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Abstract—Due to technology scaling trends, the accurate and early stages of physical design such as thermal-aware faerp
efficient calculations of the temperature distribution corresponding ning and placement, since for these design steps, therrabyisis
to a specific circuit layout and power density distribution will be- is often used as part of the simulation core of an optimizatio

come indispensable in the design of high performance VLSI wuits. . h | desi f ible physical s
In this paper, we present three highly efficient thermal simdation enginé where a large design space of possible physical tayou

algorithms for calculating the on-chip temperature distribution in ~ Must be explored and an independent calculation on temyperat
a multilayered substrate structure. All three algorithms are based distribution has to be performed for each candidate layout.
on the concept of the Green function and utilize the techniga of Based on the type of analysis they perform, thermal simanati
discrete cosine transform (DCT). However, the applicationareas algorithms can be generally divided into two categories,, i.

of the algorithms are different.The first algorithm is suitable for th for t ient Vi d th f teadv-stathysi
localized analysis in thermal problems, while the second gbrithm ose for transient analysis an ose for steady-statysimna

targets full-chip temperature profiling. The third algorit hm, which ~ Transient analysis is concerned with the evolution of terajoge
combines the advantages of the first two algorithms, can be ed distribution within a chip given a time-varying power dewgsi
to perform thermal simulations where the accuracy requirenent distribution, and can be performed efficiently using therria
differs from place to place over the same chip. Experimental ADI algorithm proposed by Wanet al. in [3]. Steady-state anal-

results show that all three algorithms can achieve relativeerrors - o . ..
of around 1% compared with that of a commercial computationd ysis, on the other hand, is interested in the stabilized ézatpre

fluid dynamic (CFD) software package for thermal analysis wile ~ distribution given a time-independent power density distion
their efficiencies are orders of magnitude higher than that 6 the or a power density distribution averaged over time. In tlzipeyr,

direct application of the Green function method. we will focus on the steady-state thermal analysis.

Index Terms— Simulation, thermal analysis, multilayered sub- Several steady-state thermal simulation algorithms haenb
strate, Green function method, discrete cosine transform RCT), used previously in chip design. The finite difference method
table look-up approach, spectral domain analysis. (FDM) [4] and the finite element method (FEM) [5] obtain the

temperature distribution through meshing the silicon fales
and solving a system of linear equations relating the teatpegs
. ] ) of grid cells to the power density distribution. The diffece
As the electronics market continues pushing forward the pgjetween the two methods is that the FDM discretizes the dif-
formance of VLSI circuits, the escalating power consumplias  ferential operator of the governing equation of thermaeet,
become a severe problem in chip design. Higher power consumile the FEM discretizes the field. The advantages of the FDM
tion leads to elevated on-chip temperature, which consglyue and FEM include their robustness and high accuracy. In it
goes up by 30% when the temperature rises from 25°C to 100¥g M rests on the fact that they always require volume meshing
and in [2], it was reported that the electromigration-ineiC of the entire substrate even though the devices are usually
mean-time-to-failure of interconnect is reduced by 90% Whegpyicated only in a thin layer close to the top surface of the
the temperature increases from 25°C to 52.5°C. This sétnatiic chip. Hence, even for the cases where only the temperature
has made it imperative to incorporate thermal effects ifigsiral  gistribution within the device layer is of interest, we Istiave
design tools for chip design so as to accelerate the designre 5 solve a large system of linear equations corresponding to
and improve the quality of the final product. the volume meshing, which leads to low efficiency. In [6], a
The first step towards the development of a thermal-awaffermal simulation algorithm based on the solution of théfin
physical design tool is to obtain the capability of calcingtthe gifference equations using the multigrid approach was gse,
on-chip temperature distribution accurately and effitiegiven  and its high efficiency has made the full-chip thermal sirtiata
a power density distribution. The efficiency of the temperat practical for the optimizations in physical designs.
calculating algorithm is of paramount importance espscia  The poundary element method (BEM) constitutes anothes clas
_ _ , _ _ of thermal simulation algorithms in which the volume mesghin
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surfaces in thermal simulations as opposed to the meshingtlodse in electrical problems, the Green function and thé-loo
the entire substrate by the FDM and FEM, it naturally leadsp table and vectors must be re-derived to reflect the special
to a smaller problem size, and hence has the potential afaracteristics of the thermal problems.
achieving high efficiency. However, the actual runtime of an The improvement in efficiency of Algorithm |, as compared
algorithm implemented using the BEM depends critically oh with that of the classical Green function method, comes fitsm
efficient the Green function is evaluated and how the tentpera faster evaluation of the expressions involving the Greection
distribution is calculated given the power density disttibn. in calculating the temperature field, and compared with othe
In [7], the classical Green function approach was used imiak fast algorithms such as the ones presented in [8] and [9], our
simulations where the Green function was utilized dire¢dy algorithm can achieve a much higher accuracy because it does
evaluate the temperature field in a rectangular-shapedratéas not assume that the chip is infinitely large horizontally] &ience
Because the underlying Green function is expressed as @fatllt it can take the proper boundary conditions into considenati
infinite summation and it has to be truncated at high indices Asymptotically, however, the classical Green function moet;
actual implementations to maintain a reasonable accuthey, the algorithms in [8] and [9], and our Algorithm | all have the
efficiency of this method is rather low. In [8], the method ofame time complexity oO(N-Ny), where N is the number
images was used to obtain the Green function in closed foohpower source regions antl; is the number of temperature
at the expense of relaxing the boundary conditions by assumtfield regions. For cell level full-chip thermal simulationgere
that the chip is infinitely large horizontally. The advardagf the number of heat sources is large and the temperatureeprofil
this method is that the Green function can be computed amver the entire chip is sought, however, a still faster atgor is
line efficiently and thus it is suitable for optimization pases. required.
However, by assuming that the chip is infinitely large homizo In [12], Costaet al. proposed an elegant algorithm for ef-
tally, the on-chip temperature will be severely underraated ficiently performing the full-chip electrical potential gfiling,
especially near the boundaries of the actual chip, althabgh which is a key step in solving substrate parasitic extractio
locations of the hot spots can be correctly identified as showroblems. This algorithm combines the concept of functiona
in [8]. In [9], an efficient algorithm for evaluating the teenature eigen-decomposition with the technique of the DCT to reduce
field in VLSI chips using a semi-analytical form of the Greetthe overall runtime of full-chip electrical potential prafg from
function was proposed which takes into account the mutiilegt  O(N2,) to O(Ny. x log(Ny.)), whereN,, is the total number of
nature of the semiconductor substrates used in IC faboitaiti grid cells. Because of the parallelism between the thermai-p
Nevertheless, this method also assumes that the chip igtéfifin lem and the electrical problem, we can use a similar apprt@mch
large horizontally, and therefore it has the same probleff8las reduce the asymptotic runtime of full-chip temperaturefifing.

Note that the computation of the steady-state temperatq}/% ha_ve implemented suph an apprpach in our second a}lgorithm
distribution T in thermal problems is very similar to the com—Agorlthm II),_and we W'I_I present it from_ _the perspectlvé 0

spectral domain computations that are familiar to engseddote

putation of the potential field in electrical problems. Both’ hat th distribut be obtained b VOl
and ¢ satisfy the Poisson’s equation, and the power source Nat the temperz_;\ture_ '_Sm _ut|0n_can €o tam_e y cCOmMY
the power density distribution with the underlying Greemdu

in thermal problems corresponds to the chaggi electrical i diti I Kk that luti i th di
problems. In [10] and [11], the discrete cosine transfori@{pis lon, and 1t 15 well known that convolutions in the space doma
correspond to point-wise multiplications in the spectraingin.

combined with a table look-up approach to improve the efficy . . . ) .
bapp P e Therefore, using the spectral domain computations in catjon

of using the Green function to calculate the electrical poad h the DCT for t formina the data betw q
distribution within a rectangular-shaped substrate. imtirethod, with the for transtorming € dala between space an
spectral domains, we will be able to significantly reduce the

the multiple-infinite summation contained in the expressibthe X i - .
Green function is not evaluated on-line. Instead, look-aipie runtime of full-chip temperature profiling. Our algorithimkes a

and vectors are established in advance so that each evalwdti P'€C€WIS€ constant power density map as the input and gesser

the Green function is reduced to the summation of a constaht £ P'€C€-WiISe constant temperature map as the output. Tieyri

80 terms in the look-up table and vectors. This is a signiticaﬁteps of the algorithm include:

improvement over the direct evaluation of the multiplesiit 1) Obtaining the spectral domain representation of the powe
summation in the classical Green function method, which may  density map using the 2D DCT. The order of the DCT
involve thousands or even more terms to ensure a reasonable €xpansion is determined dynamically by the power density
accuracy. Since the look-up table and vectors only have to be Map instead of being set priori to ensure the accuracy.
computed once for each technology and substrate geomatry, b 2) Calculating the spectral domain representation of the te
are independent of where the devices are located on the chip, Perature map by multiplying each spectral component
they can be obtained in the pre-characterization phase eof th ~ Of the power density map by the corresponding spectral
design and used many times in the optimization process. As a fesponse of the linear system determined by the Green

result, the amortized cost of establishing the look-upetanid function. _ _ _
vectors can be ignored in practice. Our first thermal sinmiat ~ 3) Using a 2D inverse discrete cosine transform (IDCT)
algorithm (Algorithm 1) follows a similar line of analysissa to obtain the temperature map from its spectral domain

in [10] and [11]. The difference is that since the boundary  representation.
conditions encountered in thermal problems are differeminf Both the 2D DCT and the 2D IDCT can be calculated efficiently



Heat sink

using the 2D fast Fourier transform (FFT). The asymptotioeti Chip Flea spreader

complexity of the overall algorithm iO(N, xlog(Nys)) +

O(Nysxlog(Nyy)), where Ny, and N,y are the number of ' n————
grid cells in the power source layer and temperature fieldrlay ; 7 / b 22%4
respectively. Hence, for calculating the full-chip termgtere 7

profile, the time complexity of Algorithm Il is much smalldran Chip

that of Algorithm 1, which isO(N,s-N,f). Note that the lower Packaging

asymptotic time complexity of Algorithm Il does not invadite @ )

the usefulness of Algorithm | because, as will be elaborated
in Section 111.D, Algorithm | often works better for locakzl Fig- 1. Schematic of a VLSI chip with packaging (@) IC chip ahel packaging
analysis, where the effects of a few critical circuit blocksthe structure (b) simplified model of the chip and packaging.
temperature distribution in a few key regions are of interes
Our third algorithm (Algorithm IIl) is a combination of Al- o . .
gorithm 1 and II, and it possesses the capability of perfogni packaging including the heat spreader and the heat sinkdeas b

thermal simulations where the accuracy requirement difiem Simplified but the multilayered structure of the chip is éaitly
place to place over the same chip, e.g., in mixed signal ljBS@hown. The steady—statc'a tempe.rature distribution ingidechip
where analog circuits are fabricated on the same chip atiglS 9°verned by Poisson’s equation

circuits, the analog blocks often have more stringent amyur
requirements on thermal simulations because the opesatibn
the analog circuits are more sensitive to temperature. ril . o
1] reflectsg the idea of the pre-corrected FF'?, which hz;gube(g\ﬁ‘erer = (2,y,2), T(r) is the temperature (°C) distribution

used extensively in the IC parasitic extraction works [1B3][ mside_z the chipg(r) is the vpl_ume power density (W), and
[15]. The algorithm first uses coarse grids to divide the seur®i(r) 1S the thermal conductivity (W/(FiC)) of the layer where

and field planes where each grid cell in the source plane c%?\'nt;_'s located [16]aTh%vergpatl) surfaces an(tj:i t::e LOD surfacefof
contain several logic gates or analog functional units, tred 1€ Chip are assumed to be adiabatic [17], and the bottoracaur

size of each grid cell in the field plane satisfies the accural the chip is_ qssumed to Qbf convective, with an e_ffectivet hea
requirements of the digital circuits. The power density atle transfer coefficientu (W/(m*-°C)) [18]. In mathematical form,

grid cell in the source plane can be obtained by adding up fijiese boundary conditions can be expressed as

V3T (r) = —% (1)

contributions from the logic gates and analog functionatsun 0T (r) _ 0T(r) ~0 5
that are located in it. A coarse temperature map for the field T or —0m oy _— - ©)
plane is then obtained from the coarse power density magusin T (r) ' ’

Algorithm Il and is used for the digital blocks. Finally, feach =0 3)
analog functional unit on the field plane whose temperatute i 0z .-

be calculated more accurately, we use Algorithm | to compute k 0T (r) = h(T(r)|se—ay — T) ()
the contributions to its temperature rise from the nearlgiclo 0z |,_ 4, e ¢

gates and analog function units on the source plane, andiisse {yhere T, is the ambient temperature, ahg is the thermal con-
result to correct the temperature obtained by Algorithmvéro ductivity of the bottom layer of the chip. In addition, we erde

the coarse grid cell. _ _ _ the continuity conditions at the interface between adjatmsrers
Our algorithms are all implemented in C++ and experimentadhinin the multilayered chip, i.e.

results show that they can achieve relative errors of around

1% compared with that of a commercial computational fluid T(r)|o=—d;+e = T(r)|2=—d; e ()
dynamic (CFD) software package for thermal analysis, while T (r) oT(r)
their efficiencies are orders of magnitude higher than thabe ki Dz = ki1 9z 6)

z=—d;+e z=—d;—¢€

classical Green function method. The rest of the paper wll b ) o ) ]
organized as follows. In Section II, we formulate the terapere Wheree is an |nf|n|tgs}:mally small quantity anki is the thermal
field computation problem and present the concept of Gregpnductivity of thei!® material layer in the multilayered chip
function for thermal problems. In Section I1l, we discusslgtail Structure.
the three thermal simulation algorithms. Section VI shohe t ) )
experimental results, and the conclusions are provideeaich tB Green function for the rectangular-shaped multilayesétic-
V. ure
Let G(r,r’), with r = (z,y,2) andr’ = (2,4, 2), be the
II. PROBLEM FORMULATION AND THE GREEN FUNCTION distribution of temperature abovE, in the multilayer when a
FOR THERMAL PROBLEMS unit point power source of 1W is placed at positieh Then

A. Problem formulation G(r,r’) satisfies the equation
Fig. 1(a) shows an IC chip with the associated packaging, and V2G(r, 1) = _o(r-1)

Fig. 1(b) shows a schematic of the structure in Fig. 1(a) wlies 1) (7)



(a4,b4)

and the boundary conditions

OG(r,1’) _ OG(r,1) _0 ®) Source
8:0 x=0,a B 81] y=0,b B Region
oG / (az,b2)
% -0 9) ; (a3, bs)
z z=0 F|e|d
/ o
- 0G(r,1") = WG )| a (10) Region
8Z Z:*dN
G, 1) o dpe = G0, T)om gy (11) (a1, 1)
3G(I' r ) — b 3G(I‘, I‘/) (12) Fig. 2. Source and field regions for computing the tempeegatlistribution.
l 5)2 z=—d;+e B 0z z=—d;—€

whered(r — v') = 0(z — 2')d(y — ¥')d(z — 2') is the three-
dimensional Dirac delta function, an@(r,r’) is the Green
function. The temperature field under an arbitrary powersdgn the rectangular-shaped source and field regions in thewfinitp
distribution can be obtained easily as analysis. Fig. 2 shows a schematic of a source and a field
a b 0 region. Note that the two regions can have differenbordinates
T, —i—/ dx / dy/ dz'G(r,r")g(r) (13) if the field plane does not coincide with the source plane.
dn Our objective here is to calculate the average temperatyre
As shown in [10] and [11] for electrical problems, the Greeof the field region efficiently given the power densify; of

function can be generally written in the form the source region. To simplify the analysis, we assume that
0o oo P, is a constant within the source region. This is not a very
" = Z Z cos (mm) cos (n—zy) X restrictive assumption, since if the power density is ndafioumly
m=0n=0 distributed in the source region, we can always divide thec®
mmax’ nry'\ ., , region into smaller rectangular-shaped sub-regions asdnas
cos ( a ) cos < b ) Zyn(2,7) (14) that the power density is uniform within each sub-region.

whereZ!. . (z,z') s are functions of only the coordinates of the  The average temperature in the field region can be computed
source and field points. The specific form of eatf,,(z,2’) using
depends on the boundary conditions, and it can be derived 1 b
similarly to that shown in [10] and [11]. Ty = / d:c/ dyT (x,y) (17)

In the following analysis, we assume that both the heat ssurc (a2 — a1)(ba — b1) by
and the field regions are located on discrete horizontalgslan
Since the vertical dimensions of the devices are much smalf
than that of the silicon chip, this assumption is reasonétle th
most practical purposes. For a particular pair of sourcefihd
planes, i.e., for a particular and 2/, the Green function can be T, = T,, +
written as

b2
G(z,y,2',y") ZZC’ ncos( )Cos(n—zy)x /a1 dgc/b1 dy/a d:Jc/b3 dy'G(z,y,z',y)

m=0n=0 =To + CooPa(as — az)(bs — b3)+

o (T ) () e (S o o (25 ()]

The temperature distribution on the field plane due to the hef (mm4) sin (mma } }+
a
T

sources on the source plane is given by )
a b Pd(a4 — a3) > . n bz e n7rb1
T(I’, y) — Ta 4 / dZC// dy/G(:C,y, ZZ?/, y/)Pd(«r/7y/) (16) { (b2 —_ bl) nz_;)EOn |:Sln < b ) sin < b >:| X
0 0 -
. . L . b
where P,(x’,y’) is the power density distribution on the source{sm ( ) sin (nz 3)] }+
plane.

S5 o [sin (P2 i (129
I1l. THERMAL SIMULATION ALGORITHMS (a2 — a1) b2 (az —a1)(bz — b1) " a a

m=0n=0

A. Algorithm I: Thermal simulation using the DCT and table[Sln (mm4) B Sm( mgﬂ {Sin <n7rb2) s (nﬁbl)] o

bstituting (15) and (16) into (17), and modifying the gre
n limits of (16) according to the location and dimensiafs
e source region, we obtain

L
(a2 —a1)(b2 — b1)

look-up b

Since practically all of the on-chip geometries can be deL-?in (mbzl) _ sin (nﬁbg)] } 18)
composed into combinations of rectangles, we only focus o b b

a




where sum of 64 terms in the form

C (L)Q if m#£0 I = — mn(a;+a;) n(bytby)
Do = m0 \mz . 19 z A ER) Up =)
0 { 0 if m=0 (19) :t4 ZO Z()ancos a €08 b (28)
2 . -
Eon = { Con (77,_1)71') !f n#0 (20) wherei =1,2, j = 3,4, p=1,2, andq = 3,4. Using a similar
0 if n=0 approach, equation (28) can be cast into
Conn ()2 (2)° if m#£0,n#0 MON
Fn = { mn \mn nw ) (21) 1 mmnk nml
0 otherwise - S| —— S| —
:l:4 Z Zanc05< % )cos< i > (29)

Using the identity m=0n=0
’ where0<k<M and0<I<N. This is one term in the 2-D type-|

sin(6; )sin(fy) = l(cos(gl — 63) — cos(6y + 65)) (22) DCT of the matrixF},,. The 2-D DCT matrix can be computed
2 using the FFT inO((M-N) x log(M-N)) time, and after the
the first summation 2-D DCT table is obtained, the double summation reduces to 64
table look-ups in constant time and then adding up the Iqok-u

= . (mTas . /mmaq . /mmas . /mmas
E Do [sm ( ) — sin ( )} [sm ( ) — sin ( )} results.
a a a a

m=0 23) Note that when multiple heat sources are present, theictsffe
can be re-written as a sum of eight terms in the form on the average te_mperatu_re rise abdyan the field region, i.e., _
the integral term in equation (16), can be summed up to obtain
m(a;+a;) the total average temperature rise.
:I: Dpoco 24 ) . o
Z mo ( a (24) The selection of the discretization parametés and N
_ . deserves some more considerations. Assume that the minimum
wherei = 1,2 andj = 3,4. feature size along the andy directions that must be resolved
To utilize the DCT, we first discretize the source and fieldre z,,;, andy..:., respectively, thed/ and N must satisfy
planes intoM equal divisions along the direction andN equal b
divisions along they direction and form the grids. Then we M>M, = and N>N, = (30)

Tmin Ymin

truncate the summation in equation (24) at index As will
be discussed later, the indicé$ and N are determined by the Where M, and N, represent the minimum values 8f and N
considerations of both the resolution of thermal analysid afrom resolution considerations. However, sinté and N are

the convergence of the Green function. If we assume that alf0 the truncation points of the summations in equatior), (18
the vertices of the field and source regions are located ah gifiey must be large enough to ensure the convergence of the

points, i.e.,% = ki 4 — 1\, 2 wherek; andk; are integers, and summations. As pointed out in [20], the summations converge
0<k;<M, 0<k;<M, then equation (24) becomes more slowly asz,,;, andy,,;, become smaller relative to the
Iy chip dimensions: and b. Thus, the actual values dff and N
il Z D cos (mw(kiikj)) (25) cannot be determined merely based/h and NV,.. Let M. and
mo M N, be the minimum values af/>M,. and N >N, such that the

convergence is achieved in (18). In our implementatitiy,and
Let N,. are determined as follows. We consider nine representative

Fith; if 0<kitk; <M regions on each of the source and field planes as shown in
k=q —(kith;) !f hithk; <0 (26) Fig. 3. Each region has dimensionssf, X ymi.. We first set
2M — (kiky) if kith; > M M, = M, andN, = N,.. Then we increasg/, andN, gradually
then0<k<M and equation (25) can be re-written as until the convergence of the summations in (18) is achievedlf
" of the possible locations of the source and field regionsigeal/
il Z D ocos <m_7rk) 27) the source region coincides with one of the nine represeatat
mo regions on the source plane while the field region coincidiés w

one of the nine representative regions on the field planallin

This is precisely one term in the type-I DCT of the sequengg assist the utilization of the FFT in the DCT computatiohs,
Do, and the DCT sequence can be computed efficiently usiggid v are chosen to be integers that are powers of 2 and are no
the fast Fourier transform (FFT) i@ (Mlog(M)) time [19]. smaller thanM, and N, respectively.
After the DCT sequence is obtained, it can be stored in a vecto Compared with the classical Green function method, the ad-
and used many times in future temperature calculations. As/gntage of our algorithm is that it replaces the expensiuebtio
result, the computation of summation (23) is reduced to teigummations in the expressions involving the Green function
|OOk-UpS in the DCT vector in constant time and then addlng lﬂjg/ the inexpensive summations of a few numbers in the pre-
the look-up results. Similarly, the summation involvig,, in  calculated look-up table and vectors. The look-up table and
equation (18) can also be obtained efficiently using the DI avectors only depend on the chip dimensions and the physical
table look-ups. properties of the substrate, but are independent of theutayo

The double summation in equation (18) can be re-written asaad power distribution. Hence, the look-up table and vector



is the response of the linear system to the spectral componen

k2 ¢ij(x,y) [12]. After the spectral domain representation of the
] [ [] Ymin power density distribution in the source plane is obtairted,
kY temperature distribution in the field plane can be calcdlegsily
> | by

Tmin

T(z,y) =Ta+ Y > Aijaiiéi(z.y) (35)

Fig. 3. The locations of the nine representative regionshensource plane. =0 j=0

Each region has dimensions ®f,;, X ymin. One region is located at the center
of the plane, one is at the mid-point of each edge, and one &t corner.

Similarly, we have nine representative regions on the fiddta As will be shown next, both the spectral decomposition in) (31

and the double-summation in (35) can be calculated effigient
using the DCT and IDCT through the FFT.

can be calculated once and then used many times in thermal-
aware physical designs, which significantly reduces thertireol Posecs [Pracs Py,
cost of obtaining the table and vectors, and improves theative —— !
efficiency of the algorithm.

N, grid cells —|

B. Algorithm IlI: Full-chip thermal simulation using the speal
domain computations

p01 p 11 pM—l,l

Algorithm | gained its efficiency from the faster evaluaton
of the expressions involving the Green function. Asymgtty,
however, it is still an expensive method for simulationsoiring |«<— M, grid cells —|
a large number of heat sources and field regions because the
effects of the heat sources on the field regions are calcliate Fig- 4. The arrangement of the/, x s grid cells on the source plane.
pair-wise fashion. The second algorithm we present in #tsien
targets full-chip thermal simulations with large probleimes.

It uses spectral domain analysis to reduce the asymptatie ti Now we assume that the source plane is divided ifox N,
complexity of calculating the on-chip temperature disttibn. In  rectangular grid cells of equal size as shown in Fig. 4, ard th
the following analysis, we focus on the effect of one soulee@ power density in each grid cell on the source plane is uniform
on the temperature distribution in the field plane. When iplglt i.e., the power density distribution can be written in thega-
source planes are present, their effects can be easily sdmame wise constant form

pﬂO p 10 pM—l,O

|<_

X

to obtain the final solution. M,—1N,—1 1 1
Since the convolution integral in (16) can be consideredas tP;(z’,y') = Z Z Pmn(a(x/—(m—l-E)Axs, y/—(n—|—§)Ays)

governing equation of a linear system determined by the iGree m=0 n=0

function G(z,y,2’,y’), we can use spectral domain analysis to (36)

accelerate the computations corresponding to the conealutwhere

integral. 1 if [2/|<iAz, and|y'|<i Ay,

I
The first step of our algorithm is to obtain the spectral domai O(z',y) = { 0 otherwise (37)
representation of the power density map in the form

o oo and Az, = 13-, Ay, = Ni P,.. is the power density of the
Pd(SC/, yl) = Z Z a”gb” (ZZTI, y/) (31) mnth gl’ld Ce”.
=05=0 Note that if the piece-wise constant power density map is not
where , , directly given in the form of (36), it can be conveniently ited
43 (z,y) = cos (ﬂ) cos (Jﬂ) (32) fr.om_the layout geometries and the power generated by each
a b circuit component. Assume that the layout of each component

is within a rectangular-shaped region as shown in Fig. 5, and
the region corresponding to thi€ component; is defined by

rl <z < 2F andyP <y < yI'. The range of the indices:
andn of the grid cells that thé*” component overlaps is given

It is easy to show thap,;(x,y) satisfies the equation

a b
Ny (1) = / da’ / &y Gla,y, 2,y )i (') (33)
0 0



P;(«',y"), a natural criterion for determining the truncation point
> = is that enough “energy” contained iy (z’, y’) is covered by the
_+_ truncated Fourier expansion. Mathematically, we have
Ay
T / dx/ dy' P3 (2, —abZZsU ai; (42)
, =0 j=0
T Yy
L where _
C; 1 ifi=5=0
yP - - 1= . o sij =1 & ifi=0,7#0 ori#0,j =0 (43)
; ; % if i£0, j£0
xtF ol

Substituting (36) into the left hand side of (42), we obtain
Fig. 5. Calculating the power density map from the given laygeometries

and the power generated by each circuit component. 1 MeZINs—1 o0
_ 2
=D sial (44)
m=0 n=0 i=0 j=0
by which can be considered as a form of the Parseval’s theorem.
L zk |<m<] xR The truncation pointg/’ and N’ are then determined by
m
Azg,” —

A;SJ M'—1N'—1 M,—1N,—1
P | B (38) > sta?jzn( Z > P ) (45)

Ay, Ay i=0 j=0 m=0 n=0

Assume that the total power generated by tfecomponent is
given by PT, then its contribution to the power density of th
mnt" grid cell that overlaps with it is

wheren is the proportion of the “energy” of the space domain
e'5|gnal Py(2,y’) that must be covered by the truncated Fourier
expansion. In practice, we found that settingto 90% will

Sin o 1 (39) usually be enough to obtain very accurate results in tenyrera
(zF —2E)(yT —yB) ~ Az, - Ay calculations.

where Si  is the overlap area of the rectangle correspondingWe emphasize here that (45) does not imply that only a
to the it component and thewn!" rectangular-shaped grid cell,fraction, n, of the total power generated by the heat sources is
and it can be calculated in constant time. Therefore, oiptgin included in the truncated expansion. In reality, the totaer
the piece-wise constant power density map from the layagtcompletely contained in the DC term of expansion (31), and
geometries and the power generated by each circuit compon@®) only describes how accurately we are approximating the
has only a linear time complexity with respect to the numbexactshape of the space domain signal, if&y(z’,y’). A smaller
of components in the circuit, and it can be usually ignoregimplies that more components with high spectral numbers in
compared with the costs of other calculations involved ia thP;(z’,y’) are ignored, or equivalently, momero meannoises

0Py, =P x

thermal simulation. with high spectral numbers are added to the approximatingepo
Substituting (36) into (31) and using the orthogonalitygedy  distribution. Since the temperature distribution is ckdted using
of the cosine functions in the integral sense, we obtain (16) and the convolution with the Green function has a low-
Mg—1Ng—1 x(2m + 1) ir2n+1) pass filtering effecty does not have to be extremely closg to 1l
aij = Aij Z Z PmnCOS( oM, )C S <T) in order to calculate the temperature accurately. We alsot po
m=0 n=0 ° (40) out that althoughy is set to a constant number, the truncation
points M’ and N’ are not determined priori in our algorithm.
where Instead, the_y depend dhi(a_:’, y') allccolrding t.o (45). Our strategy
1 o of determining the truncation points is to first 9at = M, and
M, N, _ ifi=j=0 N’ = N,. If (45) is not satisfied, then we increa€ to 2M, and
“\iﬂsin (211\’}) if i#0,5 =0 N'’1t0 2N,. The summation limitd/’ and N’ continue to increase
Aij = sin (L) it i =0, j£0 (41) with steps ofM, and N, until (45) is satisfied. The importance
Msjm 2Ne . ) of determining the truncation points dynamically based loa t
Z.jl%sin (23\’}) sin (%) if i£0, j#0 input data will become more obvious as the size of the problem

. ... increases.
Note that to accurately represent the power density digtab

Py(2',y") using (31), the theoretical upper limit of the double Note that for0<i<M, and 0<j<N, the double summation
summation should be infinity. In practical implementatiomsw- in (40) can be considered as a term in the 2D type-1l DCT [19]
ever, the summation must be truncated to ensure a reasonabléthe power density matrix’. For i>M, or j>N,, we can
runtime. Since (31) is essentially the Fourier expansion aefways find integers; ands, such thati = 2s; M,+i andj =



2s9N,+; where0<i<M, and0<j<N,!. Hence, for any and
j, we always have B
aij = £Ai; By (46)

where

—1Ns—1 ~
m(2m + 1) Jr(2n+1)
E E P,,.,cos < SN, ) cos <27]Vs

m=0 n=0
(47)

with 0<i<M, and 0<j<N, is the 2D type-Il DCT of theP
matrix and the sign of (46) is determined by whetherand s,

are even or odd numbers [12]. Equation (47) can be calculatdd 4) TSE = 175 >0 0 o P2

efficiently using the 2D FFT itO((M,- N ) xlog(Ms-Ny)) time.
After the 2D DCT matrixP is obtained, the calculation af;;
simply involves computing the coefficie;; and finding the
corresponding termﬁj.

From (32), (35), and (45), the temperature distribufita;, y)
can now be written as

M'—1N'-1
T(x,y) =Ts+ Z Z )\”awcos( )cos (j y) (48)

=0 7=0

Input:

« Chip geometry and physical properties of the matgrial
layers.

o Power density map - matri®.

Output: Temperature distribution map - matfix
Algorithm:
1) Calculate the Green function coefficierts;’s;
2) Calculate the spectral responses of the systefs;
3) Calculate the type-Il 2D DCT of the power deng
matrix P = 2DDCT({D)

ity

5) M'=M,, N'"=N,;
ASE =M ! ZN,O_I $ijaz;;
while ( ASE < 77><TSE )
M =M + My, N' = N'+ Ng;
UpdateASE;
end while
6) Calculate the matrix;
7) Calculate the temperature distribution map using| the
type-1l 2D IDCT T =T, + 2DIDCT(L);

Thermal simulation algorithm using the Green fumttimethod, the

If we assume that the temperature field plane is divided m,g'gT, and the spectral domain computations.
M¢x Ny rectangular grid cells of equal size, then the average

temperature of thennt” grid cell can be obtained by

1 (m+1)Axy (n+1)Ays )
Tmnzi/ dx/ dyT(x,y
A':CfAyf mAzx ¢ nAyy (
M —1N'—1 )
m(2m +1) Jjr(2n+1)
T4 3 Y dgeos (TERE Y eos (13D
=0 j=0 T f
(49)
whereAz; = 34—, Ayy = -, and
/\ijaij if 4 Zj =0
2555 2 sin (555 if i£0,5 =0
Bij - 2/\@'&@'%8111 (%) if @ = 07]7£0
ANijaq; A;[Jfgf sin (2M ) sin (%) if i£0, j#£0
(50)

Similar to the analysis shown previously, ailyM; andj>Ny
can be wr|tten as = 283Mf:|:2 andj = 2S4Nf:l:] such that

where
Boo ifi=5=0
Z i< M’ Zl:BiO |f 5750,5 =0
I i=2s3MpEi R .
AN IO DR =By, if 2 =0,5#0
J=2syNyEj A .
Y e > i< +B,; if i#£0, j#0
i=2s3MpEi j=2s4Np£]

(52)
and the signs of thé3’s in (52) are determined by whethes
ands, are even or odd numbers. After the matfixs obtained,
the double summation in (51) can be calculated efficientiggis
the 2D IDCT.

The complete thermal simulation algorithm using the Green
function method, the DCT, and the spectral domain computa-
tions is shown in Fig. 6. The asymptotic time complexity of
the algorithm isO (N, x1log(Nys)) + O(Ny ¢ xlog(Ny¢)) where

O<Z<Mf, 0<3<Nf, and s3; and s, are integers. Using the NVys = M,-N; is the total number of grid cells in the power

periodicity of the cosine function, we can finally cast,,, into
the form

M;—1N;—1 w@m 4 1) 2 @n+1)
m Jm(2n
Toin = Ta + Z Z L cos ( 20, ) cos <72Nf )

’LO j=0

(51)

Lf 4 equals an odd multiple of/s, we will not be able to writei asi =

2s1Ms=+i. However, for this kind ofi, it can be easily shown that;; = 0
becausecos M) = 0. Similarly, we know thaia;; = 0 if j equals an

odd multiple of N.

density map, andV,; = M;-N; is the total number of grid
cells in the resulting temperature profile. This is a sigaifitc
improvement over the(N;-N, ;) complexity of Algorithm |

for full-chip thermal simulations.

C. Algorithm 1lI: Thermal simulation with local high accucg
requirements

Although Algorithm 1l can achieve @ (N, xlog(Nys)) +
O(Nyyxlog(Nyyf)) time complexity as opposed to a
O(Nys-Nyy) complexity of Algorithm | for full-chip thermal
simulations, Algorithm 1| is still more efficient for perfoiing
the localized analysis, where the effects of a few critidedust



blocks on the temperature distribution in a few key field oegi

Ooo0Oo0ooono

. . . Oo000o0ooo

are of interest. This is because to apply Algorithm II, we mus DooopoEn
always superimpose regular grids over the entire source and muju] |[sful=js) 0
field planes and calculate the complete temperature profita f o e e 8
the complete power density distribution. The size of eadtl gr oooogaoo %
cell must be comparable with that of the resolution requéem DoooEoon >

of the calculation, and the total number of grid cells detegs
the problem size. Therefore, although Algorithm Il has alsmna
asymptotic time complexity than Algorithm | for full-chip
thermal simulations, it may also require the formulation of
a problem with much larger size than Algorithm | if only

some localized temperature calculations are required fyi€i Fig 7. A mixed signal chip where the analog block has higkeuirement on

designers. the accuracy of thermal simulations. The logic gates anébgrfanctional units

. ep .. . within the dashed line constitute the €&{A).
We will face an even more difficult decision concerning )

whether Algorithm | or Algorithm Il should be used when a

circuit designer has different requirements on the acquaic

the thermal simulation over different parts of the same chipf the spectral domain representation of the power density, m
For example, in mixed signal designs where analog circuigs avill come from two sources which include

fabricated on the same chip as digital circuits, the analogks . Assuming that the power density in each grid cell is uniform.
often have more stringent accuracy requirements on thentiler « Only the average temperature of each grid cell is calcujated
simulation because the operations of the analog circuisrare i.e., all of the logic gates and analog functional unitsdesi
sensitive to temperature. If the full-chip temperaturefifgas the same grid cell obtain the same calculated temperature.

required, then Algorithm | will be too slow to use. Howeverygy assume that we need to calculate the temperature of the
in order to use Algorithm II, the size of each g.rld cell mus{analog functional unitA located in theij* grid cell and

be small enough so that the high accuracy requirements of agresented by the black rectangle more accuratelyTLebe
analog blocks are sat|§f|ed. This may _result in very densisgrije average temperature of thig¢’* grid cell obtained using
and a large problem size. For these kinds of problems, arbe;&?gorithm I, and letT}; s be the contribution to the average
strategy can be gqlopted to accelerate the runtime Qf theithlgo temperature rise of the;j*" grid cell from the logic gate or
further by combining the advantages of both Algorithm I ahd 15516¢ functional units assuming that the power generated by
The key idea is to use coarse grids to divide the source agqs niformly distributed in the grid cell in which it resides
field planes where each grid cell in the source plane can TONtRanote the more accurate average temperature of the analog
several logic gates or analog functional units, and the@izach  ¢,nctional unitA by Tgecurate, and letT'3ecurate be the accurate
grid cell in the field plane satisfies the accuracy requirdmeh contribution to the temperature rise of from the logic gate

the digital circuits. The power density of each grid cell iret analog functional unilS. The temperaturdé<c“rate can be
source plane is calculated by summing up the power dissip@ti jpiqined by A

of all the logic gates and analog functional units locatedtin
and dividing the sum by the area of the grid cell. A coarse TA“"™* =Tj;— Y  Tys+ Y Ti%6""" (53)
temperature map for the field plane is then obtained from the SeC(A) SeC(A)

coarse power d_ensity map using Algorithm_ll and i_S ”Seo_' for th here C(A), which will be called the interaction set of in
digital blocks. Finally, for egch analog functional unit the field the following analysis, is the set of logic gates and analog
planeAlwhqs;]e telmperature IS tr? be calf:bula}ted more accurately functional units that are physically close #y and hence, whose
use Algorithm | to compute the contrioutions to its temperat i tions to the temperature rise 4fmust be re-calculated

rise from the nearby logic gates and analog function units %%curately. The size @¥'(A) is determined by the actual accuracy
the source plane, and use this result to correct the temypera equirement on the temperature df and a higher accuracy

obtained by Algorlthm Il over the coarse grld cell To.smfuoh requirement is usually associated with a larggr). Both T;; ¢
the presentation, we assume in the following analysis that t '

S . i and T'§<¢“™** can be calculated efficiently using Algorithm I,
source plane coincides with the field plane and both of them And the overall efficiency of the combined algorithm is highe

divided into M x N coarse grid cells. However, this assumptio an that of Algorithm II applied with a fine grid over the eeti

Is not essenna_l to the a'go“‘h”_‘ and it can be relaxed eas Mip that satisfies the high accuracy requirements of théogna
to handle multiple source and field planes such as that in Rictional units

emerging three-dimensional IC technologies.

Fig. 7 shows a chip that is divided infd x N coarse grid cells
each of which contains several logic gates or analog funatio
units, and let the shaded area represent the analog block. Alle summarize the time complexities of the three algorithms
MxN temperature map is first obtained. The inaccuracies im this section. Note that the calculations involved in eacth
the temperature calculations, besides that due to theatimamc the algorithms can be divided into two parts, i.e., thosey onl

}47

—— M grid cells—

D. Time complexity analysis
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depend on the chip geometry and the physical propertieseof thnger than that of Algorithm Il when the accurate tempea®atu
chip materials, and those depend on the input power densityrection is to be performed over all of the gates and foneti
distribution. The computation steps that only involve thepc units. However, as pointed out previously, it frequentlypbans
geometry and material properties can be performed in the pire real design environments that the temperature cormedso
characterization phase of the design, and their resultsbeanonly required for a small portion of the circuit. Therefotee
stored for further uses. Therefore, the amortized costheée total cost of Algorithm Il become@(% Xlog(%) +
steps are usually rather low in the overall physical desigegss, N.-K'), where N, is the number of gates and functional units
where the optimization routine executes the thermal sitimula that require temperature corrections, and Algorithm litdraes
many times. The steps that involve the input power densityore efficient than Algorithm Il under this situation.
distribution, however, must be executed within the optatian
routine in physical designs. Hence, they usually dominhte t IV. EXPERIMENTAL RESULTS
overall runtime of the thermal-aware physical design atgors |n this section, we present in detail the performance oftihect
such as the thermal-aware floorplanning and placement. Tdigorithms, which are implemented in C++ and compiled using
establishment of the look-up table and vectors in Algorifrand  the level 3 optimization of g++. The experiments are perfedm
the calculation of the spectral responses of the lineaesysh on a desktop with a 3.2GHz Intel Pentium-4 CPU running the
Algorithm 1l can both be performed in the pre-charactei@at Red Hat Linux 8.0 operating system. We first compare the
phase, and in the following analysis, we will ignore the sostesults obtained from Algorithm | with that from a commetcia
of these steps and only focus on the time complexity of th®mputational fluid dynamic (CFD) software package and that
calculations that depend on the input power density disiob. from the direct application of the Green function method in
For the input-power-dependent steps in thermal simulatioterms of accuracy and efficiency. Then we use Algorithm | as
Algorithm | has a time complexity of)(N, xA), where N, our base method to characterize the performance of the other
and N; are the number of heat sources and field regiortsyo algorithms.
respectively. Algorithm Il always works with full-chip paw The commercial CFD software package uses a finite volume
density distribution and generates the complete on-chippés- approach which meshes the entire substrate. Because of the
ature profile. It has a time complexity 6¥(N,s xlog(Nys)) + discretized nature of the method, meshing errors are udabts.
O(N, ¢ xlog(Ny¢)) whereN,; = M,-Nj; is the total number of In order to control the meshing errors while still complete t
grid cells in the input power density map, and; = M;-N; is computation within a reasonable amount of time, we starh wit
the total number of grid cells in the obtained temperatucdiler  a relatively rough mesh and continue refining it and re-ragni
Here, M, and N, are the number of grid divisions along thehe simulation until the maximum error converges to arou¥td 1
x and y directions on the source plane, add; and N; are By doing this, we ensure that the result produced by the CFD
the number of grid divisions along the and y directions on software itself is accurate, and therefore it can be usedvatich
the field plane. It is obvious that Algorithm Il is better thareriterion to evaluate the accuracy of our algorithms.
Algorithm | for full-chip temperature profiling, becauseettatter
has a time complexity o®(N,s-N, ). For the localized analysis A. Accuracy and efficiency of Algorithm |
where only a few source and field regions are involved, howeve rig g(a) shows the top surface of a silicon chip with di-
Algorithm | can often perform better becausg, and Ny, are  mensions ommx 2mmx0.5mm. The area is divided int®x8
determined by the highest resolution requirement of théyaisa equal square sections, and five power sources are placed in
andN; and\/; are usually much smaller tha¥y, and Ny for  the corresponding sections as shown in the figure. The therma
this type of problems. conductivity & of silicon is 148W/(m-°C), and the effective
To compare Algorithm Il and Algorithm 1ll, we assume thaheat transfer coefficient of the bottom surface of the chip
there areN;.:,; logic gates and analog functional units in thés chosen to be3700W/(m2-°C), which is consistent with the
design. Using Algorithm II directly with a grid size comphta value used in [18]. The strength of the five power sources are
to the smallest size of the gates and functional units wiute (P, P, Ps, Py, P5) = (0.2W, 0.1W, 1W, 0.1W, 0.2W).
in a time complexity ofO(Niotai X10g(Niotar)). For Algorithm Fig. 8(b) shows the top surface temperature map obtained usi
lll, a coarse grid is first used in the calculation. If we assunAlgorithm I, whereT — T, is the temperature rise above the
that each coarse grid cell contaiAS gates and functional units, ambient. In obtaining the temperature map, the top surfdce o
then the time it takes to obtain the coarse temperature @rigfil the chip was divided int64 x64 small square regions with equal
O(% xlog(%)). Now, if the accurate temperature correcsize and the average temperature in each small square regfon
tion is to be performed over all of the gates and functiondisun computed. The parametefd and N were both set to 64, the
then an additional cost @D (Niorei-K') is required wheres” is  minimum required values from resolution consideratioesause
the size of the interaction set of each gate or functiond| anid the convergence of the Green function has already beenvachie
the total cost become®(N;rar X (%log(%) + K’)). Note with M = N = 64. Fig. 8(c) shows the relative error in the
that theO(N;otai-K') term in the complexity analysis involvestemperature map compared with the computation result mdbdai
a relatively large pre-factor due to the 80 look-ups needed from a commercial CFD software package for thermal analysis
calculate the correction corresponding to a pair of gatdsme- We can see clearly that the error is belo¥, which demonstrates
tional units. Hence, the actual runtime of Algorithm Il iften the accuracy of our method.
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Fig. 8. Accuracy of Algorithm | (a) power source locationg @@mputed temperature distribution abdlg using the proposed algorithm (c) relative error of the
proposed algorithm compared with the result from a comrab€FD software package.

We next compare the efficiency of Algorithm | with that of the
direct application of the Green function method to compbee t 70
temperature distribution. We still use the same chip dinerss 60 |
and physical properties as in the previous example. However
only one power source is used this time to make the presen-
tation clearer. The power source occupies a square regittn wi
dimensions of Z:mm x Zzmm at the exact center of the chip.
The strength of the power source i3 = 50mW. The average
temperature aboVE, of the source region itself is computed. The 107
parameterd/ and N are both chosen to be 512 in our algorithm 0 : : : : :

. . . . 0 50 100 150 200 250 300
from convergence considerations for the Green functian, i. Truncation Point\ = N
we require the truncation error to be withi¥s. The infinite
summations in the Green function are more difficult to cogeer @
in this example because the sizes of the source and fieldn®gio
relative to the chip dimensions are smaller than those in the
previous example. 70

Using Algorithm |, the average temperature of the source 60
region itself abovel}, is found to be 11.537°C. The total com-
putation time using the pre-calculated look-up table anttors
is only 5.5 x 10~*msec. As a comparison, we also computed the
average temperature abd¥g of the source region using equation
(18) directly, which corresponds to the direct applicatafrthe
Green function method. In the direct method, it is unneggssa 101
to consider the resolution issue because equation (18) miates 0 : ‘ ‘ ‘ ‘
require the verticega;, b;) of the source and field regions to 0 Sgrrunggtionlfgoiné\?: ]2\5;0 300
coincide with some grid points. So the parametefsand N are
completely determined by the convergence consideratimteS
the chip is square, we sé&f = N in our analysis.

Fig. 9_ shows the relative error and the corresppndlng ert”Eig. 9. Accuracy and computation time of the direct appiwatof the Green
of the direct method. We can observe from the figure that evgRction method (a) relative error ii — T, versus truncation point (b) runtime
for a 5% relative error inT' — T, the truncation point must be versus truncation point.
higher than 160. The runtime at this truncation point isndé€c,
which is four orders of magnitude slower than our algoritiamd

50 |
40 +
30+
20 |

Relative Error (%)

50 |

40 r

30

RunTime (nsec)

20

(b)

the accuracy of our algorithm is much higher. from [21], which is similar to that of the DEC Alpha 21264
) ] _ processor but is scaled from tB80nm to the65nm technology.
B. Comparison between Algorithm I and Algorithm II The scaled chip dimensions &&8mm x3.3mm x0.506mm, and

Now, we compare the efficiency and accuracy of Algorithmwe assume that the chip has the same physical propertiegses th
and Il using a real chip example. Fig 10(a) shows a floorplarsed in the previous examples except that a layer reprageht
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Fig. 10. Power and temperature distribution of a realistipp qa) floorplan (b) schematic of the substrate and intareon layers (c) power distribution (d)
temperature distribution obtained using Algorithm | (enperature distribution obtained using Algorithm |l (f) feéifence in the temperature distribution map
obtained using the two algorithms.

interconnects is inserted between the insulating top serfand well. From the figures, we can also observe that the temperatu
the substrate as shown in Fig 10(b). The added layer is assum®ps are much smoother than the power density map. This can
to have a thickness @fum and an effective thermal conductivitybe explained by the relatively high thermal conductivitytbé
of 101W/(m-°C), which corresponds to a mixing 86% copper, silicon substrate and the horizontal heat transfer [22]. the
which has a thermal conductivity of01W/(m-°C), and 75% CPU times required to obtain the temperature maps, Algaorith
oxide, which has a thermal conductivity ®¥V/(m-°C). In real | uses 3@nsec after the look-up table and vectors have been pre-
designs, the effective thermal conductivity of the intencect calculated, while Algorithm Il only uses hec after the spectral
layer can be estimated by taking the weighted average ohtire t responses of the linear system determined by the underlying
mal conductivities of interconnect metal and oxide basedhen Green function have been pre-calculated. Note that thémerdf
designers’ experiences on the interconnect densitiesediqus Algorithm | is linear with respect to the number of heat s@src
designd. We further assume that the power is generated by thed there are only 14 heat sources in the example shown here. F
modules located at the interface between the interconaget | cell level full-chip simulations where the number of heatrmes
and the substrate, and the temperature profile of this awterf is significantly larger, the advantages of Algorithm Il vikcome
where the modules are located is calculated. Fig. 10(c) shogwen more obvious. Therefore, we conclude that Algorithns I
the power density distribution of the modules Wi/cm?. We more suitable for full-chip temperature profiling, whereaage
divided the module layer int64x64 small square regions with number of heat sources and field regions are involved.
equal size and computed the temperature maps using Algotith  To further demonstrate the efficiency of Algorithm Il in full
and Il, which are shown in Fig. 10(d) and (e). Fig. 10(f) shofwes chip thermal simulations, we tested a chip with dimensiohs o
difference between the temperature maps obtained usinigvthe 1cmx 1cmx0.5mm and has the same physical properties as the
algorithms, and we can see that the results match each aher \¢hips used in Section IV.A. There are 1024024 square grid

) _ _ o cells of equal size located on the top surface of the chip and

For early stages of physical design where the detailed rimition about s
routing is usually unavailable, it is reasonable to use #oumi effective thermal a 1024x1024 temperature distribution map of the cell Iayer
conductivity to characterize the thermal property of eatterconnect layer. is calculated. Fig. 11 shows the input power density map and
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@) (b)

Fig. 11. Cell level power density and temperature distidsubf a 1cmx 1cm chip (a) power density distribution (b) temperatureritigtion.

the resulting temperature map. The time it takes to obtam thelative error compared with the result obtained using thst fi
temperature map containing 1.05M grid cells is only 3.7sesimulation scheme. We can see that the maximum relative erro
excluding the time for the pre-calculations, while the mm& is only about 1.3%. This demonstrates that using Algorittim |
of Algorithm | becomes intractable. with a coarse grid and the correction scheme can indeedwchie
a local accuracy comparable to that obtained by Algorithm Il
with a fine grid over the entire chip, while the overall rungins

significantly reduced.
Finally, we show an example of thermal simulation with

local high accuracy requirement. We consider a chip that con

tains 8<8 coarse grid cells each of which has dimensions of

3.3mmx3.3mm, as shown in Fig. 12(a). The chip has the same V. CONCLUSIONS

material properties as the ones used in Section IV.A. We dmbe

the layout and power density distribution shown in Fig. J0(a In this paper, we presented three highly accurate thermal
and (c) in the coarse grid cell located at the lower left cornsimulation algorithms based on the Green function method
of the chip, which we denote bg’GC(0,0) in the following and analyzed in detail the relative advantages of each of the
analysis, and the power density of each of the other 63 coasadgorithms. Algorithm | combines the DCT and the table look-
grid cells is randomly generated between 0 and 1@0MY/ up technique to significantly reduce the time required farhea
Suppose that we want to obtain 8 coarse temperature mapevaluation of the Green function, and it is suitable for effitly
over the 64 coarse grid cells and a>@&¥4 fine temperature performing the localized analysis, where the effects of w fe
map within CGC(0,0). We compare two simulation schemescritical circuit blocks on the temperature distributiomsa few

In the first scheme, Algorithm Il alone is used. In order tfield regions are sought. Algorithm Il is based on the spéctra
achieve the accuracy requirement of the fine temperature ntpnain analysis, and it takes advantage of the high effigienc
within CGC(0,0), we have to divide each of the 64 coarse gridf the FFT algorithm in transforming signals between thecepa
cells into 64x64 fine cells, which results in a total of 54812 and spectral domains. For full-chip thermal simulations;an

fine cells over the entire chip. The time it takes to complechieve anD (N, xlog(Nys)) + O(Nyyxlog(Nyr)) asymptotic
this simulation is 85fsec. In the second simulation schemdjme complexity as opposed to t&(\N,, - N,5) complexity of

we first obtain a &8 coarse temperature map from the® Algorithm I, where Ny, and V;; are the total number of grid
coarse power density map assuming that the power denshynwitcells in the source and field planes, respectively. Algarithi
each coarse grid cell is uniform. The average temperaturei®fa combination of both Algorithm | and Algorithm I, and it
CGC(0,0) is found to be 79.4°C, while we know from the firstreflects the idea of the pre-corrected FFT. Its key appbocati
simulation scheme that the actual temperature withinC'(0,0) area is the full-chip thermal simulation with different acacy

can vary from 71.2°C to 84.9°C. Next, we use a correction stepquirements over the same chip, such as in the mixed signal
as described in Section IlI.C to obtain the fine temperatuap mdesign environments, where the analog blocks often have mor
within CGC(0,0). The overall runtime of the second simulatiorstringent requirements on the accuracy of thermal sinonati
scheme for obtaining both the coarse and the fine temperataver the digital blocks. Experimental results show thattlalee
maps is only 7fhsec, which is an order of magnitude faster thaalgorithms can achieve around 1% errors compared with that
the direct application of Algorithm Il with a fine grid overdgh of a commercial computational fluid dynamics software pgeka
entire chip. In Fig. 12(b) and (c), we show the fine tempegatufor thermal analysis, while at the same time gaining orddrs o
map withinCGC'(0, 0) achieved after the correction step and thmagnitude speedups over the classical Green function m&tho

C. Effectiveness of Algorithm IlI
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Effectiveness of Algorithm Il (a) location of thearse grid cellCGC(0,0) that has higher requirement on thermal simulation (b) teatpee map

within CGC(0, 0) calculated using Algorithm Il (c) relative error of Algdhim Ill compared with Algorithm 1l applied with a fine grid ovéhe entire chip.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

El

[10]

[11]

[12]

[13]

REFERENCES

D. Chen, E. Li, E. Rosenbaum, and S. M. Kang, “IntercomriBeermal
Modeling for Accurate Simulation of Circuit Timing and Retlility,” IEEE

Transactions on Computer-Aided Design of Integrated Giscand Systems
vol. 19, no. 2, pp. 197-205, Feb. 2000.

S. Rzepka, K. Banerjee, E. Meusel, and C. Hu, “Charazaédn of Self-
heating in Advanced VLSI Interconnect Lines Based on ThérRiaite

Element Simulation,"EEE Transactions on Components, Packaging, and

Manufacturing Technology, Part,Aol. 21, no. 3, pp. 406-411, Sept. 1998'[16]

T. Y. Wang and C. P. Chen, “3-D Thermal-ADI: A Linear-Tim&hip

Level Transient Thermal SimulatolEEE Transactions on Computer-Aided [17]

Design of Integrated Circuits and Systerasl. 21, no. 12, pp. 1434-1445,
Dec. 2002.

C. H. Tsai and S. M. Kang, “Cell-Level Placement for Impireg Substrate
Thermal Distribution,”|IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systemeol. 19, no. 2, pp. 253-266, Feb. 2000.
B. Goplen and S. S. Sapatnekar, “Efficient Thermal Plam@nof Standard
Cells in 3D ICs Using a Force Directed Approaciigest of Technical
Papers, 2003 IEEE/ACM International Conference on Conpéided
Design pp. 86-89, Nov. 2003.

P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “Effictelaull-Chip Ther-

mal Modeling and Analysis,Digest of Technical Papers, 2004 IEEE/ACM[21]

International Conference of Computer-Aided Desigp. 319-326, Nov.
2004.

A. Haji-Sheikh, “Peak Temperature in High-Power ChipEE Transac-
tions on Electron Devicesvol. 37, no. 4, pp. 902-907, Apr. 1990.

Y. K. Cheng and S. M. Kang, “An Efficient Method for Hot-Sptden-
tification in ULSI Circuits,” Digest of Technical Papers, 1999 IEEE/ACM
International Conference on Computer-Aided Desigp. 124-127, Nov.
1999.

B. Wang and P. Mazumder, “Fast Thermal Analysis for VLSicGits via
Semi-analytical Green’s Function in Multi-layer MatesdlProceedings of
the 2004 |EEE International Symposium on Circuits and Systpp. 409-
412, May 2004.

R. Gharpurey and R. G. Meyer, “Modeling and Analysis afbStrate
Coupling in Integrated CircuitsEEE Journal of Solid-State Circuitvol.
31, no. 3, pp. 344-353, Mar. 1996.

A. M. Niknejad, R. Gharpurey, and R. G. Meyer, “Numeligstable Green
Function for Modeling and Analysis of Substrate Couplinglitegrated
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systemwol. 17, no. 4, pp. 305-315, Apr. 1998.

J. P. Costa, M. Chou, and L. M. Silveira, “Efficient Tedunes for Accurate
Modeling and Simulation of Substrate Coupling in Mixed+&g IC’s,”
IEEE Transactions on Computer-Aided Design of Integratédu@s and
Systemsvol. 18, no. 5, pp. 597-607, May 1999.

J. R. Phillips and J. K. White, “A Precorrected-FFT Medhfor Electrostatic
Analysis of Complicated 3-D Structure3EEE Transactions on Computer-

[14]

[15]

[19]

[22]

Aided Design of Integrated Circuits and Systerw. 16, no. 10, pp. 1059-
1072, Oct. 1997.

H. Hu, D. T. Blaauw, V. Zolotov, K. Gala, M. Zhao, R. Pandand S.
S. Sapatnekar, "Fast On-Chip Inductance Simulation usiRgeaorrected-
FFT Method,”IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systemwol. 22, no. 1, pp. 49-61, Jan. 2003.

J. P. Costa, M. Chou, and L. M. Silveira, “Precorreci@T Techniques
for Modeling and Simulation of Substrate Coupling in Mix8anal IC’s,”
Proceedings of the 1998 IEEE International Symposium orcu@tg and
Systemspp. 358-362, Jun. 1998.

M. N. Ozisik, “Boundary Value Problems of Heat Condoaii’ Oxford
University Press, Oxford, UK, 1968.

A. G. Kokkas, “Thermal Analysis of Multi-Layer Struates,” IEEE Trans-
actions on Electron Devicesol. 21, no. 11, pp. 674-681, Nov. 1974.

Y. K. Cheng, P. Raha, C. C. Teng, E. Rosenbaum, and S. MigKa
“ILLIADS-T: An Electrothermal Timing Simulator for Tempature-
Sensitive Reliability Diagnosis of CMOS VLSI ChipdEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systewl. 17, no.
8, pp. 668-681, Aug. 1998.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discf€ime Signal
Processing,” Prentice Hall, Upper Saddle River, NJ, 1999.

20] R. Gharpurey, “Modeling and Analysis of Substrate dogpin Integrated

Circuits,” Ph. D. Thesis, UC Berkeley, Berkeley, CA, 1995.

W. Liao, L. He, and K. Lepak, “Temperature-Aware Perfiance and Power
Modeling,” Technical Report UCLA Engr. 04-250, UCLA, Los éeles,
CA, 2004.

K. Skadron, M. R. Stan, W. Huang, and S. Velusamy, “ Terapge-Aware
Microarchitecture,” Proceedings of the 30th International Symposium on
Computer Architecturepp. 2-13, Jun. 2003.



