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Abstract— Process variations are of increasing concern in
today’s technologies, and can significantly affect circuitper-
formance. We present an efficient statistical timing analysis
algorithm that predicts the probability distribution of th e circuit
delay considering both inter-die and intra-die variations, while
accounting for the effects of spatial correlations of intra-die
parameter variations. The procedure uses a first-order Taylor
series expansion to approximate the gate and interconnect delays.
Next, principal component analysis techniques are employed to
transform the set of correlated parameters into an uncorrelated
set. The statistical timing computation is then easily performed
with a PERT-like circuit graph traversal. The run-time of ou r
algorithm is linear in the number of gates and interconnects, as
well as the number of varying parameters and grid partitions
that are used to model spatial correlations. The accuracy ofthe
method is verified with Monte Carlo simulation. On average, for
100nm technology, the errors of mean and standard deviation
values computed by the proposed method are1:06% and�4:34%
respectively, and the errors of predicting the 99% and 1%
confidence point are �2:46% and �0:99% respectively . A
testcase with about 17,800 gates was solved in about500 seconds,
with high accuracy as compared to a Monte Carlo simulation that
required more than 15 hours.

Index Terms— Circuit, Deep submicron, Timing analysis,
VLSI

I. I NTRODUCTION

PROCESS variations have become an increasing concern in
integrated circuits as circuit sizes continue to increase and

feature sizes continue to shrink. As device and interconnect
parameters such as physical dimensions show variability, the
prediction of circuit performance is becoming a challenging
task. Conventional static timing analysis (STA) handles the
problem of variability by analyzing a circuit at multiple
process corners. However, it is generally accepted that such an
approach is inadequate, since the complexity of the variations
in the performance space implies that if a small number of
process corners is to be chosen, these corners must be very
conservative and pessimistic. For true accuracy, this can be
overcome by using a larger number of process corners, but then
the number of corners that must be considered for an accurate
modeling will be too large for computational efficiency.

The limitations of traditional STA techniques lie in their
deterministic nature. An alternative approach that overcomes
these problems is statistical STA, which treats delays not as
fixed numbers, but as probability density functions (PDF’s),
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taking the statistical distribution of parametric variations into
consideration while analyzing the circuit.

Process variations can be classified into the following cate-
gories:inter-die variationsare the variations from die to die,
while intra-die variationscorrespond to variability within a
single chip. Inter-die variations affect all the devices onsame
chip in the same way, e.g., making the transistor gate lengths
of devices on the same chip all larger or all smaller, while
the intra-die variations may affect different devices differently
on the same chip, e.g., making some devices have smaller
transistor gate lengths and others larger transistor gate lengths.

It used to be the case that the inter-die variations dominated
intra-die variations, so that the latter could be safely neglected.
However, in modern technologies, intra-die variations are
rapidly and steadily growing and can significantly affect the
variability of performance parameters on a chip [1]. The
increase in intra-chip parameter variations is due to the effects
such as micro-loading in the etch, variation in photoresist
thickness, optical proximity effects and stepper within-field
aberrations as the manufacturing sizes approach the optical
resolution limit [2]. Intra-die variation is spatially correlated:
it is locally layout-dependent and circuit-specific, i.e.,devices
with similar layout patterns and proximity structures tendto
have similar characteristics; it is globally location-dependent,
i.e., devices located close to each other are more likely to have
the similar characteristics than those placed far away.

Due to the increasing effect of intra-die variations, several
commercial flows have begun to include intra-die variationsin
the last few years, e.g., the OCV (On-Chip Variation) analysis
in Synopsys’s PrimeTime and the LCD (Linear Combination
of Delay) mode of IBM’s EinsTimer. In literature, a number
of studies on statistical timing analysis have focused on
circuit performance prediction considering intra-die variation.
Continuous methods [3]–[6] use analytical approaches to find
closed-form expressions for the PDF of the circuit delay. For
simplicity, these methods often assume a normal distribution
for the gate delay, but even so, finding the closed-from expres-
sion of the circuit distribution is still not an easy task. Discrete
methods [7]–[9] are not limited to normal distributions, and
can discretize any arbitrary delay distribution as a set of tuples,
each corresponding to a discrete delay and its probability.The
discrete probabilities are propagated through the circuitto find
a discrete PDF for the circuit delay. However, this method is
liable to suffer from the problem of having to propagate an
exponential number of discrete point probabilities. In [10], an
efficient method was proposed by modeling arrival times as
cumulative density functions and delays as probability density
functions and by defining operations ofaddandmaxon these
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functions. Alternatively, instead of finding the distribution of
circuit delay directly, several attempts have been made to find
upper and lower bounds for the circuit delay distribution [5],
[7], [11].

Although many prior works have dealt with intra-chip varia-
tions, most of them have ignored intra-chip spatial correlations
by simply assuming zero correlations among devices on the
chip. The difficulty in considering spatial correlations between
parameters is that it can result in complicated path correlation
structures that are hard to deal with. The authors of [6]
consider correlation between delays among the transistors
inside a single gate (but not correlations between gates). The
work in [12] uses a Monte Carlo sampling-based framework
to analyze circuit timing on a set of selected sensitizable true
paths. Another method in [5] computes path correlations on the
basis of pair-wise gate delay covariances and used an analytic
method to derive lower and upper bounds of circuit delay. The
statistical timing analyzer in [13] takes into account capacitive
coupling and intra-die process variation to estimate the worst
case delay of critical path. Two parameter space techniques,
namely, the parallelepiped method and the ellipsoid method,
and a performance-space procedure, the binding probability
method, were proposed in [14] to find either bounds or the
exact distribution of the minimum slack of a selected set of
paths. The approach in [3] proposes a model for spatial corre-
lation and a method of statistical timing analysis to compute
the delay distribution of a specific critical path. However,the
PDF for a critical path may not be a good predictor of the
distribution of the circuit delay (which is the maximum of all
path delays), as explained in Section II. Moreover, the method
may be computationally expensive when the number of critical
paths is too large. In [15], the authors further extended their
work in [3], [7] to compute an upper bound on the distribution
of exact circuit delay.

In this paper, we will propose an algorithm for statistical
STA that computes the distribution of circuit delay while con-
sidering spatial correlations. We will model the circuit delay
as a correlated multivariate normal distribution, considering
both gate and wire delay variations. In order to manipulate
the complicated correlation structure, the Principal Component
Analysis (PCA) technique is employed to transform the sets
of correlated parameters into sets of uncorrelated ones. The
statistical timing computation is then performed with a PERT-
like circuit graph traversal. The complexity of the algorithm
is O(p � n � (Ng +NI)), which is linear in the number of
gatesNg and interconnectsNI , and also linear in the number
of varying parametersp and the number of grid squaresn
that are used to model variational regions. In other words, the
cost is, at worst,p� n times the cost of a deterministic STA.
We believe that this is the first method that can fully handle
spatially correlated distributions under reasonably general as-
sumptions, with a complexity that is comparable to traditional
deterministic STA. This work can also be extended, using the
same framework of maximum of delays (Section IV-C), to find
the distribution of minimum of delays which can be applied
to analysis such as computing minimum delay distributions
for short-path analysis (to check for hold time violations), for
required arrival time (RAT) analysis, etc.

The remainder of the paper is organized as follows. Sec-
tion II formally formulates the problem to be solved in this
work. Section III explains the model used for process variation
and spatial correlation of intra-die variation. The algorithm is
presented in Section IV and its run time complexity analysisis
given in the following section. The extension to handle inter-
chip variation and spatially uncorrelated intra-chip components
is introduced in Section VI. The extension to compute min-
imum of delays is also presented in Section VI. Finally, a
list of experimental results and their analysis are shown in
Section VII.

II. PROBLEM FORMULATION

Under process variations, parameter values such as the gate
length, the gate width, the metal line width and the metal line
height are random variables. Some of these variations such
as across-chip linewidth variations (ACLV) are deterministic,
while others are random: this work will focus on the effects of
random variations, and will model these parameters as random
variables. The gate and interconnect delays, as functions of
these parameters, also become random variables. Given appro-
priate modeling of process parameters or gate and interconnect
delays, the task of statistical STA is to find the PDF of the
circuit delay.

The static timing analysis works with the usual translation
from a combinational circuit to a timing graph [16]. The nodes
in this graph correspond to the circuit primary inputs/outputs
and gate input/output pins. The edges are of two types: one
set corresponds to the pin-to-pin delay arcs within a gate, and
the other set to interconnections from the drivers to receivers.
The edges are weighted by the pin-to-pin gate delay, and
interconnect delay, respectively. The primary inputs of the
combinational circuit are connected to a virtual source node,
and the primary outputs to a virtual sink node with directed
virtual edges. In the case that primary inputs arrive at different
times, the virtual edges from the virtual source to the primary
inputs are assigned weights of the arrival times. Likewise,if
the required times at the primary outputs are different, the
weights of the edges from the outputs to the virtual sink are
appropriately chosen.

For a combinational logic circuit, the problem of static
timing analysis is to compute the longest path delay in the
circuit from any primary input to any primary output, which
corresponds to length of the longest path in the timing graph.
In static timing analysis, the technique that is commonly
referred to in the literature as PERT (Program Evaluation and
Review Technique) is commonly used1. This procedure starts
from the source node to traverse the graph in a topological
order and uses asumoperation ormaxoperation (at a multi-
fanin node) to find the longest path at the sink node. For
details, the reader may refer to [16], [17].

Since we will employ a PERT-like traversal to analyze the
distribution of circuit delay, we define a statistical timing graph
of a circuit, as in the case of deterministic STA.

1In reality, this is actually the critical path method (CPM) in operations
research. However, we will persist with the term “PERT,” which is widely
used in the static timing analysis literature.
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Definition 2.1: Let Gs = (V;E) be a timing graph for
a circuit with a single source node and a single sink node,
whereV is a set of nodes andE a set of directed edges. The
graphGs is called a statistical timing graph if each edgei is
assigned a weightdi, wheredi is a random variable, where
the random variables may be uncorrelated or correlated. The
weight associated with an edge corresponds to gate delay or
interconnect delay. For a virtual edge, the weight is random
variables with mean of its deterministic value and standard
deviation of zero and it is independent from any other edges.

Definition 2.2: Let a pathpi be a set of ordered edges
from the source node to the sink node inGs, andDi be the
path length distribution ofpi, computed as the sum of the
weightsdk for all edgesk on the path. Finding the distribution
of Dmax = max(D1; : : : ; Di; : : : ; Dnpaths) among all paths
(indexed from 1 tonpaths) in the graphGs is referred to as
the problem of statistical static timing analysis (SSTA) ofa
circuit.

Note that for the same nominal design, the identity of the
longest path may change, depending on the random values
taken by the process parameters. Therefore, finding the delay
distribution of one critical path at a time is not enough, and
correlations between paths must be considered in finding the
max of the PDF’s of all paths. Such an analysis is essential
for finding the probability of failure of a circuit, which is
available from the cumulative density function (CDF) of the
circuit delay.

For an edge-triggered sequential circuit, the statisticaltim-
ing graph can be constructed similarly by breaking the circuit
into a set of combinational blocks between latches, and the
analysis includes statistical checks on setup and hold time
violations. The former requires the computation of the dis-
tribution of the maximum arrival time at the latches, which
requires the solution of the SSTA problem as defined above.
On the other hand, the latter problem needs the distribution
of the minimum arrival time at the latches to be computed,
and this can be solved by a trivial extension of the framework
for the SSTA problem proposed in the paper, using minimum
operators, as will be mentioned in Section VI-C, instead of
maximum operators.

Our approach to solve the SSTA problem is based on
the following assumption on the distribution of the process
parameter values:

Assumption 1The process parameter values are assumed to be
normally distributed random variables.

The gate and interconnect delays, being functions of the fun-
damental process parameters, are approximated using a first-
order Taylor series expansion. We will show that as a result
of this, all edges in graphGs are normally distributed random
variables. Since we consider spatial correlations of the process
parameters, it turns out that some of the delays are correlated
random variables. Furthermore, the circuit delayDmax is
modeled as a multivariate normal distribution. Although the
closed form of circuit delay distribution is not normal, we
show that the loss of accuracy is not significant under this
approximation.

III. M ODELING PARAMETER VARIATIONS

In this section, we will introduce the model used for
intra-chip variations with spatial correlation. Althoughwe
consider only intra-die variations of parameters at this point,
the extension of this work to handle inter-die variations will
be introduced later in Section VI-A.

A. Components of Intra-Chip Variations

The intra-chip parametric variationÆintra can be decom-
posed into three components, a deterministic global componentÆglobal, a deterministic local componentÆlo
al and a random
component� [18]Æintra = Æglobal + Ælo
al + �: (1)

The global component,Æglobal, is location-dependent.
Across the die or reticle field, it can be modeled by a slanted
plane and expressed as a simple function of its locationÆglobal(x; y) = Æ0 + Æxx+ Æyy; (2)

where (x; y) is its die location,Æx and Æy are gradients of
parameter indicating the spatial variations of parameter along
the x andy directions respectively.

The local component,Ælo
al, is proximity-dependent and
layout-specific. The random component,�, stands for the
random intra-chip variation and the vector of all random
components across the chip or reticle field has a correlated
multivariate normal distribution due to spatial correlation of
the intra-chip variation~� � N(0;�); (3)

where� is the covariance matrix of parameters. The detailed
model for this covariance matrix will be described in the
next section. For spatially uncorrelated parameters,� becomes
a diagonal matrix where the entries represent variances. If
the variances of the parameters described by this matrix are
assumed to be uniform across the chip, then� is a multiple
of the identity matrix.

In this paper, we will only consider the impact of global and
random components. However, the local component can also
be included in the model, given, for instance, the chip layout
and pre-characterized spatial maps of parameters as in [19].

Under intra-die variation, the value of parameterp located
at (x; y) can be modeled asp = �p+ Æxx+ Æyy +N(0; �); (4)

where�p is the nominal design parameter value at die location(0; 0).
In this way, all parameter variations are modeled as location-

dependent normally distributed random variables.
In this work, for transistors, we consider the following

process parameters [20] as random variables: transistor lengthLg and widthWg , gate oxide thicknessTox, doping concen-
tration densityNa; for interconnect, at each metal layer, we
consider the following parameters: metal widthWintl , metal
thicknessTintl and ILD thicknessHILDl , where the subscriptl represents that the random variable is of layerl, wherel = 1 : : : nlayers. Among all the parameters listed above,Lg
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Fig. 1. Grid model for spatial correlations

is observed to exhibit largest parameter variability and also
has the most important impact on circuit performance when
it shows variations [20]. We believe that this framework is
general enough that it can be applied to handle variations of
other parameters as well.

B. Spatial Correlations

To model the intra-die spatial correlations of parameters,we
partition the region of die or reticle field2 intonrow�n
ol = n
grids. Since devices [wires] close to each other are more
likely to have more similar characteristics than those placed
far away, we assume perfect correlations among the devices
[wires] in the same grid, high correlations among those in
close grids and low or zero correlations in far-away grids. For
example, in Figure 1, gatesa and b (whose sizes are shown
to be exaggeratedly large) are located in the same grid square,
and it is assumed that their parameter variations (such as the
variations of their gate length), are always identical. Gate a
and 
 lie in neighboring grids, and their parameter variations
are not identical but highly correlated due to their spatial
proximity (for example, when gatea has a larger than nominal
gate length, it is highly probable that gate
 will have a larger
than nominal gate length, and less probable that it will havea
smaller than nominal gate length). On the other hand, gatesa
andd are far away from each other, their parameters may be
uncorrelated, (e.g., when gatea has a larger than nominal gate
length, the gate length ford may be either larger or smaller
than nominal).

Our algorithm makes a second assumption on the distribu-
tion of process parameters:

Assumption 2It is assumed that nonzero correlations may exist
only among the same type of process parameters in
different grids, and there is no correlation between
different types of process parameters3.

2The same model can be used to model the parameter variations across a
reticle field containing multiple chips, in which case, these multiple chips can
be analyzed simultaneously and the maximum of the delays at the POs of all
chips is the distribution of chip delay. This does not changethe complexity
of the algorithm, since the number of dies in a reticle field isa small integer.

3This assumption is not critical to the correctness of our procedure,
but is used in our experimental results. In case the assumption is not
strictly true [21], our method is still general enough to handle correlations
between parameters of different types, either by decomposing the correlated
parameters into an uncorrelated set using an orthogonal transformation such
as the principal component analysis (PCA) technique, or by constructing a
covariance matrix for all correlated parameters.

For example, theLg values for transistors in a grid are
correlated with those in nearby grids, but are uncorrelatedwith
other parameters such asWg or Wintl in any grid. (Note here
that we consider interconnect parameters in different layers to
be “different types of parameters,” e.g.,Wint1 andWint2 are
uncorrelated.)

Under this model, the parametric variation for a spatially
correlated parameter in a single grid at location(x; y) can be
modeled using a single random variablep(x; y). In total, this
representation requiresn random variables, each representing
the value of a parameter in one of then grids, and a covariance
matrix of sizen�n representing the spatial correlations among
the grids. The covariance matrix could be determined from
data extracted from manufactured wafers. For example, a test
structure methodology was developed to support the evaluation
of process parameter variations in [22]. The number of grid
regions divided can be also determined using the test structure
methodology by refining the number of grids until delay
distribution of test structure converges or changes only within
a small tolerance range. In this work, due to the lack of access
to real wafer data, we use the correlation matrix derived from
the spatial correlation model in [3]. However, we believe that
our model is more general than the model used in [3], since it
is purely based on neighborhood. For example, consider again
the case in Figure 1, by our model, the parameter in grid(1; 2)
has equal correlations with that in grid(1; 1) and(1; 3). While
by the model of [3], it will have higher correlation with grid(1; 1) than grid(1; 3), i.e., the correlations are uneven at the
two neighbors of grid(1; 2).

For clarity of presentation, we here assume that all types
of parameters have spatial correlations. In manufacturing,
due to effects such as random dopant fluctuations, the intra-
chip variations of some parameters are truly uncorrelated
from transistor to transistor. The extension of this work to
incorporate the effect of spatially uncorrelated parameters will
be shown in Section VI.

IV. STATISTICAL TIMING ANALYSIS ALGORITHM

The core statistical STA method is described in this section,
and its description is organized as follows. At first, in sec-
tion IV-A, we will describe how we model the distributions
of gate and interconnect delays as normal distributions, given
the PDF’s that describe the variations of various parameters.
In general, these PDF’s will be correlated with each other.
In section IV-B, we will show how we can simplify the
complicated correlated structure of parameters by orthogonal
transformations. Section IV-C will describe the PERT-like
traversal algorithm on the statistical timing graph by demon-
strating the procedure for the computation ofmax and sum
functions. Finally, Section IV-D will explain why orthogonal
transformations are important in our method.

A. Modeling Gate/Interconnect Delay PDF’s

In this section, we will show how the variations in the
process parameters are translated into PDF’s that describethe
variations in the gate and interconnect delays that correspond
to the weights on edges of the statistical timing graph.
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In section III, the geometrical parameters associated with
the gate and interconnect are modeled as normally distributed
random variables. Before we introduce how the distributions
of gate and interconnect delays will be modeled, let us first
consider an arbitrary functiond = F (~P ) that is assumed to
be a function on a set of parameters~P , where eachpi 2 ~P
is a random variable with a normal distribution given bypi �N(�pi ; �pi).

We can approximate the functiond linearly using a first
order Taylor expansiond = d0 + X8 parameterspi ��F�pi �0�pi; (5)

whered0 is the nominal value ofd, calculated at the nominal
values of parameters in~P , �F�pi is computed at the nominal
values ofpi, �pi = pi��pi is a normally distributed random
variable and�pi � N(0; �pi).

In this approximation,d is modeled as a normal distribution,
since it is a linear combination of normally distributed random
variables. Its mean�d, and variance�2d are�d = d0 (6)�2d = X8i ��F�pi �20 �2pi + 2X8i6=j ��F�pi �0 � �F�pj �0 
ov(pi; pj);(7)

where
ov(pi; pj) is the covariance ofpi andpj .
It is reasonable to ask whether the approximation ofd as

a normal distribution is valid, since the distribution ofd may,
strictly speaking, not be Gaussian. We can say that when�pi
has relatively small variations, the first order Taylor expansion
is adequate and the approximation is acceptable with littleloss
of accuracy. This is generally true of intra-chip variations,
where the process parameter variations are relatively small
in comparison with the nominal values. For this reason, as
functions of process parameters, the gate and interconnect
delays can be approximated as a sum of normal distributions
(which is also normal) applying equation (5).

Computing the PDF of interconnect delay:In this work, we
use the Elmore delay model for simplicity to calculate the in-
terconnect delays4. Under the Elmore model, the interconnect
delay is a function of the vector of resistances,~Rw, the vector
of capacitances,~Cw, of all wire segments in the interconnect
tree, and the vector of input load capacitances,~Cg , of the
fanout gates, or receivers:dint = Dint(~Rw; ~Cw; ~Cg): (8)

Since the resistances and capacitances above are determined by
the process parameters~P of the interconnect and the receivers,
such asWintl , Tintl , HILDl , Wg , Lg andTox, the sensitivities
of the interconnect delay to a parameterpi can be found by

4However, it should be emphasized that any delay model may be used, and
all that is needed is the sensitivity of the delay to the process parameters. For
example, through a full circuit simulation, the sensitivities may be computed
by performing adjoint sensitivity analysis.

using the chain’s rule�dint�pi = X8Rwk2~Rw �Dint�Rwk �Rwk�pi + X8Cwk2~Cw �Dint�Cwk �Cwk�pi+ X8Cgk2~Cg �Dint�Cgk �Cgk�pi : (9)

The distribution of interconnect delay can then be approxi-
mated on the computed sensitivities.

We will now specifically consider the factors that affect
the interconnect delay associated with edges in the statistical
timing graph. Recall that under our model, we divide the
chip area into grids so that the parameter variations within
a grid are identical, but those in different grids exhibit spatial
correlations. Now consider an interconnect tree with several
different segments that reside in different grids. The delay
variations in the tree are affected by the parameter variations of
wires in all grids that the tree traverses. For example, in Figure
1, consider the two segmentsuv and pq in the interconnect
tree driven by gatea. Segmentuv passes through the grid(1; 1) andpq through the grid(1; 2). Then the resistance and
capacitance of segmentuv should be calculated based on the
process parameters of grid(1; 1), while the resistance and
capacitance of segmentpq should be based on those of grid(1; 2). Hence, the distribution of the interconnect tree delay
is actually a function of random variables of interconnect
parameters in both grid(1; 1) and grid (1; 2), and should
incorporate any correlations between these random variables.
Similarly, if the gates that the interconnect tree drives reside
in different grid locations, the interconnect delay to any sink
is also a function of random variables of gate parameters of
all grids in which the receivers are located.

In summary, the distribution of interconnect delay function
can be approximated bydint = d0int +Xi��g h �Dint�Lig i0 �Lig +Xi��g h �Dint�Wig i0 �Wig (10)+Xi��g h �Dint�Tiox i0 �Tiox + nlayerXl=1 ( Xi��int � �Dint�Wiintl �0 �Wiintl+ Xi��int � �Dint�Tiintl �0 �Tiintl + Xi��int � �Dint�HiILDl �0 �HiILDl� ;
where d0int is the interconnect delay value calculated with

nominal values of parameters,�g is the set of indices of grids
that all the receivers reside in,�int is the set of indices of
grids that the interconnect tree traverses, and�Lig = Lig��Lig
whereLig is the random variable representing transistor length
in the ith grid. The parameters�W ig , �T iox, �W iintl , �T iintl
and�H iILDl are similarly defined. As before, the subscript “0”
next to each sensitivity represents the fact that it is evaluated
at the nominal point.

Computing the PDFs of gate delay and output signal
transition time: The distribution of gate delay and output
signal transition time at the gate output can be approximated
in a similar manner as described above, given the sensitivities
of the gate delay to the process parameters.

Consider a multiple-input gate, letdpinigate be the gate delay
from theith input to the output andSpiniout be the corresponding
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output signal transition time. In general, bothdpinigate andSpiniout
can be written as a function of the process parameters~P of
the gate, the loading capacitance of the driving interconnect
tree ~Cw and the succeeding gates that it drives~Cg , and the
input signal transition timeSpiniin at this input pin of the gatedpinigate = Dgate(~P ; ~Cw; ~Cg ; Spiniin ); (11)Spiniout = Sgate(~P ; ~Cw; ~Cg ; Spiniin ): (12)

The distributions ofdpinigate andSpiniin can be approximated as
Gaussians using linear expressions of parameters, where the
mean values ofdpinigate or Spiniin can be found by using the
mean values of~P , ~Cw, ~Cg andSpiniin in functionsDgate orSgate, and the sensitivities of eitherdpinigate or Spiniin to process
parameters can be computed applying the chain’s rule. The
derivatives of ~Cw and ~Cg to the process parameters can be
easily computed, as~Cw and ~Cg are functions of process
parameters. The input signal transition time,Sin, is a function
of the output transition time of the preceding gate and the delay
of the interconnect connecting the preceding gates and this
gate, where both interconnect delay (as discussed earlier)and
output transition time of the preceding gate (as will be shown
in the next paragraph) are Gaussian random variables that
can be expressed as a linear function of parameter variations.
Therefore, at a gate input, the input signal transition timeSin
is always given as a normally distributed random variable with
a mean and first-order sensitivities to the parameter variations.

To consider the effect of non-ideal input signal on gate
delay, the output signal transition timeSout at each gate output
needs to be computed in addition to pin-to-pin delay of the
gate. In conventional static timing analysis,Sout is set toSpiniout
if the path ending at the output of the gate traversing theith input pin has the longest path delaydpathi . In statistical
static timing analysis, each of the paths through differentgate
input pins has a certain probability to be the longest path.
Therefore,Sout should be computed as a weighted sum of the
distributions ofSpiniout , where the weight equals the probability
that the path through theith pin is the longest among all
others:Sout = X8input pin ifProb[dpathi > max8j 6=i(dpathj )℄� Spiniout g; (13)

wheredpathi is the random path delay variable at the gate out-
put through theith input pin. The result ofmax8j 6=i(dpathj )℄
is a random variable representing for the distribution of
maximum of multiple paths. As will be discussed later in
Section IV-C,dpathi and max8j 6=i(dpathj ) can be approxi-
mated as Gaussians usingsum and max operators, and their
correlation can easily be computed. Therefore, finding the
value ofProb[dpathi > max8j 6=i(dpathj ), i.e. Prob[dpathi �max8j 6=i(dpathj > 0) becomes computing the probability of a
Gaussian random variable greater than zero, which can easily
be found from a look-up table. As eachSpiniout is a Gaussian
random variable in linear combination of parameter variations,Sout is therefore also a Gaussian distributed random variable
and its sensitivities to all process parameters�Sout�pi can easily
be found from its linear expression of parameters.

B. Orthogonal Transformation of Correlated Variables

In statistical timing analysis without spatial correlations,
correlations due to reconvergent paths has long been an

obstacle. When the spatial correlation of process parameters is
also taken into consideration, the correlation structure becomes
even more complicated. To make the problem tractable, we use
the Principal Component Analysis (PCA) technique [23] to
transform the set of correlated parameters into an uncorrelated
set.

PCA is a method that can be employed to examine the
relationship among a set of correlated variables. Given a set
of correlated random variables~X with a covariance matrixR,
PCA can transform the set~X into a set of mutually orthogonal
random variables,~X 0, such that each member of~X 0 has zero
mean and unit variance. The elements of the set~X 0 are called
principal components in PCA, and the size of~X 0 is no larger
than the size of~X. Any variablexi 2 ~X can then be expressed
in terms of the principal components~X 0 as follows:xi = (Xj p�j � vij � x0j)�i + �i; (14)

wherex0j is a principal component in set~X 0, �j is the jth
eigenvalue of the covariance matrixR, vij is the ith element
of the jth eigenvector ofR, and�i and�i are, respectively,
the mean and standard deviation ofxi.

Since we assume that different types of parameters are
uncorrelated, we can group the random variables of parameters
by types and perform principal component analysis in each
group separately, i.e., we compute the principal components
for ~Lg , ~Wg , ~Tox, ~Na, ~Wintl and ~Tintl individually. Clearly,
not only are the principal components of the same type of
parameters independent, but so are the principal components
of different type of parameters.

For instance, let~Lg be a random vector representing tran-
sistor gate length variations in all grids and it is of multivariate
normal distribution with covariance matrixRLg . Let ~L0g be
the set of principal components computed by PCA. Then anyLig 2 ~Lg representing the variation of transistor gate length of
the ith grid can then be expressed as a linear function of the
principal componentsLig = �Lig + ai1 � l01g + � � �+ ait � l0tg ; (15)

where�Lig is the mean ofLig, l0ig is a principal component in~L0g, all l0ig are independent with zero means and unit variances,
and t is the total number of principal components in~L0g .

In this way, any random variable in~Wg, ~Tox, ~Na, ~Wintl ,~Tintl and ~HILDl can be expressed as a linear function of the
corresponding principal components in~W 0g, ~T 0ox, ~N 0a, ~W 0intl ,~T 0intl and ~H 0ILDl . Superposing the set of rotated random
variables of parameters on the original random variables in
gate or interconnect delay in equation (10), the expression
of gate or interconnect delay is then changed to the linear
combination of principal components of all parametersd = d0 + k1 � p01 + � � �+ km � p0m; (16)

wherep0i 2 ~P 0 and ~P 0 = ~L0g [ ~W 0g [ ~T 0ox [ ~N 0a [ ~W 0intl [ ~T 0intl [~H 0ILDl andm is the size of~P 0.
Note that all of the principal componentsp0i that appear in

equation (16) are independent. Equation (16) has the following
properties:
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Property 1Since allp0i are orthogonal, the variance ofd can be
simply computed as�2d = mXi=1 k2i : (17)

Property 2The covariance betweend and any principal compo-
nentp0i is given by
ov(d; p0i) = ki�2p0i = ki: (18)

In other words, the coefficient ofp0i is exactly the
covariance betweend andp0i.

Property 3Let di anddj be two random variables:di = d0i + ki1 � p01 + � � �+ kim � p0m; (19)dj = d0j + kj1 � p01 + � � �+ kjm � p0m: (20)

The covariance ofdi and dj , 
ov(di; dj), can be
computed by
ov(di; dj) = mXr=1 kirkjr : (21)

In comparison, without an orthogonal transformation,
the value of
ov(di; dj) has to be computed by a
more complicated formula as will be described in
section IV-D.

C. PERT-like Traversal of Statistical STA

Using the techniques discussed up to this point, all edges
of the statistical timing graph may be modeled as normally
distributed random variables. In this section, we will describe
a procedure for finding the distribution of the statistical longest
path in the graph.

In conventional deterministic STA, the PERT algorithm can
be used to find the longest path in a graph by traversing it in
topological order using two types of functions:� the sumfunction, and� the max function.

In our statistical timing analysis, a PERT-like traversal is
employed to find the distribution of circuit delay. However,
unlike deterministic STA, thesumandmaxoperations here are
functions of a set of correlated multivariate Gaussian random
variables instead of fixed values:
1) dsum =Pli=1 di, and
2) dmax = max(d1; � � � ; dl).
where di is a Gaussian random variable representing either
gate delay or wire delay expressed as linear functions of
principal components in the form of equation (19), andl is
the number of random variables thatsumor max function is
operating on.

Computing the distribution of thesum function: The com-
putation of the distribution ofsum function is simple. Since
the dsum = Pli=1 di is a linear combination of normally
distributed random variables,dsum is a normal distribution.

The mean�dsum and variance�2dsum of thesumare given by�dsum = lXi=1 d0i ; (22)�2dsum = mXj=1 lXi=1 k2ij : (23)

Computing the distribution of themax function: The max
function of n normally distributed random variablesdmax =max(d1; � � � ; dl) is, strictly speaking, not Gaussian. However,
we have found that, in practice, it can be approximated closely
by a Gaussian. This idea is similar in spirit to Berkelaar’s
approach in [4], [24], although it is more general since Berke-
laar’s work restricted its attention to delay random variables
that were uncorrelated5. In this work, we use the Gaussian
distribution to approximate the result of amax function, so
thatdmax � N(�dmax ; �dmax). We also approximatedmax as
a linear function of all the principal componentsp01 � � � p0mdmax = �dmax + a1p01 + � � �+ amp0m: (24)

Therefore, determining this approximation fordmax is equiv-
alent to finding the values of�dmax and allai’s.

From Property 2 of Section IV-B, we know that the co-
efficient ar equals
ov(dmax; p0r). Then the variance of the
expression on the right hand side of equation (24) is computed
as s20 = Pmr=1 a2r = Pmr=1 
ov2(dmax; p0r). Since this is
merely an approximation, there may be a difference between
the value s20 and the actual variance�2dmax of dmax. To
diminish the difference, we can normalize the value ofar by
setting it as ar = 
ov(dmax; p0r) � �dmaxs0 : (25)

We can see now that to find the linear approximation fordmax, the values of�dmax , �dmax and 
ov(dmax; pi) are
required. In the work of [6], similar inputs were required in
their algorithm and the results from [25] were applied and
seen to provide good results. In this work, we have borrowed
the same analytical formula from [25] for the computation of
the max function.

According to [25], if � and � are two random variables,� � N(�1; �1), � � N(�2; �2), with a correlation coefficient
of r(�; �) = �, then the mean�t and the variance�2t of t =max(�; �) can be approximated by�t = �1 � �(�) + �2 � �(��) + � � '(�); (26)�2t = (�21 + �21) � �(�) + (�22 + �22) � �(��)+(�1 + �2) � � � '(�)� �2t ; (27)

where � =p�21 + �22 � 2�1�2�; (28)� = (�1 � �2)� ; (29)'(x) = 1p2� exp��x22 � ; (30)�(x) = 1p2� Z x�1 exp��y22 � dy: (31)

5Many researchers in the community were well aware of Berkelaar’s results
as early as 1997, though his work did not appear as an archivalpublication.
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The formula will not apply if�1 = �2 and� = 1. However,
in this case, themaxfunction is simply identical to the random
variable with largest mean value.

Moreover, from [25], if
 is another normally distributed
random variable and the correlation coefficientsr(�; 
) =�1, r(�; 
) = �2, then the correlation between
 and t =max(�; �) can be obtained byr(t; 
) = �1 � �1 ��(�) + �2 � �2 ��(��)�t : (32)

Using the formula above, we can find all the values needed.
As an example, let us see how this can be done by first starting
with a two-variablemax function, dmax = max(di; dj). Letdmax be of the form of equation (24). We can find the
approximation ofdmax as follows:

1) Given the expressions ofdi anddj each as linear combi-
nations of the principal components, compute their mean
and standard deviation values�di , �di and �dj , �dj
respectively as described inProperty 1of Section IV-B.

2) Find the correlation coefficient betweendi anddj where
ov(di; dj), the covariance ofdi anddj can be computed
usingProperty 3 in Section IV-B.
Now if r(di; dj) = 1 and �di = �dj , set dmax to be
identical todi or dj , whichever has larger mean value
and we can stop here; otherwise, we will continue to the
next step.

3) Calculate the mean�dmax and variance�2dmax of dmax
using equations (26) and (27).

4) Find all coefficientsar of p0r. According to Property
2, ar = 
ov(dmax; p0r), also, 
ov(di; p0r) = kir and
ov(dj ; p0r) = kjr. Applying equation (32), the values
of 
ov(dmax; p0r) and thusar can be calculated.

5) After all of the ar’s have been calculated, determines0 = pPmr=1 ar2. Normalize the coefficient by reset-
ting eachar = ar �dmaxs0 .

The calculation of the two-variablemaxfunction can easily
be extended to a multi-variablemax function by repeating the
steps of the two-variable case recursively.

As mentioned at the beginning of this section, max of
two Gaussian random variables is not strictly Gaussian. This
approximation can sometimes introduce serious error, e.g.
when the two Gaussian random variables have the same mean
and standard deviation and correlation value of -1, and the
distribution of the maximum is a half Gaussian. During the
computation of multi-variablemax function, some inaccuracy
could be introduced since we approximate themaxfunction as
normal even though it is not really normal, and proceed with
further recursive calculations. To the best of our knowledge,
there is no theoretical analysis available in literature that
quantifies the inaccuracies when a normal distribution is used
to approximate the maximum of a set of Gaussian random
variables. However, a numerically based analysis was provided
in [25] which suggests that in some situations the errors can
be great, but for many applications this approximate is quite
satisfactory. We will show results in Section VII that suggest
that such inaccuracies are not significant in the circuit context,
and we will see that our results match very well with the
simulation results from a Monte Carlo analysis.

Input : Process parameter variations
Output : Distribution of circuit delay

1) According to the size of the chip, partition the chip
region inton = nrow � n
ol grids.

2) For each type of parameter, determine then jointly
normally distributed random variables and the cor-
responding covariance matrix.

3) Perform an orthogonal transformation to represent
each random variable with a set of principal com-
ponents.

4) For each gate and net connection, model their
delays as linear combinations of the principal com-
ponents generated in step 3.

5) Map the circuit into a statistical timing graph by
adding one virtual-source node, one virtual-sink
node and corresponding edges.

6) Using sum and max functions on Gaussian ran-
dom variables, perform a PERT-like traversal on
the graph to find the distribution of the statistical
longest path. This distribution achieved is the circuit
delay distribution.

Fig. 2. Overall flow of our statistical timing analysis.

Also, recall that we have a “normalization” step to diminish
the difference between the variance computed from the linear
form of max approximation and the real variance of themax
function. As in the case of approximating themaxas normal
distribution, there is no theoretical proof about how this “nor-
malization” step can affect the accuracy of the approximation.
Another option to diminish the difference is to move it into an
independent random Gaussian component, and it is difficult
to state definitively which of these options is better. In our
work, we choose the former option and find that it provides
excellent accuracy, as will be shown in Section VII, where the
statistics of the “normalization” ratio for several test circuits
are provided.

At this point, not only the edges, but also the results of
sum and max functions are expressed as linear functions of
the principal components. Therefore, using a PERT traversal
by incorporating the computation ofsumand max functions
described above, the distribution of arrival time at any node
in the timing graph becomes a linear function of principal
components, and so the distribution of circuit delay can be
computed at the virtual sink node.

The overall flow of our algorithm is shown in Figure 2. It
is noticed that this work is in some sense parallel to the work
of [14]: in [14], delays are represented as linear combinations
of global random variables, while in our work, they are linear
functions of principal components; in [14], the max of delays
are reexpressed as linear functions using binding probabilities,
while in our work, the linear functions are found by an
analytical method from [25].

To further speed up the process, the following technique
may be used: During themax operation of statistical STA, if
the value of�+ 3 � � of one path has a lower delay than the
value of��3 �� of another path, we can simply calculate the
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max function ignoring the former path.

D. The Utility of Principal Components

The previous sections described our statistical STA algo-
rithm. The purpose of this section is to elaborate why the
orthogonal transformation is needed to transform the set of
correlated process parameters to an uncorrelated set, and how
it can simplify the problem of statistical STA considering
spatial correlations.

Let di anddj be the distributions of two gate delays. For
simplicity, we assume that the gate lengths~Lg are the only
spatially correlated parameters. We also assume thatdi anddj are sensitive to the same set of correlated random variables
of gate lengthsL1g; : : : ; Lng . Using equation (10),di and dj
can be expressed asdi = d0i + 
i1L1g + : : :+ 
inLng ; (33)dj = d0j + 
j1L1g + : : :+ 
jnLng : (34)

Obviously, the covariance ofdi anddj is decided by the co-
variance structure of~Lg. The direct calculation of
ov(di; dj)
is of a complicated form as in the work of [5]
ov(di; dj) = nXa=1 nXb=1 
ia
jb
ov(Lag ; Lbg): (35)

In contrast, in our method, we first perform orthogonal trans-
formations on~Lg. Any elementLlg 2 ~Lg is expressed asLlg = Llg0 + al1l01g + : : :+ alml0mg : (36)

Next, by superposition we transformdi anddj to:di = d0i + ki1l01g + : : :+ kiml0mg ; (37)dj = d0j + kj1l01g + : : :+ kjml0mg : (38)

The value of
ov(di; dj) can be simply computed using the
coefficients of~L0g by 
ov(di; dj) = Pmr=1 kirkjr in linear
time O(m). The advantage in this computation is that we
do not need know which specific parameters indi and dj
are correlated. In fact, consider the coefficients ofl01g in bothdi and dj , ki1 = Pnr=1 
irar1 and kj1 = Pnr=1 
jrar1. It
can be seen that the covariance of gate lengths have all been
incorporated in the coefficient of the principal componentsl01g ; : : : ; l0ng . For this reason, we ensure that the computation of
ov(di; dj) can actually take the correlations of gate lengths
into consideration correctly.

The direct computation of the covariance of path delays is
in a similar form. In general, the path delays are correlated
when the gate delays on these paths are correlated. As shown
in the work of [5], the path covariances can be computed on
the basis of pair-wise gate delay covariances; however, the
number of paths is numerous which makes it computationally
difficult to apply such a path-based method to large circuits.

In our method, with the orthogonal transformation, the
covariances of path delays are manifested as the coefficients
of the independent principal components as in the case of
correlated gate delays. The covariances of the paths can then
be simply computed in linear time based on these coefficients
only, and there is no need to worry about how the gates

on the paths are correlated or which parts are correlated.
For the same reason, in this algorithm, besides the spatial
correlations, path correlations due to reconvergence (structural
correlations) can also be accounted for automatically by us-
ing the orthogonal transformation on the spatially correlated
parameters. However, when spatially uncorrelated parameters
are involved in the computation, the structural correlations due
to these independent parameters can not be dealt with by this
methodology. The extension of the work for handling spatially
uncorrelated parameters will be given in Section VI-B.

V. COMPUTATIONAL COMPLEXITY

We present a run time complexity analysis here to show
which factors most greatly affect the CPU time of the algo-
rithm.

The flow shown in Figure 2 can be divided into two parts:
model pre-characterization (steps 1, 2 and 3) and statistical
static timing analysis (SSTA) (steps 4, 5 and 6). Model pre-
characterization consists of construction of parameter varia-
tions and grid-based spatial correlation models, and the com-
putation of Principal Components (PC) for spatially correlated
parameters. The computation of PCs requires calculations of
eigenvectors and eigenvalues of the covariance matrix and its
time complexity isO(p �n3), wheren is total number of grids
divided andp is the number of parameters considered. While
this step may seem to be a bottleneck of the algorithm, it is
a only one-time process. Once the models of parameter vari-
ations are constructed, they can be repeatedly used to analyze
any design. Meanwhile, for spatial correlated parameters,the
PCs computed from the covariance matrix are only model-
dependent, so that for different designs analyzed with the
same parameter model, the same set of PCs can be applied. In
other words, the step of model pre-characterization is in fact
a one-time library construction at early stage and therefore
can be excluded from the run time complexity analysis of the
algorithm.

The run-time of the SSTA algorithm can be divided into:

1) The time required to find the delay distribution of the
gate and interconnect6: This run time depends on how
many different grids the interconnect passes through
and how many grids the gates are located in, and in
general these numbers are bounded by constant numbers.
The run time is also proportional to the total number
of principal components, since we perform orthogonal
transformation at each wire segment of interconnect.
For each random variable, the number of principal
components is no more than the total number of gridsn partitioned on the chip. The total number of principal
components is no more thanp�n. Thus, the time required
to find the distribution of a single gate or wire can be
estimated asO(p �n). If Ng is the total number of gates
andNI the number of net connections in the circuit, the
time of this part can be estimated asO(p�n�(Ng+NI)).

2) The time required to evaluate themaxfunction: The cost
of this operation is proportional to the number of random

6The time to characterize the sensitivities of delay on parameter variations
is excluded from this analysis.
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variables involved in the max operation and the number
of principal components of each random variable. The
maxoperation is used at all multi-input gates and at the
last level (sink node) where the maximum circuit delay
is computed. This number can be upper bounded by the
total number of net connectionsNI in the circuit. Thus,
the run time of this part isO(p � n �NI).

3) The time required to compute output transition time at
each gate output: For a gate withk > 2 inputs, it requiresk2 max operations andk � 1 sum operations, which
are constant numbers ofmax and sumoperations. The
computation is needed for all gates and thus the total
cost isO(p � n �Ng).

4) The time required to evaluate thesum function: The
sum operation must be performed at all gates and in-
terconnects encountered during the PERT-like traversal.
A singlesumoperation requiresO(n), and therefore, the
total complexity for this part isO(p � n � (Ng +NI)).

Therefore, the run time complexity of the algorithm isO(p �n � (Ng+NI)), which isp �n times that of deterministic STA.

VI. EXTENDING THE METHOD TO HANDLE INTER-CHIP

VARIATIONS, SPATIALLY UNCORRELATED INTRA-CHIP

PARAMETERS, AND M IN-DELAY COMPUTATIONS

In this section, we will first describe how this work can
be extended to include the effect of inter-chip variations in
addition to intra-chip variations. Subsequently, we will explain
how spatially uncorrelated parameters can be incorporatedinto
the current proposed algorithm. Finally, we will show how
minimum delay computations can easily be incorporated into
this framework.

A. Inter-Chip Variations

In general, the process parametric variation can be modeled
as Ætotal = Æinter + Æintra; (39)

whereÆinter is the inter-chip variation andÆintra is the intra-
chip variation. As forÆintra, Æinter is also modeled as a
Gaussian random variable.

As introduced in Section I, inter-chip variation has a global
effect on all the transistors [wires] within a single chip, and
therefore a single random variable,Æinter , can be applied to
all transistors [wires] to model the effect of inter-die variation.
Consequently, the covariance matrix for each type of spatially
correlated parameter is changed by adding to all entries a
value of�2Æinter , the variance of inter-chip parametric variation.
Based on the new covariance matrices, the same statistical
STA methodology can still be applied to compute distribution
of chip delay.

B. Spatially Uncorrelated Parameters

In practice, it is observed that not all process parameters
are spatially correlated. For example, the variations ofTox orNa are independent from transistor to transistor. To model
the intra-die variation of spatially uncorrelated parameter,

a separate random variable has to be used for each gate
[wire] to represent such independence, instead of a single
random variable for all gates [wires] in the same grid for
the spatial correlated parameters. Consequently, the timing
analysis framework introduced in previous sections must be
further extended to accommodate the spatially uncorrelated
parameters.

As an example, let us consider the case that gate oxide
thicknessTox is the only spatially uncorrelated parameter.
The idea described here can easily be extended to the case
where there is more than one uncorrelated parameter. With
inter- and intra-chip variations, the variation ofTox for the ith
transistor can be expressed asÆinterTox +�T iox, whereÆinterTox is
the random variable representing for the inter-chip variation
of Tox, and �T iox the intra-chip variation ofTox of theith transistor. Accordingly, the expressions for device [wire]
delays are reformulated by substitutingÆinterTox + �T iox for
where�Tox of theith transistor appears. Since the orthogonal
transformations of parameters are performed only on spatially
correlated parameters, the variablesÆinterTox and �T iox are
preserved in the delay expressions of linear combination of
principal components and either variable is independent from
the principal components and any other random variables in
the delay expressions. The timing propagation using thesum
andmaxoperators remains the same, except that after eachsum
or maxoperation, the random variables for intra-die variations
of spatially uncorrelated parameters,�T iox’s, are merged into
one random variable, so that, at each arrival time, only one
independent random variable is kept for all intra-die variations
of spatially uncorrelated parameters. It is observed that the way
of adding this independent random variable to the standard
form of the representation of arrival times is similar to the
“residual” variance’s lumping into the independently random
part in [26].

Although structural correlations can be automatically taken
into account using orthogonal transformation on spatiallycor-
related parameters as explained in Section IV-D, the structural
correlations due to spatially uncorrelated parameters cannot be
handled with the same technique because of the merging of
these random variables during the propagation. To reduce the
inaccuracies caused, one can appeal to the available literature
on handling structural correlations in statistical STA [7], [9],
[10]. In this work, we have ignored the structural correlations
caused by the spatially uncorrelated parameters. However,
since the structural correlations from spatially correlated pa-
rameters are considered, the inaccuracies introduced fromthis
assumption are not significant, as will be demonstrated in
Section VII.

C. Distribution of the Minimum of a Set of Gaussians

In circuit performance analysis, computations such as find-
ing the required arrival time (RAT) for long-path analysis,
and minimum delay computations for short-path analysis (to
check for hold time violations) require the computation of
the minimum of a set of delays, which becomes finding the
distribution of the minimum of a set of random variables under
process variations.
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The procedure for calculation of maximum of a set of
Gaussians can be utilized to compute the minimum of a set
of Gaussian random variables,d1 � � � dl. Specifically,dmin =min(d1; :::; dl) can be computed asdmin = �max(�d1; :::;�dl); (40)

wheredi is a normally distributed random variable andmax
is the operator introduced is Section IV-C.

VII. E XPERIMENTAL RESULTS

The proposed algorithm was implemented in C++ as the
software package“MinnSSTA,” and tested on the edge-
triggered ISCAS89 benchmark circuits by working on the
combinational logic blocks between the latches. All exper-
iments were run on a Linux PC with a 2.0GHz CPU and
256MB memory. We experimented with parameters of 100nm
technologies on a 2-metal layer interconnect model. The
process parameters (Table I) used here are based on predictions
from [20], [27].

Since the computation requires physical information about
the locations of the gates and interconnects, all cells in the
circuit were first placed using the placement tool, Capo [28].
Global routing was then performed to route all the nets in the
circuits. Depending on the size of circuit, we divided the chip
area into different sizes of grids, so that each grid contains no
more than a hundred cells. Again, due to the lack of access to
real wafer data, the covariance matrix for intra-die variations
used in this work were derived from the spatial correlation
model used in [3] by equally splitting the variance into all
levels.

To verify the results of our methodMinnSSTA, we used
Monte Carlo (MC) simulations based on the same grid models
for comparison. To balance the accuracy and run time, we
chose to run 10,000 iterations for the Monte Carlo simulation.

We first present the experimental results assuming that all
parameters are spatially correlated while using fixed values
for the spatially uncorrelated parameters (Tox andNa). Table
II shows a comparison of the results ofMC with those
from MinnSSTA. For each test case, the mean and standard
deviation (SD) values for both methods are listed. The results
of MinnSSTAcan be seen to be very close to theMC results:
the average error is�0:23% for the mean and�0:32%
for the standard deviation. In Figure 3, for the largest test
case s38417, the plots of the PDF and CDF of the circuit
delay for both MinnSSTAand MC methods are provided.
It is observed that the curves almost perfectly match each
other. This demonstrates the accuracy of the PCA approach
for correlated parameters, including its ability to account for
structural correlations.

Next, the results for considering the variations of the spa-
tially uncorrelated parameters (Tox andNa) are given in Table
III. On average, the error is1:06% for the mean value and�4:34% for the standard deviation. In Table VIII, the99%
and1% confidence points achieved byMC andMinnSSTAare
also provided and the average errors are�2:46% and�0:99%
respectively. Again, for the largest test case s38417, the PDF
and CDF curves of the circuit delay for bothMinnSSTAand
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Fig. 3. A comparison ofMinnSSTAandMC methods (assuming fixed values
of Tox andNa) for circuit s38417. The curve marked by the solid line denotes
the results ofMinnSSTA, while the plot marked by the starred lines denotes
the results ofMC.

MC methods are plotted in Figure 4, It can be seen that,
at the range of lower and higher circuit delay values, the
circuit delay distribution computed fromMinnSSTAmatches
well with that of the Monte-Carlo simulation, although there
are some deviations in the central portion. As mentioned
in Section VI-B, some error may be introduced from the
structural correlations, which are not handled exactly in the
presence of uncorrelated intra-die components. Based on our
analysis of the experiments, we find that the cause for the
small error that is introduced here is primarily because ourim-
plementation does not handle structural correlations between
the uncorrelated variables. We believe that, by appending into
the existing framework an algorithm that handles structural
correlation [7], [9], [10], the error of the results in TableIII
can be further reduced.
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Fig. 4. A comparison ofMinnSSTAand MC methods for circuit s38417,
considering all sources of variation, some of which are spatially correlated
and some of which are not. The curve marked by the solid line denotes the
results ofMinnSSTA, while the plot marked by the starred lines denotes the
results ofMC.

In Table III, the CPU times for both methods are provided.
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TABLE I

PARAMETERS USED IN THE EXPERIMENTS

Parameters Lg Wg Tox Na (�1017
m�3) Wint Tint HILD
(nm) (nm) (nm) nmos/pmos (nm) (nm) (nm)�p 60.0 150.000 2.500 9.70000/10.04000 150.0 500.0 300.03�inter 9.0 11.250 0.250 0.72750 15.0 25.0 22.503�intra 4.5 5.625 0.125 0.36375 7.5 12.5 11.25Æxxmax + Æyymax 4.5 5.625 0.125 0.36375 7.5 12.5 11.25

TABLE II

COMPARISON RESULTS ASSUMING FIXED VALUES OFTox AND Na
Benchmark Monte-Carlo (MC) MinnSSTA (MinnSSTA�MC)MC %

Name Mean(ps) SD(ps) Mean(ps) SD(ps) Mean SD
s38417 988.6 91.0 985.8 90.8 -0.28% -0.22%
s38584 1726.9 153.1 1720.9 151.6 -0.35% -0.98%
s35932 1165.5 101.6 1162.7 101.3 -0.24% -0.30%
s15850 1370.2 131.1 1367.2 129.6 -0.22% -1.14%
s13207 1219.9 116.1 1217.3 116.2 -0.21% 0.09%
s9234 674.6 65.4 673.7 64.8 -0.13% -0.92%
s5378 413.1 38.5 411.8 38.4 -0.31% -0.26%
s1196 499.9 45.8 499.3 46.2 -0.12% 0.87%
s27 102.5 9.9 102.3 9.9 -0.20% 0.00%

TABLE III

COMPARISON RESULTS OF THE PROPOSED METHOD ANDMONTE-CARLO SIMULATION METHOD

Benchmark Monte-Carlo (MC) MinnSSTA (MinnSSTA�MC)MC %
Name #Cells #Grids Mean(ps) SD(ps) CPU-time(s) Mean(ps) SD(ps) CPU-time(s) PCA-time(s) Mean SD
s38417 23815 256 995.6 130.3 21005 1022.0 125.4 406.11 0.15 2.65% -3.76%
s38584 20705 256 1738.4 226.4 24039 1798.2 215.6 460.36 0.15 3.44% -4.77%
s35932 17793 256 1214.7 161.8 53922 1251.2 144.7 505.71 0.15 3.00% -10.57 %
s15850 10369 256 1388.2 178.9 8856 1397.8 172.1 175.96 0.15 0.69% -3.80%
s13207 8260 256 1230.7 158.8 9060 1239.7 154.9 172.62 0.15 0.73% -2.46%
s9234 5825 64 688.6 90.6 5346 690.6 85.2 32.23 0.02 0.29% -5.96%
s5378 2958 64 421.1 54.3 3907 420.8 51.8 27.41 0.02 -0.07% -4.60%
s1196 547 16 505.9 66.0 781 502.7 64.4 1.51 0.01 -0.63% -2.42%
s27 13 4 103.6 13.7 9 103.0 13.6 0.00 0.00 -0.58% -0.73%

To show that the PCA steps require very little run time, the
run time for this part is also listed; however, as pointed out
earlier, this can be considered a preprocessing step that is
carried out once for each technology, and its cost need not
be considered in the computation. We can see that the CPU
time of MinnSSTAon all test cases is very fast. The circuit
with the longest run time, s35932, was analyzed in only about500 seconds, while theMC simulation required over15 hours.

In the proposed approach, in order to make the computed
value of standard deviation ofdmax the same as that of the
approximated linear expression, the coefficients of parameters
in the linear expression are normalized by the ratio of the
standard deviation ofdmax (namely,�dmax ) to that of the
linear expressions0. In Table IV, the statistics of this ratio for
all testcases are listed, including the mean, standard deviation,
minimum and maximum values of the ratio and the probability
of the ratio falls into each given range. In general, the higher
the ratio, the larger the error for estimatingdmax, and thus the
less accurate for estimating the circuit delay distribution using
the proposed approach. For example, the testcases35932 has
the highest probability of 0.045 for the ratio to be greater than
1.1, and also has the largest errors predicting the circuit mean
and standard deviation. Over all testcases, the average value
of the ratio is 1.003, which is a reasonably small number so
that the accuracy of the proposed statistical SSTA should not
be affected significantly by this normalization step.

To further verify the applicability of the proposed algorithm,

we have demonstrated it on a path-balanced circuit whose
topology is a binary tree of depth10. Table V lists the results
achieved byMinnSSTAand (MC). The errors obtained are�0:54% for the mean and�6:26% for the standard devia-
tion; �4:56% and�1:65% for the 99% and 1% confidence
point, respectively. This shows that the proposed approachcan
predict the timing yield well, even for path-balanced circuits.

One may ask what happens if a Monte-Carlo approach was
run for the same amount of time as the proposed algorithm.
In Table VI, we show the data achieved from Monte-Carlo
runs in the equivalent CPU-time of the proposed method
”MinnSSTA”. Since this Monte-Carlo simulation can only run
a small number of iterations and samples the soluton space
insufficiently, it does not meet any of the usual convergence
criteria used for Monte Carlo analysis. Therefore, what is
achieved is not the genuine distribution of circuit delay, but
merely the distribution from an incomplete number of runs.
The table shows the minimum values and maximum values
of the circuit delay from this insufficient number of Monte-
Carlo runs, and, for purposes of comparison, the results with
the 1% and 99% confidence points, respectively, from the
10,000 iterations of Monte-Carlo simulation. It can be seen
that the accuracy is highly variable: in some cases, Monte
Carlo analysis comes close to the action value, while in others,
it is very far away. Most notably, large deviations can be seen
both for a small circuit (s27) and a large circuit (s38584),
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TABLE IV

STATISTICS OF RATIO OF STANDARD DEVIATION OF ACCURATE VALUE�dmax TO s0 OF THE LINEAR EXPRESSION.

Circuit Ratio of�dmax to s0 Probability of the ratio in each range
Name mean stdev minimum maximum < 1 = 1 (1; 1:01) [1:01; 1:1℄ > 1:1
s38417 1.0031 0.0051 � 1 1.0262 0.0004 0.3246 0.5582 0.1168 0
s38584 1.0037 0.0054 � 1 1.1804 0.0023 0.4124 0.1700 0.0001 0
s35932 1.0120 0.0278 � 1 1.1583 0.0022 0.2883 0.4290 0.2350 0.0454
s15850 1.0018 0.0033 � 1 1.0233 0.0034 0.4029 0.5538 0.0398 0
s13207 1.0028 0.0048 � 1 1.0260 0.0008 0.3256 0.5843 0.0893 0
s9234 1.0017 0.0035 1 1.0209 0 0.3825 0.5636 0.0538 0
s5378 1.0012 0.0023 1 1.0289 0 0.4310 0.5563 0.0126 0
s1196 1.0007 0.0021 � 1 1.0150 0.0021 0.7068 0.2764 0.0148 0
s27 1.0006 0.0014 1 1.0030 0 0.8 0.2000 0 0

TABLE V

EXPERIMENTAL RESULTS ON A BINARY TREE CIRCUIT OF DEPTH-10

Approach Mean(ps) SD(ps) 99% Point(ps) 1% Point(ps)
MC 669.8 86.2 894.8 486.3

MinnSSTA 666.2 80.8 854.0 478.3(MinnSSTA�MC)MC % �0:54% �6:26% �4:56% �1:65%
implying that the reliability of such an approach is suspect. Of
course, this is not surprising in the least, because the artificial
limitation on the run time has made the Monte Carlo analysis
unreliable, by permitting only a low point of confidence for
its predictions, and has not permitted it to fully sample the
search space.
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Fig. 5. A comparison of statistical STA with and without considering spatial
correlations, under Monte Carlo analysis, for circuit s38417. The curve marked
by the solid line denotes the case where spatial correlations are ignored, while
the curve with the starred lines denotes the results of incorporating spatial
correlations; this is identical to the curve in Figure 4.

To show the importance of considering spatial correlations,
we consider the difference between performing statistical
timing analysis while considering spatial correlation andwhile
ignoring it. Since this is a comparison to determine why
spatial correlations are important, the CPU time is not a
consideration. Therefore, we run another set of Monte Carlo
simulations (MCNoCorr) on the same set of benchmarks, this
time assuming zero correlations among the devices and wires
on the chip. The comparison between the data is shown in
Table VII. It can be observed that although the mean values are
close, the variances of the uncorrelated cases (MCNoCorr) are
much smaller than the correlated cases (MC). On average, the

standard deviation of the correlated case increases by25:93%.
Again, we plot the PDF and CDF curves of both simulations
for circuit s38417 in Figure 5. It is seen that the CDF and PDF
curves ofMCNoCorr deviate significantly from those ofMC.
In other words, statistical timing analysis without considering
correlation may incorrectly predict the real performance of
the circuit and could even overestimate the performance of
the circuit. This underlines the importance of developing
efficient statistical STA methods that can incorporate spatial
correlations.

As an alternative, we consider the option of using multiple
process corners (MPC) for these experiments, where the circuit
delays are evaluated at all possible corners of parameter values
at��3��, where� is the mean and� the standard deviation for
the parameter. Table VIII compares the worst-case and best-
case delays obtained at exhaustive process corners using the
MPC method, with the99% and 1% confidence point delay
achieved from the Monte-Carlo simulation (MC) accordingly.
On average, theMPC approach overestimates the worst-case
delay of circuit by30:81% and underestimates the best-case
delay by28:08%. These results also emphasize the importance
of considering spatial correlations during statistical STA, as is
done by our algorithm.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed an algorithm for performing
statistical STA, considering spatial correlations related to intra-
chip process variations. We show that performing statistical
timing analysis while ignoring spatial correlations may not be
adequate to predict the circuit performance correctly, andthat
fast and accurate statistical STA methods, such as ours, that
incorporate spatial correlations are essential. An analysis of the
complexity shows it to be reasonable, and like conventional
STA, it is linear in the number of gates and interconnects. The
penalty that is paid here is that unlike deterministic STA, it is
also linear in the number of grid squares. As a trivial extension
of maximum of delays, the computation for the distribution of
minimum of delays is also provided.
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TABLE VI

COMPARISON OFMONTE-CARLO IN EQUIVALENT CPU-TIME OF M INNSSTAWITH THAT OF 10,000RUNS (MC)

Circuit Minimum Delay MC: 1%pt (ps) mindelay�1%pt1%pt % Maximum delay MC: 99%pt (ps) maxdelay�99%pt99%pt %
Name #runs delay (ps) (10; 000runs) #runs delay (ps) (10; 000runs)
s38417 170 725.0 722.0 0.42% 170 1372.8 1333.3 2.96%
s38584 180 1205.7 1261.3 -4.41% 180 2794.3 2310.3 20.95%
s35932 100 847.3 882.3 -3.97% 100 1650.0 1635.2 0.91%
s15850 175 994.4 1012.9 -1.82% 175 1880.6 1844.8 1.94%
s13207 190 887.8 893.1 -0.59% 190 1728.1 1629.9 6.02%
s9234 60 452.3 499.7 -9.49% 60 884.1 922.6 -4.17%
s5378 50 306.0 308.9 -0.92% 50 534.3 559.9 -4.58%
s1196 16 441.7 370.4 19.26% 16 637.8 673.4 -5.29%
s27 10 350.0 74.9 367.30% 10 653.8 138.4 372.37%

TABLE VII

COMPARISON OF TIMING ANALYSIS WITH AND WITHOUT SPATIAL CORRELATIONS

Benchmark Anal. w/ corr. (MC) Anal. w/o corr. (MCNoCorr) (MC�MCNoCorr)MCNoCorr %
Name Mean(ps) SD(ps) Mean(ps) SD(ps) Mean SD
s38417 995.6 130.3 996.7 98.7 0.11% -24.25%
s38584 1738.4 226.4 1741.9 180.5 0.20% -20.27%
s35932 1214.7 161.8 1253.6 140.0 3.20% -13.47%
s15850 1388.2 178.9 1393.8 121.9 0.40% -31.86%
s13207 1230.7 158.8 1233.8 110.2 0.25% -30.60%
s9234 688.6 90.6 691.9 61.9 0.48% -31.68%
s5378 421.1 54.3 424.7 38.2 0.85% -29.65%
s1196 505.9 66.0 507.6 48.8 0.34% -26.06%
s27 103.6 13.7 103.7 10.2 0.10% -25.55%

TABLE VIII

COMPARISON OF99% AND 1% CONFIDENCE POINT

Bench. MC MinnSSTA (MinnSSTA�MC)MC % MPC (MPC�MC)MC %
Name 99% Pt.(ps) 1% Pt.(ps) 99% Pt.(ps) 1% Pt.(ps) 99% Pt.(ps) 1% Pt.(ps) Worst-Case Best-Case Worst-Case Best-Case
s38417 1333.3 722 1313.6 730.4 -1.48% 1.16% 1758.1 522.1 31.86% -27.69%
s38584 2310.3 1261.3 2299.5 1296.9 -0.47% 2.82% 3056.0 915.4 32.28% -27.42%
s35932 1635.2 882.3 1587.6 914.8 -2.91% 3.68% 2051.2 613.0 25.44% -30.52%
s15850 1844.8 1012.9 1797.9 997.7 -2.54% -1.50% 2442.9 725.2 32.42% -28.40%
s13207 1629.9 893.1 1599.8 879.6 -1.85% -1.51% 2175.4 646.6 33.47% -27.60%
s9234 922.6 499.7 888.7 492.5 -3.67% -1.44% 1207.3 359.7 30.86% -28.02%
s5378 559.9 308.9 541.2 300.4 -3.34% -2.75% 736.6 219.2 31.56% -29.04%
s1196 673.4 370.4 652.4 353.0 -3.12% -4.70% 874.2 265.8 29.82% -28.24%
s27 138.4 74.9 134.6 71.4 -2.75% -4.67% 179.3 55.6 29.55% -25.77%

The current algorithm is limited by the following: it assumes
that the distribution of parameter variations are Gaussianand
the distribution of gate [wire] delays have linear dependency
on the variation of process parameters. A good direction for
future research involves solving the problem of statistical
timing analysis on non-Gaussian process parameter variations
and nonlinear delay dependencies.
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