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Technology Mapping Targeting
Routing Congestion under Delay Constraints
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Abstract— Routing congestion has become a serious concern in today’s
VLSI designs. To address the same, we propose a technology mapping
algorithm that minimizes routing congestion under delay constraints in
this paper. The algorithm employs a dynamic programming framework
in the matching phase to generate probabilistic congestionmaps for all
the matches. These congestion maps are then utilized to minimize routing
congestion during the covering, which preserves the delay-optimality of
the solution using the notion of slack. Experimental results on benchmark
circuits in a 100 nm technology show that the algorithm can improve
track overflows by 59%, on an average, as compared to conventional
technology mapping, while satisfying delay constraints.

Index Terms— Technology Mapping, Physical Synthesis, Logic Syn-
thesis, Routing Congestion, Congestion Estimation, Physical Design,
Placement, Physical Synthesis

I. I NTRODUCTION

A. Motivation

Following Moore’s law [1], the number of on-chip transistors are
doubling every two years, while the number of wires are growing
almost linearly with the number of gates. This increasing design com-
plexity results in circuits that face the problem of routingcongestion,
which can be described as the unavailability of a sufficient number
of tracks to route wires. Moreover, wires are becoming increasingly
resistive with each technology generation in spite of the advances
in manufacturing techniques [2], [3], and therefore, interconnect
delays have been seen to dominate gate delays since the 250 nm
process technology node [4]. Together, routing congestionand the
dominance of interconnect delays make timing closure extremely
difficult; if wires are detoured to avoid congested regions,they may
incur larger delays and thus violate timing constraints. Even worse,
detours created during the routing stage invalidate the optimizations
applied during earlier stages in the design flow, such as placement,
that do not model detours during delay estimation.

The placement and routing stages certainly offer flexibilites in
terms of cell movement and detouring, respectively, to alleviate
routing congestion. (See, for instance, the congestion mitigation
techniques described in [5]). These flexibilities, however, are often
insufficient, and are known to result in a number of design iterations,
partly for the reasons stated in the previous paragraph. On the other
hand, logic synthesis offers a large degree of freedom in handling
the routing congestion problem, but it may suffer from inaccurate
estimates as it operates at a higher level of abstraction than the
placement and routing stages. In the synthesis domain, technology
mapping is a powerful transformation which makes decisionsabout
wires, and therefore, affects congestion. Consequently, it would be an
excellent stage during which one could try to alleviate congestion,
provided it were possible to obtain reasonably accurate congestion
estimates at that stage.
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B. Previous Work

Several technology mapping algorithms that target traditional ob-
jectives such as area, delay, or power exist in the literature [6]–[8].
Recently, there have been attempts to consider congestion during
mapping. These approaches include the following: placement driven
mapping for FPGA’s [9], methods employing a cost function that
involves wirelength as a metric for routing congestion [10]–[12],
a procedure based on predictive probabilistic congestion estimates
[13], and a method based on pre-layout wirelength prediction [14].
In [9], Cong et al. present an iterative congestion-aware mapping
and placement procedure for FPGA’s; however, in this work, the
congestion metric used by them pertains not to routing but tocells,
being defined as the number of cells placed in a given location. The
approaches due to Pandiniet al. [10], [11] and Stoket al. [12]
rely on the total wirelength, which, being a global metric, fails to
capture the locality property of the routing congestion. The work
in [13] employs predictive probabilistic congestion estimates, and
therefore, suffers from the inaccuracies inherent in any predictive
scheme. The method of [14] employs a mutual contraction to guide
the technology mapping, but suffers from the limitation that the
mutual contraction, although correlating well with the wirelength, is
only indirectly related to routing congestion. Other related work lies
in the domain of structural logic synthesis [15], [16], where metrics
for routing congestion are proposed to guide the logic synthesis. In
this context,adhesionis presented as a metric for routing congestion
in [15], while structural pin density is shown to correlate well with
congestion in [16]. The adhesion, being computationally expensive,
may not be suitable for technology mapping purposes. The structural
pin density, on the other hand, ignores the congestion contribution of
wires passing over a given region and therefore, may not be accurate.

C. Our Contributions

Considering routing congestion during the mapping is more com-
plex than traditional objectives such as area or delay due tothe
following reasons.

• Unlike conventional objectives, routing congestion, being local-
ity dependent, cannot be captured using a single number at the
technology mapping stage [11].

• Even with the application of a probabilistic congestion map,
there is a “chicken-and-egg” problem between the mapping and
placement stages, since such a congestion map is required before
mapping, but cannot be created until after the placement of a
mapped netlist.

To overcome this “chicken-and-egg” problem, previous approaches
have either used predictive congestion maps, as in [13] or have
employed metrics such as wirelength or mutual contraction,as in
[11], [12]. The limitation of the former approach has been the reliance
on empirical data both to justify the heuristic objective function
driving the mapping and to predict congestion maps for mapped
netlists based solely on subject graphs, while the latter approaches
attempt minimizing wirelength, assuming that it correlates well with
congestion. In contrast, our current work provides a sound theoretical
basis for the mapping procedure that guarantees optimal delays as
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well as allows the use of accurate congestion maps that are created as
the mapping proceeds. The contributions of this work are as follows:

1) We formulate the technology mapping problem targeting rout-
ing congestion as that of minimizing the total track overflow
under the specified delay constraints. Using the dynamic pro-
gramming framework, we provide a delay-optimal solution to
the problem under the assumption that the placement assigned
to the cells during the mapping is preserved.

2) Instead of predicting congestion from a generic netlist,such as a
subject graph, and justifying its use empirically to overcome the
cyclic dependence between the mapping and placement stages,
we propose a matching procedure to generate two-dimensional
congestion maps for all delay-optimal mapping solutions ina
bottom-up manner. The procedure is general enough and can
be applied not only to optimize different cost functions defined
over the congestion map (such as the maximum congestion
or total track overflow), but also to optimize other physical
properties that can be captured using two-dimensional maps,
for instance, temperature or power density maps.

3) In the covering phase, where the matches are selected from
among the stored choices, we employ an explicit notion of the
slack to further optimize the design unlike the classical covering
approach [17], [18], which does not explore this potential.Our
covering technique chooses the congestion-optimal matches
that minimize the total track overflow and also satisfy the
slack constraints. This technique can be easily extended to
optimize even traditional objectives, such area or power under
delay constraints without introducing any sub-optimalityin
delays. Experimental results on an entire ISCAS’85 benchmark
suite confirm that delay constraints are always satisfied while
improving track overflow by 59%, on an average.

4) We demonstrate that the problem of delay-driven congestion-
aware technology mapping is NP-complete.

The rest of the paper is organized as follows. Section 2 introduces
formal definitions and the background for the technology mapping
problem, while Section 3 describes the generation of congestion maps
during the matching phase. Section 4 illustrates the slack-constrained
congestion-aware covering algorithm and Section 5 discusses the
extensions to the algorithm. Section 6 presents experimental results
followed by the conclusion in Section 7. We defer the proof ofthe
NP-completeness of the delay-driven congestion-aware technology
mapping problem to the Appendix.

An early version of this work was presented as [19]. Since then,
the work has been improved by legalizing the companion placement
that has evolved in tandem with the mapping, in contrast to re-doing
the placement subsequent to the mapping phase; this resultsin the
track overflow improvement growing from the 44% reported in [19]
to 59%. Furthermore, a new comparison is presented with the delay-
driven congestion-aware mapping algorithm described in another
recently published work,viz., [13]. The proof of the complexity of
this problem presented in the Appendix is also new.

II. PRELIMINARIES

The following terminology is used in this paper. A Boolean
network is a directed acyclic graph (DAG), in which a node denotes
a Boolean function,f : Bn → B, where B = {0, 1}, and n is
the number of inputs to the node. Traditional technology mapping
is usually preceded by a decomposition of this abstract network
into one that contains primitive gates, such as 2-input NAND’s and
inverters. The decomposed network is referred to as a subject graph or
a premapped netlist. The subject graph is mapped on to a set ofcells
in the library during technology mapping; the resulting network is

known as a mapped netlist, which is placed in a given block area and
routed. The block area is divided by a grid into bins for congestion
analysis purposes or for global routing. Each bin contains alimited
number of horizontal and vertical tracks. The track overflowand
congestion can be defined for every bin as follows.

Definition 2.1: The horizontal (vertical) track overflow for a given
bin, (T bin

h(v)), is defined as the difference between the number of
horizontal (vertical) tracks required to route the nets through the bin
and the available number of horizontal (vertical) tracks.

Definition 2.2: The horizontal (vertical) congestion for a given bin,
Cbin

h(v), is the ratio of number of horizontal (vertical) tracks required
to route the nets through the bin to the number of horizontal (vertical)
tracks available.
In this paper, when we use the terms “track overflow” or “congestion”
without specifying a horizontal or vertical direction, we mean that the
terms are equally applicable to both horizontal and vertical directions.

A positive track overflow or a congestion of more than 1.0 means
that sufficient tracks are unavailable for the routing, while a negative
value of the overflow or a congestion smaller than 1.0 indicates the
availability of tracks. The total track overflow (OF ) is the sum of
positive track overflows over all the bins, as shown in the following
equation

OF = Σ∀bins:Cbin>1.0T
bin (1)

This overflow can be computed after the generation of the congestion
map, which can be derived either using probabilistic techniques or by
performing global routing. Employing these definitions, the problem
of delay driven technology mapping targeting congestion can be
defined as follows.

Problem definition 1:Given a subject graph of a network and a
library of gates, generate a mapped netlist that minimizes the total
track overflow under specified delay constraints.

Traditional mapping procedures use a dynamic programming
framework that involves two phases, referred to asmatching and
covering, respectively. In the former phase, non-inferior mapping
solutions are stored during a topological traversal of a circuit, while,
in the latter, a mapped network is built by selecting from these
solutions during a reverse topological traversal. Usually, technology
mapping employs either of load-based or gain-based delay models. In
this paper, we consider only load-based delay models; our algorithm
can be easily extended to gain-based delay models also. The load-
based delay model is shown in Figure 1(a) for a typical standard
cell: it shows a straight line with the internal delay of the gate,
Dinternal, as an intercept on the delay axis, while the slope of the
line indicates the effective driver resistance1. Technology mapping
targeting delay involves storing piece-wise linear load-delay curves,
{(l1, D1), (l2, D2), · · ·}, during the matching phase, whereli and
Di, respectively, denote the load and delay co-ordinates of anend-
point of a piece-wise linear segment. At each node, a set of choices
that are delay-optimal for the load ranges corresponding topiece-wise
linear segments is stored on these curves. These choices arereferred
to as non-inferior matches. One such curve is shown in Figure1(b)
with three non-inferior matchesM1, M2, and M3, where M1 is
optimal for the load range[0, l1], M2 for the range(l1, l2], andM3

for larger load values. During the covering phase, when loads are
known, delay-optimal matches are chosen from the curves. SIS [18]
contains an implementation of a delay oriented mapper basedon
this scheme, and we employ the same framework for our technology
mapping targeting routing congestion.

1The delay of a cell also depends on the slopes of the input signal
transitions, which are considered during precise timing analysis, but are often
ignored in the delay models at the technology mapping stage.
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Fig. 3. Generating congestion maps during the matching: (a)A choice M1 at nodeN1. Maps for horizontal congestion for matches atN2 and N3 are
shown in (b) and (c), respectively, while (d) shows congestion contribution due toM1 and (e) shows the congestion map atN1 due toM1.
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Fig. 1. (a) A load-based delay model for a typical standard cell, such as an
inverter. (b) A typical load-delay curve stored during the matching.
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Fig. 2. Probabilistic congestion estimation for a net assuming only L- and
Z-shaped routes [20]. Only the demands for horizontal tracks in each bin are
shown.

The concept of employing a companion placement for the subject
graph to estimate wirelengths or congestion maps is not new.It has
been used by previous technology mapping or physical synthesis
methods [11]–[13], [17], [21], and we employ the same concept
here. Based on such a companion placement, the congestion maps
are generated during the matching phase employing a well known
probabilistic method, which is shown to have a good fidelity with
post-routing congestion in [20], [22]. The probabilistic estimation
technique assumes all routes to be equally possible for a given net
and then computes the demands for tracks as a ratio of the number of
paths passing through the bin to the total number of paths. Figure 2
shows the congestion computation for a net. Six possible paths,
assuming only L- and Z-shaped routes2, through different bins in
the bounding box of a net are shown in the figure. The numbers

2L- and Z-shaped routes are shown for illustration purposes only. In
practice, we allow the nets to have unlimited bends, as in [22].

associated with each bin show the demands for the horizontaltracks.
For instance, the leftmost bin in the bottom row has a demand of
1.5, since there are three routes, route 1, 5, and 6, which require half
track each in that bin. Therefore, the congestion for the bindue to
the net is 1.5

6×hbin
, where,hbin is the number of horizontal tracks

available for the bin.

III. C ONGESTIONMAP GENERATION

DURING THE MATCHING PHASE

The matching phase of dynamic programming based delay oriented
technology mapping typically involves storing a load vs. delay curve
at each node. We employ the same method and preserve the curve
containing non-inferior matches that minimize the delay for different
load values. During the construction of the curve, wire-loads and
wire-delays are accounted for based on the companion placement of
the underlying subject graph. To evaluate different mapping solutions
based on their contribution to the total track overflow, we associate a
probabilistic congestion map with each match. This congestion map
represents wires due to the mapping solution correspondingto a given
match, as explained in the following subsections.

A. Bottom-up Congestion Map Construction

To generate a global as well as a partial view of congestion, we
propose a bottom-up congestion map construction. A match ata
given node is assumed to be placed at the center of gravity of its
fanins and fanouts (whose locations are available from the companion
placement), and multi-terminal nets are modeled employingthe well
known star topology. Figure 3 shows the creation of a congestion
map for a matchM1 at the nodeN1. The matchM1 receives its
inputs from two nodes:N2 andN3. During the topological traversal,
these nodes are processed before nodeN1 and hence, non-inferior
matches and the corresponding congestion maps are already stored
at these nodes. The maps of horizontal congestion for matches at
N2 and N3 that minimize the delay for the solution due to the
matchM1 are shown in Figure 3(b) and (c), respectively, while the
horizontal congestion contribution due to the matchM1 is shown
in 3(d). For the purposes of illustration, only the track demands are
shown as congestion without loss of generality. In Figure 3(d), the
right-most bin in the third row has a horizontal track demandof 0.25,
as there are2 paths from the output of the match atN2 to an input
of M1. This results in a probability of1

2
of the path through the bin

being selected. Furthermore, for that path, only half of onehorizontal
track is occupied under the assumptions of probabilistic congestion
estimation [22], resulting in a demand of0.25. Figure 3(e) shows the
map for horizontal congestion for the solution involving the match
M1: it is obtained by the simple bin-wise sum of the congestion maps
at N1, N2, andN3. Thus, for instance, the demands in bin (1, 2) in
the congestion maps in figures 3(b), (c) and (d) are added to create the
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Fig. 4. The congestion in each bin is divided by the number of fanouts for
forward propagation.

demand in bin (1, 2) in the congestion map shown in Figure 3(e). This
congestion map represents horizontal track demands due to the subset
of wires from the transitive fanin cone ofN1, as these wires appear in
the mapping solution corresponding to the matchM1. For a different
match at nodeN1, this subset of wires will be different leading to a
different congestion map. Note that these congestion maps account
for the relevant subsets of wires from only the transitive fanin cone of
a given node, ignoring wires in the rest of the network. Thus,they do
not represent a global picture of congestion; rather, they represent a
partial picture that accounts only for the matches and corresponding
wires in the transitive fanin cone of a given node. It is clearthat a
complete picture of congestion that represents all the wires that will
appear in the mapped network cannot be obtained until matching
and bottom-up congestion map generation is performed for all the
nodes. This is the reason why we postpone the total track overflow
computation until the covering stage.

B. Handling Multiple Fanouts

For the multiple fanout points, as shown in Figure 4, the congestion
in each bin is divided by the number of fanouts. It allows the
construction of the congestion map for the solutions at primary
outputs by simply carrying out the bin-wise sum of the corresponding
congestion maps. This heuristic is similar to the one employed in [7]
for the area minimization under delay constraints, where inspite of
such a division of gate-areas at multiple fanout points, addition of
the gate-areas due to points on area-delay curve at primary outputs
generates the gate-area for an entire solution.

Thus, employing simple algebraic operations such as addition
and multiplication, two-dimensional congestion maps can be created
during the matching phase. These maps can be used to optimize
any cost function defined on them, for instance, total track overflow
or maximum congestion. Moreover, the entire technique to generate
congestion maps is quite general and can be applied to createtwo-
dimensional maps for even other physical properties, such as power
density.

C. Analogy with Classical Matching

The bottom-up congestion map generation is analogous to thework
in [7], where area minimization under delay constraints is sought.
However, in contrast, our work targets routing congestion under the
same constraints, rather than the area as in [7]. The partialcongestion
maps during the matching in our work correspond to gate-areas for
points on the area-delay curve in [7]. Just as the gate-area for a point
on the curve models the corresponding gate-areas due to the match at
a given node and its transitive fanin cone in [7], the congestion map
for a match at a given node accounts for wires due to matches inthe

transitive fanin cone and represents the corresponding probabilistic
congestion of these wires in our work. Just as the gate-area for entire
network cannot be predicted until the end of the matching phase in
[7], so is the inability of the dynamic programming framework in our
work to predict the congestion map of entire network until the end
of the matching. Of course, compared to a metric like gate-area, the
routing congestion optimization objective is far more complicated, as
noted in several recent works [11], [13], [15], [16]. We alsoemploy a
better delay computation approach as compared to [7]. In their work,
the construction of area-delay curves introduces sub-optimality due
to unknown loads in the matching phase. In contrast, we storenon-
inferior solutions using piece-wise linear load-delay curves, which
serves the following purposes.

1) It does not introduce any sub-optimality in delays due to the
load computation and therefore, allows one to generate a delay-
optimal solution.

2) Because of the ability to generate a delay-optimal solution,
it ensures that if the delay-optimal solution cannot meet con-
straints, no other solution can.

Moreover, we utilize the companion placement to account forwire-
loads and wire-delays, which are ignored in their work.

D. Comparison with Other Congestion-aware Matching Techniques

The matching procedures employed in previous approaches on
congestion-aware mapping either compute the wire-length,as in [10]–
[12], or the congestion cost based on probabilistic estimates, as in
[13]. The following are the limitations of these approaches.

1) All these approaches heuristically modify the area or delay cost
function by adding wirelength or congestion penalty terms.This
introduces sub-optimality in the estimation of these objective
functions, and therefore, none of these approaches can ensure
meeting area or delay constraints (under the usual assumptions
about delay models and placement fidelity) while minimizing
routing congestion.

2) As pointed out earlier, metrics such as wirelength and predicted
congestion may not capture an accurate picture of the conges-
tion.

These limitations are overcome easily by our matching procedure,
which stores all non-inferior matches along with their probabilistic
congestion maps that are constructed using simple algebraic oper-
ations such as addition and multiplication in a bottom-up manner.
Moreover, although the metrics proposed in previous approaches have
been applied during the matching phase, none of them extendsthese
metrics to guide the covering, which actually selects the mapping
solution. Thus, these techniques ignore the search space available
during the covering. In contrast, we utilize the generated congestion
maps during the covering process to compute the total track overflow
due to different mapping choices, and to select the one that minimizes
this track overflow while satisfying the delay constraints.This is
explained in the following section.

IV. CONGESTIONM INIMIZATION UNDER DELAY CONSTRAINTS

DURING THE COVERING PHASE

To preserve the delay-optimality of the solution while improving
the congestion, we associate the usual notion of a slack withall nodes.

Definition 4.1: The slack at a given node is the difference between
the required arrival time at that node and the actual arrivaltime.
A positive value of slack means that the signal arrives earlier than
the required arrival time, while a negative value implies that it
arrives later than the required time. During traditional covering,
delay-optimal choices that minimize the delay for a given load are
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chosen at each node. The load-delay curves that are built during the
matching phase also assume the same. We observe that the covering
need not choose delay-optimal choices at all nodes to respect the
delay constraints. At nodes with positive slack, matches that are not
necessarily delay-optimal can still be chosen, as long as they meet
the delay constraints. Our covering algorithm employs thisidea to
minimize the total track overflow. We explain the same using the
following example.

Delay

Load10 20

50
3

2
1

M1

M2

M3

Fig. 5. A piece-wise linear load-delay curve with three matches matches
M1, M2, and M3 optimal for load ranges[0, 10), [10, 20), and [20,∞),
respectively. The curve has a slope of3 for the load values[0, 10), a slope
of 2 for loads between[20, 30), and a slope of1 for remaining load values.

Consider a load-delay curve, shown in Figure 5, stored during
the matching for a node. During the covering, when the node is
processed, let us assume that that it has a slack of10 and it has to
drive a load of 15. Let the delays due to matchesM1, M2, andM3

for this load be, respectively,95, 90, and 95. In this case, regular
covering will choose matchM2, since it minimizes the delay, while
our congestion-aware covering will choose a match that minimizes
the track overflow. Note that choosingM1 or M3 does not affect the
delay-optimality of the overall solution in this case, since there is a
slack of10 at the node, and the arrival times at the node due to both
M1 andM3, satisfy this slack constraint.

A. Algorithm for the Covering

The pseudo-code for the covering that targets track overflow
under delay constraints is shown in Algorithm 1. It begins with the
computation of the delay-optimal matches at the primary outputs. The
slacks (Soi

) are then computed for all the outputs. The congestion
map CM for this solution is built by the bin-wise addition of the
congestion maps due to delay-optimal matches for all the primary
outputs. This congestion map represents the contributionsof all the
wires that will appear in the mapped network due to the conventional
delay-optimal solution. The total track overflowOF corresponding to
this solution is estimated from the congestion map using Equation (1).
After this initialization, all the nodes (v ∈ V ) are processed in the
reverse topological order. First the delay-optimal matchmD−optimal

v

is determined for a node, followed by a computation of the slack-
constrained congestion-optimal matchmC−optimal

v using a procedure
that is explained later. If the overflowOF C−optimal

v due to the slack-
constrained congestion-optimal matchmC−optimal

v is smaller than
that due to the delay-optimal matchmD−optimal

v , thenmC−optimal
v

is chosen as the optimal matchmOptimal
v . In this case, the congestion

map is updated to reflect the change due to this match, the new
overflow is stored, and the slacks at the inputs of the match are also
updated. Instead, if the delay-optimal match is chosen as the optimal
matchmOptimal

v , then the slack is simply propagated to the inputs
of the match. Finally, the loads at the inputs of the selectedoptimal
match (be it delay-optimal or slack-constrained congestion-optimal)
are incremented to reflect the selection of that match.

Algorithm 1 Perform the covering targeting congestion minimization
under delay constraints

Input: A Boolean networkG(V, E), a set of primary outputsO ⊆
V , sets of non-inferior matchesMv and their congestion maps
CMv for v ∈ V

Output: Assignment of congestion-optimal matchm ∈ Mv to v ∈
V , which satisfies the delay constraint

1: for ∀oi ∈ O do
2: mD−optimal

oi
← DelayOptimalMatch(Moi

, loadoi
)

3: Soi
← DRequired

oi
−D

m
D−optimal
oi

4: end for
5: CM ←

∑|O|

i=1
CM

m
D−optimal
oi

6: OF ← ComputeOverflow(CM )
7: for ∀v ∈ V , in reverse topological orderdo
8: mD−optimal

v ← DelayOptimalMatch(Mv , loadv)
9: mC−optimal

v ← CongestionOptimalMatch(Mv , sv)
10: if OF C−optimal

v < OF then
11: mOptimal

v ← mC−optimal
v

12: CM ← CM −CM
m

D−optimal
v

+ CM
m

C−optimal
v

13: OF ← OF C−optimal
v

14: UpdateSlacks(mC−optimal
v , sC−optimal

v )
15: else
16: mOptimal

v ← mD−optimal
v

17: UpdateSlacks(mD−optimal
v , sv)

18: end if
19: IncrementLoads(mOptimal

v )
20: end for

B. Procedure for Finding Slack-constrained Congestion-optimal
Match

The pseudo-code for selecting the slack-constrained congestion-
optimal match is shown in Algorithm 2. It considers all the matches
except the delay-optimal match such that they satisfy the slack
constraint (as enforced in line 6 in the pseudo-code). Amongthese
matches, one that results in the lowest total track overflow is stored
as the slack-constrained congestion-optimal match. Note that we can
store a match that results in the smallest maximum congestion as a
congestion-optimal one, leading to the optimization of themaximum
congestion. In general, any cost function defined over the congestion
maps can be optimized by storing a match that optimizes the given
objective as a congestion-optimal match. The corresponding slack
updates are maintained with the congestion-optimal match.If the
track overflow due to this match is lower than that due to the delay-
optimal match, then the slack-constrained congestion-optimal match
is stored as the optimal match, as described earlier.

C. Time Complexity of the Algorithm

The time-complexity of the entire mapping algorithm is almost
same as that of a conventional mapping. Both conventional aswell as
our congestion-aware mapping techniques employ the same matching
procedure, except that the matching phase in our case computes and
stores congestion maps for non-inferior matches. If there are NBins

number of bins in the layout, then the matching phase would require
O(NBinsNmatches) time (whereNMatches is the number of non-
inferior matches over the entire network), since the computation of a
congestion map requiresO(NBins) time. SinceNBins is a constant
, the matching phase for our approach requiresO(Nmatches) time
for a given layout. Note that althoughNBins is possibly large as
compared to other constants subsumed byO(), the actual number
of bins impacted during the generation of a match (and hence their
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Algorithm 2 Find congestion-optimal match that satisfies the slack
constraint
Input: A set of matchesMv for v and available slacksv at nodev
Output: Congestion-optimal match satisfying the slack and the

corresponding total track overflowOF C−optimal
v

1: Procedure CongestionOptimalMatch(Mv , sv) {
2: OF C−optimal

v ←∞
3: if sv > 0 then
4: for all m ∈Mv −mD−optimal

v do
5: Dmv ← DelayDueToMatch(loadv )
6: if Dmv −DD−optimal

v < sv then
7: CMnew ← CM − CM

m
D−optimal
v

+ CMm

8: OFnew ← ComputeOverflow(CMnew )
9: if OFnew < OF C−optimal

v then
10: OF C−optimal

v ← OFnew

11: mC−optimal
v ← m

12: sC−optimal
v ← sv − (Dmv −D

m
D−optimal
v

)

13: end if
14: end if
15: end for
16: end if
17: }

contribution to the time complexity) is usually much smaller. During
the covering, CongestionOptimalMatch() function is called for all the
nodes. The function requiresO(|Mv |NBins) time, since, in the worst
case, it has to consider all the matches at the node to find the slack-
constrained congestion-optimal one. Over all the nodes, therefore, the
covering requiresO(Nmatches) time, which is same as that of the
matching phase.

V. NOTES ONCONGESTIONOPTIMALITY AND EXTENSIONS TO

THE ALGORITHM

The mapping algorithm can preserve the delay optimality of a
solution under the usual assumptions about the delay model and
placement fidelity, but it does not ensure the optimality of the track
overflow. In other words, the resulting congestion may not bethe
minimum, although it will usually be much smaller than that obtained
using conventional mapping, for given delay constraints. This is
a consequence of the routing congestion being more complex an
objective than the traditional ones, such as area and delay.The
dynamic programming based matching and covering procedures may
not be able to generate the congestion optimal solution in polynomial
time. The Appendix contains a proof for the NP-completenessof the
mapping aimed at minimizing congestion under delay constraints.

Our algorithm, which is based on the load-based delay model,can
be easily extended to the one based on gain-based delay model. Note
that during technology mapping based on the gain-based delay model,
the sizes of the cells are adjusted depending on the loads that they
drive, and this does not affect the wires and hence, the computed
routing congestion in the design under the assumptions about the
placement of cells. The extension of our tree-mapping algorithm to a
DAG-mapping one, such as [8], is, however, not obvious because of
the duplication of wires due to the corresponding replication of the
underlying logic gates.

In our current implementation, we do not store matches that are
potentially good from the congestion standpoint, but have possibly
inferior delay characteristics. Consequently, we do not minimize the
congestion to the fullest extent possible. This can be remedied by stor-
ing a few inferior matches apart from those on the regular load-delay
curve, at the cost of extra computation and memory. The memory
requirement of our mapper is larger than that for a conventional

mapper due to the storage of congestion maps for all non-inferior
choices during the matching phase. This requirement may be reduced
by storing just the bins corresponding to the bounding box that is
affected by the mapping solution. Moreover, a memory efficient
variant of our algorithm having the same memory capacity as that
of conventional delay oriented mapping is possible by restricting the
selection of the congestion-optimal matches to the primaryoutputs.
In such a variant, the congestion maps for all non-inferior matches
at all nodes except for the primary outputs are not required after the
maps for the matches for the subsequent nodes in the topological
order are computed during the matching phase. Hence, the memory
occupied by the corresponding congestion maps that have served the
purpose of the forward propagation can be freed and re-used.We
expect our current mapper to be used in an engineering changeorder
(ECO) mode, where at most a few thousand cells correspondingto
the congestion hot-spots are (re-)synthesized. It is an ideal candidate
for such an application, since it ensures that delay constraints will
be met while minimizing total track overflow. This is demonstrated
by the experimental results in the following section, whichshows
that circuits with more than 3500 cells can be handled well byour
algorithm without needing recourse to memory efficient variants.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

The congestion-aware mapping algorithm is implemented in Cand
incorporated in SIS [18]. We performed experiments on the entire3

set of ISCAS’85 benchmarks employing the design flow shown
in Figure 6. For a given benchmark, the subject graph containing
primitive gates is placed to create the companion placement. This is
followed by either the conventional or our congestion-aware mapping
algorithm. For a fair comparison, the conventional delay oriented
technology mapping algorithm in SIS [18] is modified to use the
companion placement information to compute wire-loads andwire-
delays, as our congestion-aware technology mapping utilizes the same
information not only for the bottom-up congestion map generation
but also for the wire-load and wire-delay computation. After the
technology mapping, the resulting netlists are placed and routed. For
all the experiments, technology mapping is performed employing
lib2.genlib library in SIS, which is characterized for 100 nm tech-
nology [23] and contains up to 4 strengths for each cell. To generate
delay constraints for a given benchmark, conventional technology
mapping is run first and the delay of the most critical primaryoutput
is assigned as the required arrival time for all primary outputs. For the
placement, we employ the publicly available recursive bisectioning
based placer Capo [24], while, for routing, we use a router [25]
that is based on non-Hanan routing. In the case of our technology
mapping targeting routing congestion, we legalize the placement
of the mapped netlist employing the legalizerPlaceUtil-Lnx32.exe
from the Gigasscale Silicon Research Center (GSRC) Bookshelf
[26]. Recall that the matches in the mapped netlist are placed at the
center of gravity of fanins and fanouts based on the subject graph
placement. Such a placement of the mapped netlist, however,may not
be legal, thus requiring overlap removal. The placement legalization
instead of whole new (re-)placement of the mapped netlist preserves
most of the gains obtained during the technology mapping. The
post-routing delays are measured using a static timing analyzer.

B. Analysis of Experimental Results

Table I shows the comparison of post global routing results due
to conventional mapping as well as our mapping. It shows the block

3The results on the smallest benchmark from the ISCAS’85 suite, C17,
are not shown, as its implementation requires only a few gates, becoming an
un-interesting case to show meaningful comparison.
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Example Area Conventional [18] / Ours
Overflow (% gain) Delay MC RU # of cells Run-time

µ2 ps % s
C1355 3439 227 / 134 (40) 789 / 786 1.70 / 1.30 80 / 81 621 / 592 11 / 12
C1908 3616 323 / 63 (80) 1059 / 1042 1.70 / 1.10 80 / 80 578 / 571 12 / 13
C2670 11707 417 / 139 (66) 1258 / 1240 1.65 / 1.20 75 / 77 1482 / 1426 24 / 51
C3540 25994 1078 / 194 (82) 1655 / 1632 2.25 / 1.25 75 / 80 3254 / 3105 90 / 279
C432 1962 66 / 45 (31) 854 / 842 1.40 / 1.10 80 / 82 264 / 311 7 / 9
C499 3550 262 / 80 (69) 823 / 821 1.60 / 1.20 80 / 79 595 / 563 11 / 13
C5315 17265 1100 / 289 (73) 1120 / 1114 2.20 / 1.40 75 / 77 2122 / 2131 38 / 121
C6288 21379 515 / 452 (12) 4771 / 4731 1.70 / 1.40 80 / 80 3737 / 3596 88 / 135
C7552 28223 1343 / 547 (59) 1341 /1309 1.60 / 1.30 75 / 73 3198 / 3080 132 / 213
C880 3944 378 / 67 (82) 890 / 884 1.70 / 1.20 80 / 76 584 / 575 12 / 13

Average 554 / 201 (59) 1455 / 1439 1.74 / 1.24 78 / 78 164 / 159 42 / 85
TABLE I

COMPARISON OF THE CONVENTIONAL MAPPING WITH OUR ALGORITHM. ‘RU’ AND ‘MC’ DENOTE THE AVERAGE ROW UTILIZATION AND MAXIMUM

CONGESTION, RESPECTIVELY.

Timing
Analysis

I/O Locations

Placement

Subject Graph

Legalization

Routing

Technology
Mapping

Placement/

Fig. 6. Design flow for conventional and congestion-aware technology
mapping

area in Column 2 for the benchmarks in Column 1, while Columns3,
4, 5, 6, 7, and 8 show the total track overflow (with the improvement
percentage), the delay, the maximum congestion, the average row
utilization, the number of cells, and the run-time, respectively. All
the experiments are run on a Sun Ultra Sparc 60 machine with 400
MHz clock speed. From the table, we can observe the following:

1) Our mapping algorithm has been consistently able to reduce
the track overflow, as shown in Column 3. On an average,
the reduction is 59%. The large gains can partly be attributed
to the legalization-based flow. Since most of the companion
placement of the mapped netlist is preserved because of the
legalization, the gains obtained during the technology mapping
are preserved. The impressive gains in overflow also underline
the ability of the technology mapping to reduce the conges-
tion. The largest improvement, 82%, is in the case of C3540
and C880, while the smallest one is in case of C6288. The
small improvement in case of C6288 can be attributed to the
relatively lower congestion in the design as compared to other
benchmarks of a similar size.

2) From Column 4, it is clear that the delays due to congestion-
aware mapping have improved slightly, as the algorithm main-
tains the delay-optimality, resulting in the same delays as

the conventional mapping. The subsequent stages, especially
the routing, show the effect of reduced congestion, causing
smaller detours and hence, smaller delays as compared to the
conventionally mapped netlists.

3) The maximum congestion shown in Column 5 has improved
due to our mapping in all the cases with an average im-
provement of 28%, even though the algorithm targets only the
total track overflow. This can be ascribed to the correlation
between the maximum congestion and the total track overflow:
generally, high overflow implies the large maximum congestion
and vice-versa.

4) It appears from Column 6 that the average row utilization
has increased, as in cases of C2670 and C3540, and has also
decreased, as in cases of C7552 and C880, with the track
overflow. This can be attributed to the corresponding increase
or decrease in the cell area. Depending on the context, an
area increase or decrease can result in a small track overflow:
an example in [13] shows that even an area optimal match,
which results in a relatively smaller area, can worsen the
congestion, while it is also possible that an increase in area due
to more gates, and hence, more wires, proves detrimental to the
objective of reducing the congestion. This is why the congestion
is relatively insensitive to the average row utilization, as long
as the utilization is not too high.

5) As shown in Column 7, the number of cells in the congestion-
aware mapped netlists have decreased slightly in all cases but
that of C432. The decrease in the number of cells can be
associated with the corresponding reduction in the number of
nets, which may be indirectly correlated with metrics such as
structural pin-density, and hence, congestion, as pointedout in
[16]. In case of C432, however, employing more logic cells has
resulted in the congestion alleviation, which can be explained
using the discussion in the previous remark on the average row
utilization.

6) Finally, as can be seen from Column 8, the run-times for
congestion-aware mapping are still comparable to those of
the conventional one. On an average, although the run-time is
2.02 times worse than that for conventional mapping, it is still
practical, being within a few minutes on a 400 MHz Sun Ultra
Sparc machine. This shows that the constants subsumed byO()
in the time complexity expression in Section IV-C are not too
large. This bodes well for the scalability of the algorithm.
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C. Comparison With Previous Work

Table II shows the comparison of this work with the previous
congestion-aware technology mapping approach [13]. Columns in
the table have the same meanings as in Table I. The following
observations can be made from the table.

1) From Column 2, it is evident that as compared to the
congestion-aware technology mapping in [13], our approach
results in 30% improvement, on an average. This can be
attributed to the following: (a) as opposed to the the work
in [13], which relies on the same predictive congestion map
based on subject graph for all matches, we create match-specific
congestion maps in a bottom-up manner that are more accurate;
(b) our approach exploits slacks to the fullest extent, while, in
the previous approach, a global constant is employed to weight
the paths according to the slack at the primary outputs; and
(c) instead of re-placing the mapped netlist as in [13] (or even
in [19]), we legalize the existing companion placement of the
netlist, which preserves the overflow gains achieved duringthe
mapping.

2) It is clear from Column 3 that the delays due to our mapping
algorithm are slightly worse than those due to the congestion-
aware technology mapping in [13]. This occurs because our
algorithm exploits slack to a greater extent than their method
as explained earlier. Note that delays in both the cases still sat-
isfy the required delay constraints obtained from conventional
mapping shown in Table I.

3) Column 4 shows that the maximum congestion due to our
mapping is either the same or smaller than that due to the
previous work. This can be ascribed to the (weak) correlation
between track overflow and maximum congestion: small track
overflow due to our mapping also implies relatively less max-
imum congestion.

4) From Column 5, we observe that for large examples, run-
times for our mapping are worse than that for the congestion-
aware mapping. This is due to the additional book-keeping our
algorithm has to perform to generate congestion maps in a
bottom-up manner. For small examples, the run-time for extra
topological traversal in the algorithm of [13] dominates that
for the generation of congestion maps; this is the reason why
we see the relatively smaller run times for our mapping on the
small benchmarks.

We could not compare the results on ITC’99 benchmarks, such
as b14, b15, and b20, reported in [13], since the applicability of
our mapper on Sun Ultra Sparc 60 machine, which is employed to
run the mapper, is limited to approximately 5000 cells. In future,
we plan to implement the memory efficient variant of our algorithm.

Example Congestion-aware technology mapping [13] / Ours
Overflow Delay MC Run-time

ps s
C1355 173 / 134 774 / 786 1.50 / 1.30 13 / 12
C1908 87 / 63 1065 / 1042 1.10 / 1.10 14 / 13
C432 54 / 45 840 / 842 1.40 / 1.10 8 / 9
C499 188 / 80 791 / 821 1.20 / 1.20 12 / 13
C6288 474 / 452 4682 / 4731 1.40 / 1.40 117 / 135
C7552 743 / 547 1255 /1309 1.80 / 1.30 203 / 213
C880 270 / 67 867 / 884 1.40 / 1.20 17 / 13

Average 284 / 198 1467 / 1487 1.40 / 1.22 54 / 58
TABLE II

COMPARISON OF THE CONGESTION-AWARE TECHNOLOGY MAPPING[13]
WITH OUR ALGORITHM. ‘MC’ DENOTES THE AVERAGE ROW UTILIZATION

AND MAXIMUM CONGESTION , RESPECTIVELY.

The comparison with the competitive congestion-aware delay oriented
mapping approaches [11], [12] could not be performed because
of the unavailability of the access to proprietary benchmarks and
tools, while another relevant work on congestion-aware technology
mapping [14] targets area of the circuit and not the delays.

VII. C ONCLUSION

In this paper, we have presented a technology mapping algorithm
targeting routing congestion. We have shown how to overcome
the “chicken-and-egg” problem during the mapping and placement
stages by generating and propagating congestion maps associated
with each choice during the matching phase. We have proposeda
covering procedure, which exploits slacks to select the congestion-
optimal choices that preserve the delay-optimality of the solution,
followed by a legalization of the companion placement. The
experimental results on ISCAS’85 benchmarks prove the efficiency
of the algorithm, as they show, on an average, 59% improvement
in the track overflow as compared to conventional mapping. The
impressive gains in the track overflow emphasize the abilityof the
technology mapping to reduce the routing congestion. The proposed
matching and covering techniques are sufficiently general and can
be applied to optimize different cost functions defined on congestion
maps as well as different physical properties, which can be captured
employing two-dimensional maps, such as power-density maps.

APPENDIX

Complexity of Delay-driven Congestion-aware Mapping
The Minimum Clique Cover [27] is a known NP-complete problem

that is defined as follows: Given an instance of an undirectedgraph
G = (V, E) and a positive integerK, does there exist a clique cover
for G (i.e., a collectionV1, V2, ., Vk of subsets ofV such that each
Vi induces a complete subgraph ofV and such that for each edge
(vi, vj) ∈ E, ∃m such thatvi, vj ∈ Vm) with cardinalityk ≤ K ?

We reduce this problem to an instance of the decision versionof
the delay-driven congestion-aware technology mapping problem as
follows. Let V = v1, v2, ., vn be the vertices ofG. We associate a
Boolean variablexi with the vertexvi (i = 1, ., n) and generate the
Boolean functionfG(x1, ., xn) =

∑
(vi,vj)∈E

(xi ⊕ xj). Our goal
is to map this function using a pre-specified cell library andthen to
place it in the left half of a rectangular region that contains each of
the literalsxi and xi (i = 1, ., n) as primary input pins on its left
boundary and a primary output pin corresponding to the computed
function in the middle of its right boundary. Furthermore, the right
half of the placement region contains a pre-placed macro block that
computes the logicalor (“+”) of up to n(n− 1)/2 inputs (by tying
unused inputs to 0); the output of this macro block is connected to
the primary output pin. Our cell library consists only of gates that
implement the functionsgp(u1, ., up) = (

∑
i=1,.,p

ui)(
∑

i=1,.,p
ui),

for p = 2, ., n. Finally, we assume that the number of routing
tracks available to hook up the mapped netlist in the left half of
the placement region to the inputs of the macro block in the right
half of the placement region isK, and the delay constraints are such
that any path from a primary input to an input of the macro block
can pass through no more than one gate.

Firstly, observe that the size of the functionfG(x1, ., xn) as
specified above is linear in the number of edges inG. Next, for
any clique H with vertices w1, ., wr and corresponding Boolean
variablesy1, ., yr respectively, it is easy to see thatgr(y1, ., yr) =
(
∑

i=1,.,r
yi)(

∑
i=1,.,r

yi) =
∑

(wi,wj)∈E(H)
(yiyj + yiyj) =

∑
(wi,wj )∈E(H)

(yi ⊕ yj) = fH(y1, ., yr). However, if H is not a
clique, the above equality does not hold. (If edge(wi, wj) is missing
from E(H), thenyiyj , yiyj ∈ gr(y1, ., yr)− fH(y1, ., yr)). Finally,
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one can verify that for two cliquesKr1
andKr2

with r1 andr2 ver-
tices respectively,fKr1

∪Kr2
= g|V (Kr1

)| +g|V (Kr2
)| (with the three

functions being defined over the Boolean variables corresponding to
the vertices ofKr1

∪ Kr2
, Kr1

and Kr2
, respectively, where the

union G1 ∪G2 of two graphsG1 andG2 is defined as the unions of
their corresponding vertex and edge sets, respectively); this equality
holds irrespective of whether the vertex sets of the two cliques are
disjoint or share an arbitrary number of vertices. By induction, this
property (viz.,f∪jKrj

=
∑

j
g|V (Krj

)|) extends to the unions of the
vertex sets of an arbitrary number of cliques.

Thus, there is a bijection between a cliqueKi in G and a gate im-
plementing the functiong|V (Ki)|. Furthermore, this correspondence
can be extended to any set of cliques inG by mapping them to the
“+” of the correspondingg functions. Given the delay constraint that
does not permit us to map to two or moreg-gates in series and the fact
that nog-function is equivalent to a “+” function, a set ofk cliques
corresponds to a mapping intok gates whose outputs feed into the “+”
macro block, resulting in a usage of exactlyk tracks. In particular, a
clique cover ofG of cardinalityk corresponds to a mapping solution
that usesk tracks. Conversely, given a mapping solution that usesk′

tracks, one can construct a clique cover of cardinalityk′ by mapping
each of the gates in the mapping solution to its corresponding clique.
This concludes the proof that the decision version of the delay-driven
congestion-aware technology mapping problem (and, in particular, its
covering phase) is NP-hard.

To complete the proof of its NP-completeness, it suffices to observe
that, given a mapping, one can run a polynomial static timinganalysis
on it to determine whether it meets the required delay constraints, as
well as construct a probabilistic congestion map (or run a global
router) on it in polynomial time to determine whether it meets the
congestion constraints.
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