00 0.00 | -0.58% -0.73%

To show that the PCA steps require very little run time, th@e have demonstrated it on a path-balanced circuit whose
run time for this part is also listed; however, as pointed otpology is a binary tree of deptt. Table V lists the results
earlier, this can be considered a preprocessing step thatdéhieved byMinnSSTAand (MC). The errors obtained are
carried out once for each technology, and its cost need ned.54% for the mean and-6.26% for the standard devia-
be considered in the computation. We can see that the CBhh; —4.56% and —1.65% for the 99% and 1% confidence
time of MinnSSTAon all test cases is very fast. The circuipoint, respectively. This shows that the proposed approanh
with the longest run time, s35932, was analyzed in only abgutedict the timing yield well, even for path-balanced citsu

500 seconds, while th#1C simulation required over5 hours.

In the proposed approach, in order to make the computedOne may ask what happens if a Monte-Carlo approach was
value of standard deviation af,,,, the same as that of therun for the same amount of time as the proposed algorithm.
approximated linear expression, the coefficients of patarse In Table VI, we show the data achieved from Monte-Carlo
in the linear expression are normalized by the ratio of thens in the equivalent CPU-time of the proposed method
standard deviation ofl,,,,. (namely,s, ..) to that of the "MIinnSSTA'. Since this Monte-Carlo simulation can only run
linear expressiong. In Table IV, the statistics of this ratio for a small number of iterations and samples the soluton space
all testcases are listed, including the mean, standardctienj insufficiently, it does not meet any of the usual convergence
minimum and maximum values of the ratio and the probabilisyriteria used for Monte Carlo analysis. Therefore, what is
of the ratio falls into each given range. In general, the dighachieved is not the genuine distribution of circuit delayt b
the ratio, the larger the error for estimatidg .., and thus the merely the distribution from an incomplete number of runs.
less accurate for estimating the circuit delay distributising The table shows the minimum values and maximum values
the proposed approach. For example, the teste35@32 has of the circuit delay from this insufficient number of Monte-
the highest probability of 0.045 for the ratio to be greabent Carlo runs, and, for purposes of comparison, the results wit
1.1, and also has the largest errors predicting the circaérm the 1% and 99% confidence points, respectively, from the
and standard deviation. Over all testcases, the average vdl0,000 iterations of Monte-Carlo simulation. It can be seen
of the ratio is 1.003, which is a reasonably small number ¢bat the accuracy is highly variable: in some cases, Monte
that the accuracy of the proposed statistical SSTA should rearlo analysis comes close to the action value, while inrsthe
be affected significantly by this normalization step. it is very far away. Most notably, large deviations can bensee

To further verify the applicability of the proposed algbrit, both for a small circuit (s27) and a large circuit (s38584),
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TABLE IV

STATISTICS OF RATIO OF STANDARD DEVIATION OF ACCURATE VALUEo 4 TO sgp OF THE LINEAR EXPRESSION

mamx

EXPERIMENTAL RESULTS ON A BINARY TREE CIRCUIT OF DEPTH10

Circuit Ratio ofo4,,,,,.. 10 so Probability of the ratio in each range
Name mean stdev | minimum [ maximum <1 =1 (1,1.01) TI.0, 1] [ > 1.1
$38417 ] 1.0031 | 0.0051 ~ 1 1.0262 | 0.0004 | 0.3246 0.5582 0.1168 0
s38584 | 1.0037 | 0.0054 ~ 1 1.1804 | 0.0023 [ 0.4124 0.1700 0.0001 0
$35932 | 1.0120 | 0.0278 ~ 1 1.1583 | 0.0022 [ 0.2883 0.4290 0.2350 | 0.0454
s15850 | 1.0018 | 0.0033 ~ 1 1.0233 | 0.0034 [ 0.4029 0.5538 0.0398 0
513207 | 1.0028 | 0.0048 ~ 1 1.0260 | 0.0008 | 0.3256 0.5843 0.0893 0
s9234 | 1.0017 | 0.0035 1 1.0209 0 [ 0.3825 0.5636 0.0538 0
s5378 | 1.0012 | 0.0023 1 1.0289 0 | 0.4310 0.5563 0.0126 0
s1196 | 1.0007 | 0.0021 1 1.0150 | 0.0021 | 0.7068 0.2764 0.0148 0
s27 1.0006 | 0.0014 1 1.0030 0 0.8 0.2000 0 0
TABLE V

Approach Mean(ps) SD(ps) | 99% Point(ps) | 1% Point(ps)

MC 669.8 86.2 894.8 486.3
MinnSSTA 666.2 80.8 854.0 478.3

Tnn SSTA M 9 | —0.54% | —6.26% —4.56% —1.65%

implying that the reliability of such an approach is susp&it standard deviation of the correlated case increases 193 %.
course, this is not surprising in the least, because thica@ti Again, we plot the PDF and CDF curves of both simulations
limitation on the run time has made the Monte Carlo analysfier circuit s38417 in Figure 5. It is seen that the CDF and PDF
unreliable, by permitting only a low point of confidence focurves ofMCNoCorr deviate significantly from those dfiC.

its predictions, and has not permitted it to fully sample thia other words, statistical timing analysis without corsidg
search space. correlation may incorrectly predict the real performande o
the circuit and could even overestimate the performance of
the circuit. This underlines the importance of developing
| efficient statistical STA methods that can incorporate iapat
correlations.

As an alternative, we consider the option of using multiple

process cornerd{PC) for these experiments, where the circuit
delays are evaluated at all possible corners of paramdtegva
atu+3-0, whereu is the mean and the standard deviation for
the parameter. Table VIII compares the worst-case and best-
case delays obtained at exhaustive process corners usng th
MPC method, with the99% and 1% confidence point delay
achieved from the Monte-Carlo simulatioMC) accordingly.
On average, th&1PC approach overestimates the worst-case
delay of circuit by30.81% and underestimates the best-case
delay by28.08%. These results also emphasize the importance
of considering spatial correlations during statisticaRSas is

) ) o ) ) o _done by our algorithm.
Fig. 5. A comparison of statistical STA with and without ciesing spatial
correlations, under Monte Carlo analysis, for circuit SBB4The curve marked
by the solid line denotes the case where spatial corretatioa ignored, while
the curve with the starred lines denotes the results of pwating spatial
correlations; this is identical to the curve in Figure 4.
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VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an algorithm for performing

To show the importance of considering spatial correlationstatistical STA, considering spatial correlations raddteintra-
we consider the difference between performing statisticethip process variations. We show that performing stasibtic
timing analysis while considering spatial correlation avidle timing analysis while ignoring spatial correlations may be
ignoring it. Since this is a comparison to determine whgdequate to predict the circuit performance correctly, thiad
spatial correlations are important, the CPU time is not fast and accurate statistical STA methods, such as ours, tha
consideration. Therefore, we run another set of Monte Caiitocorporate spatial correlations are essential. An arsabfghe
simulations MCNoCori) on the same set of benchmarks, thisomplexity shows it to be reasonable, and like conventional
time assuming zero correlations among the devices and wisFA, it is linear in the number of gates and interconnect& Th
on the chip. The comparison between the data is shownganalty that is paid here is that unlike deterministic STAs i
Table VII. It can be observed that although the mean values also linear in the number of grid squares. As a trivial extams
close, the variances of the uncorrelated cabB#SNoCorr) are  of maximum of delays, the computation for the distributidn o
much smaller than the correlated caseiC. On average, the minimum of delays is also provided.
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COMPARISON OFMONTE-CARLO IN EQUIVALENT CPU-TIME OF MINNSSTAWITH THAT OF 10,000RUNS (MC)

Circuit Minimum Delay MC: 1%pt (ps) W% Maximum delay MC: 99%pt (ps) %%
Name | #runs | delay (ps)| (10,000runs) #runs | delay (ps)| (10,000runs)
s38417 170 725.0 722.0 0.42% 170 1372.8 1333.3 2.96%
s38584 180 1205.7 1261.3 -4.41% 180 2794.3 2310.3 20.95%
s$35932 100 847.3 882.3 -3.97% 100 1650.0 1635.2 0.91%
515850 175 994.4 1012.9 -1.82% 175 1880.6 1844.8 1.94%
513207 190 887.8 893.1 -0.59% 190 1728.1 1629.9 6.02%
59234 60 452.3 499.7 -9.49% 60 884.1 922.6 -4.17%
s5378 50 306.0 308.9 -0.92% 50 534.3 559.9 -4.58%
s1196 16 441.7 370.4 19.26% 16 637.8 673.4 -5.29%
s27 10 350.0 74.9 367.30% 10 653.8 138.4 372.37%
TABLE VII
COMPARISON OF TIMING ANALYSIS WITH AND WITHOUT SPATIAL CORRE.ATIONS
Benchmark | Anal. w/ corr. (MC) | Anal. w/o corr. (MCNoCorr) | (LTI NoCorr) o
Name Mean(ps) | SD(ps) | Mean(ps) SD(ps) Mean SD
s38417 995.6 130.3 996.7 98.7 | 0.11% -24.25%
s38584 1738.4 226.4 1741.9 180.5 | 0.20% -20.27%
s$35932 1214.7 161.8 1253.6 140.0 | 3.20% -13.47%
s15850 1388.2 178.9 1393.8 121.9 | 0.40% -31.86%
s13207 1230.7 158.8 1233.8 110.2 | 0.25% -30.60%
s$9234 688.6 90.6 691.9 61.9 | 0.48% -31.68%
s5378 421.1 54.3 424.7 38.2 | 0.85% -29.65%
s1196 505.9 66.0 507.6 48.8 | 0.34% -26.06%
s27 1036 13.7 103.7 10.2 | 0.10% 25.55%
TABLE VI
COMPARISON OF99% AND 1% CONFIDENCE POINT
Bench. MC MinnSSTA MinuSSTA_MC) MPC MPC_MC)y,
Name [ 99% Pt.(ps) | 1% Pt.(ps) | 99% Pt.(ps) | 1% Pt.(ps) | 99% Pt.(ps) [ 1% Pt.(ps) | Worst-Case| Best-Case| Worst-Case| Best-Case
s38417 1333.3 722 1313.6 730.4 -1.48% 1.16% 1758.1 522.1 31.86% -27.69%
s38584 2310.3 1261.3 2299.5 1296.9 -0.47% 2.82% 3056.0 915.4 32.28% -27.42%
s35932 1635.2 882.3 1587.6 914.8 -2.91% 3.68% 2051.2 613.0 25.44% -30.52%
s15850 1844.8 1012.9 1797.9 997.7 -2.54% -1.50% 2442.9 725.2 32.42% -28.40%
s13207 1629.9 893.1 1599.8 879.6 -1.85% -1.51% 2175.4 646.6 33.47% -27.60%
s9234 922.6 499.7 888.7 492.5 -3.67% -1.44% 1207.3 359.7 30.86% -28.02%
s5378 559.9 308.9 541.2 300.4 -3.34% -2.75% 736.6 219.2 31.56% -29.04%
s1196 673.4 370.4 652.4 353.0 -3.12% -4.70% 874.2 265.8 29.82% -28.24%
s27 138.4 74.9 134.6 714 -2.75% -4.67% 179.3 55.6 29.55% -25.77%

The current algorithm is limited by the following: it assusne [4]
that the distribution of parameter variations are Gausarah
the distribution of gate [wire] delays have linear depergen [5]
on the variation of process parameters. A good direction for
future research involves solving the problem of statistica
timing analysis on non-Gaussian process parameter \argati [
and nonlinear delay dependencies.
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