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Abstract— Due to technology scaling trends, the accurate and
efficient calculations of the temperature distribution corresponding
to a specific circuit layout and power density distribution will be-
come indispensable in the design of high performance VLSI circuits.
In this paper, we present three highly efficient thermal simulation
algorithms for calculating the on-chip temperature distribution in
a multilayered substrate structure. All three algorithms are based
on the concept of the Green function and utilize the technique of
discrete cosine transform (DCT). However, the applicationareas
of the algorithms are different.The first algorithm is suitable for
localized analysis in thermal problems, while the second algorithm
targets full-chip temperature profiling. The third algorit hm, which
combines the advantages of the first two algorithms, can be used
to perform thermal simulations where the accuracy requirement
differs from place to place over the same chip. Experimental
results show that all three algorithms can achieve relativeerrors
of around 1% compared with that of a commercial computational
fluid dynamic (CFD) software package for thermal analysis while
their efficiencies are orders of magnitude higher than that of the
direct application of the Green function method.

Index Terms— Simulation, thermal analysis, multilayered sub-
strate, Green function method, discrete cosine transform (DCT),
table look-up approach, spectral domain analysis.

I. I NTRODUCTION

As the electronics market continues pushing forward the per-
formance of VLSI circuits, the escalating power consumption has
become a severe problem in chip design. Higher power consump-
tion leads to elevated on-chip temperature, which consequently
affects both the performance and reliability of circuits. In [1],
the authors pointed out that the delay of aluminum interconnect
goes up by 30% when the temperature rises from 25°C to 100°C,
and in [2], it was reported that the electromigration-induced
mean-time-to-failure of interconnect is reduced by 90% when
the temperature increases from 25°C to 52.5°C. This situation
has made it imperative to incorporate thermal effects into physical
design tools for chip design so as to accelerate the design closure
and improve the quality of the final product.

The first step towards the development of a thermal-aware
physical design tool is to obtain the capability of calculating the
on-chip temperature distribution accurately and efficiently given
a power density distribution. The efficiency of the temperature-
calculating algorithm is of paramount importance especially in
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early stages of physical design such as thermal-aware floorplan-
ning and placement, since for these design steps, thermal analysis
is often used as part of the simulation core of an optimization
engine where a large design space of possible physical layouts
must be explored and an independent calculation on temperature
distribution has to be performed for each candidate layout.

Based on the type of analysis they perform, thermal simulation
algorithms can be generally divided into two categories, i.e.,
those for transient analysis and those for steady-state analysis.
Transient analysis is concerned with the evolution of temperature
distribution within a chip given a time-varying power density
distribution, and can be performed efficiently using the thermal
ADI algorithm proposed by Wanget al. in [3]. Steady-state anal-
ysis, on the other hand, is interested in the stabilized temperature
distribution given a time-independent power density distribution
or a power density distribution averaged over time. In this paper,
we will focus on the steady-state thermal analysis.

Several steady-state thermal simulation algorithms have been
used previously in chip design. The finite difference method
(FDM) [4] and the finite element method (FEM) [5] obtain the
temperature distribution through meshing the silicon substrate
and solving a system of linear equations relating the temperatures
of grid cells to the power density distribution. The difference
between the two methods is that the FDM discretizes the dif-
ferential operator of the governing equation of thermal effects,
while the FEM discretizes the field. The advantages of the FDM
and FEM include their robustness and high accuracy. In addition,
the FEM also possesses the capability of handling complicated
boundary conditions. The primary drawback of the FDM and
FEM rests on the fact that they always require volume meshing
of the entire substrate even though the devices are usually
fabricated only in a thin layer close to the top surface of the
IC chip. Hence, even for the cases where only the temperature
distribution within the device layer is of interest, we still have
to solve a large system of linear equations corresponding to
the volume meshing, which leads to low efficiency. In [6], a
thermal simulation algorithm based on the solution of the finite
difference equations using the multigrid approach was proposed,
and its high efficiency has made the full-chip thermal simulation
practical for the optimizations in physical designs.

The boundary element method (BEM) constitutes another class
of thermal simulation algorithms in which the volume meshing
of the substrate is avoided. An important underlying concept in
the BEM is the Green function, which describes the temperature
distribution within the chip when a unit point power source is
present. For the simple geometries encountered in chip design,
the explicit form of the Green function can be obtained, and
the temperature field under an arbitrary power density distribu-
tion can be calculated by integrating the corresponding Green
function. Because the BEM only meshes the power generating
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surfaces in thermal simulations as opposed to the meshing of
the entire substrate by the FDM and FEM, it naturally leads
to a smaller problem size, and hence has the potential of
achieving high efficiency. However, the actual runtime of an
algorithm implemented using the BEM depends critically on how
efficient the Green function is evaluated and how the temperature
distribution is calculated given the power density distribution.
In [7], the classical Green function approach was used in thermal
simulations where the Green function was utilized directlyto
evaluate the temperature field in a rectangular-shaped substrate.
Because the underlying Green function is expressed as a multiple-
infinite summation and it has to be truncated at high indices in
actual implementations to maintain a reasonable accuracy,the
efficiency of this method is rather low. In [8], the method of
images was used to obtain the Green function in closed form
at the expense of relaxing the boundary conditions by assuming
that the chip is infinitely large horizontally. The advantage of
this method is that the Green function can be computed on-
line efficiently and thus it is suitable for optimization purposes.
However, by assuming that the chip is infinitely large horizon-
tally, the on-chip temperature will be severely under-estimated
especially near the boundaries of the actual chip, althoughthe
locations of the hot spots can be correctly identified as shown
in [8]. In [9], an efficient algorithm for evaluating the temperature
field in VLSI chips using a semi-analytical form of the Green
function was proposed which takes into account the multilayered
nature of the semiconductor substrates used in IC fabrications.
Nevertheless, this method also assumes that the chip is infinitely
large horizontally, and therefore it has the same problem as[8].

Note that the computation of the steady-state temperature
distribution T in thermal problems is very similar to the com-
putation of the potential fieldφ in electrical problems. BothT
and φ satisfy the Poisson’s equation, and the power sourceP
in thermal problems corresponds to the chargeq in electrical
problems. In [10] and [11], the discrete cosine transform (DCT) is
combined with a table look-up approach to improve the efficiency
of using the Green function to calculate the electrical potential
distribution within a rectangular-shaped substrate. In this method,
the multiple-infinite summation contained in the expression of the
Green function is not evaluated on-line. Instead, look-up table
and vectors are established in advance so that each evaluation of
the Green function is reduced to the summation of a constant and
80 terms in the look-up table and vectors. This is a significant
improvement over the direct evaluation of the multiple-infinite
summation in the classical Green function method, which may
involve thousands or even more terms to ensure a reasonable
accuracy. Since the look-up table and vectors only have to be
computed once for each technology and substrate geometry, but
are independent of where the devices are located on the chip,
they can be obtained in the pre-characterization phase of the
design and used many times in the optimization process. As a
result, the amortized cost of establishing the look-up table and
vectors can be ignored in practice. Our first thermal simulation
algorithm (Algorithm I) follows a similar line of analysis as
in [10] and [11]. The difference is that since the boundary
conditions encountered in thermal problems are different from

those in electrical problems, the Green function and the look-
up table and vectors must be re-derived to reflect the special
characteristics of the thermal problems.

The improvement in efficiency of Algorithm I, as compared
with that of the classical Green function method, comes fromits
faster evaluation of the expressions involving the Green function
in calculating the temperature field, and compared with other
fast algorithms such as the ones presented in [8] and [9], our
algorithm can achieve a much higher accuracy because it does
not assume that the chip is infinitely large horizontally, and hence
it can take the proper boundary conditions into consideration.
Asymptotically, however, the classical Green function method,
the algorithms in [8] and [9], and our Algorithm I all have the
same time complexity ofO(Ns·Nf ), whereNs is the number
of power source regions andNf is the number of temperature
field regions. For cell level full-chip thermal simulationswhere
the number of heat sources is large and the temperature profile
over the entire chip is sought, however, a still faster algorithm is
required.

In [12], Costaet al. proposed an elegant algorithm for ef-
ficiently performing the full-chip electrical potential profiling,
which is a key step in solving substrate parasitic extraction
problems. This algorithm combines the concept of functional
eigen-decomposition with the technique of the DCT to reduce
the overall runtime of full-chip electrical potential profiling from
O(N 2

gc) to O(Ngc× log(Ngc)), whereNgc is the total number of
grid cells. Because of the parallelism between the thermal prob-
lem and the electrical problem, we can use a similar approachto
reduce the asymptotic runtime of full-chip temperature profiling.
We have implemented such an approach in our second algorithm
(Algorithm II), and we will present it from the perspective of
spectral domain computations that are familiar to engineers. Note
that the temperature distribution can be obtained by convolving
the power density distribution with the underlying Green func-
tion, and it is well known that convolutions in the space domain
correspond to point-wise multiplications in the spectral domain.
Therefore, using the spectral domain computations in conjunction
with the DCT for transforming the data between space and
spectral domains, we will be able to significantly reduce the
runtime of full-chip temperature profiling. Our algorithm takes a
piece-wise constant power density map as the input and generates
a piece-wise constant temperature map as the output. The primary
steps of the algorithm include:

1) Obtaining the spectral domain representation of the power
density map using the 2D DCT. The order of the DCT
expansion is determined dynamically by the power density
map instead of being seta priori to ensure the accuracy.

2) Calculating the spectral domain representation of the tem-
perature map by multiplying each spectral component
of the power density map by the corresponding spectral
response of the linear system determined by the Green
function.

3) Using a 2D inverse discrete cosine transform (IDCT)
to obtain the temperature map from its spectral domain
representation.

Both the 2D DCT and the 2D IDCT can be calculated efficiently
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using the 2D fast Fourier transform (FFT). The asymptotic time
complexity of the overall algorithm isO(Ngs×log(Ngs)) +
O(Ngf×log(Ngf )), where Ngs and Ngf are the number of
grid cells in the power source layer and temperature field layer,
respectively. Hence, for calculating the full-chip temperature
profile, the time complexity of Algorithm II is much smaller than
that of Algorithm I, which isO(Ngs·Ngf ). Note that the lower
asymptotic time complexity of Algorithm II does not invalidate
the usefulness of Algorithm I because, as will be elaborated
in Section III.D, Algorithm I often works better for localized
analysis, where the effects of a few critical circuit blockson the
temperature distribution in a few key regions are of interest.

Our third algorithm (Algorithm III) is a combination of Al-
gorithm I and II, and it possesses the capability of performing
thermal simulations where the accuracy requirement differs from
place to place over the same chip, e.g., in mixed signal designs
where analog circuits are fabricated on the same chip as digital
circuits, the analog blocks often have more stringent accuracy
requirements on thermal simulations because the operations of
the analog circuits are more sensitive to temperature. Algorithm
III reflects the idea of the pre-corrected FFT, which has been
used extensively in the IC parasitic extraction works [13] [14]
[15]. The algorithm first uses coarse grids to divide the source
and field planes where each grid cell in the source plane can
contain several logic gates or analog functional units, andthe
size of each grid cell in the field plane satisfies the accuracy
requirements of the digital circuits. The power density of each
grid cell in the source plane can be obtained by adding up the
contributions from the logic gates and analog functional units
that are located in it. A coarse temperature map for the field
plane is then obtained from the coarse power density map using
Algorithm II and is used for the digital blocks. Finally, foreach
analog functional unit on the field plane whose temperature is to
be calculated more accurately, we use Algorithm I to compute
the contributions to its temperature rise from the nearby logic
gates and analog function units on the source plane, and use this
result to correct the temperature obtained by Algorithm II over
the coarse grid cell.

Our algorithms are all implemented in C++ and experimental
results show that they can achieve relative errors of around
1% compared with that of a commercial computational fluid
dynamic (CFD) software package for thermal analysis, while
their efficiencies are orders of magnitude higher than that of the
classical Green function method. The rest of the paper will be
organized as follows. In Section II, we formulate the temperature
field computation problem and present the concept of Green
function for thermal problems. In Section III, we discuss indetail
the three thermal simulation algorithms. Section VI shows the
experimental results, and the conclusions are provided in Section
V.

II. PROBLEM FORMULATION AND THE GREEN FUNCTION

FOR THERMAL PROBLEMS

A. Problem formulation

Fig. 1(a) shows an IC chip with the associated packaging, and
Fig. 1(b) shows a schematic of the structure in Fig. 1(a) where the

Chip

Packaging

(a) (b)
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Heat spreader
Heat sink

Chip

z = 0

z = −d1
z = −dN−1
z = −dN

Fig. 1. Schematic of a VLSI chip with packaging (a) IC chip andthe packaging
structure (b) simplified model of the chip and packaging.

packaging including the heat spreader and the heat sink has been
simplified but the multilayered structure of the chip is explicitly
shown. The steady-state temperature distribution inside the chip
is governed by Poisson’s equation

∇2T (r) = −
g(r)

kl(r)
(1)

where r = (x, y, z), T (r) is the temperature (°C) distribution
inside the chip,g(r) is the volume power density (W/m3), and
kl(r) is the thermal conductivity (W/(m·°C)) of the layer where
pointr is located [16]. The vertical surfaces and the top surface of
the chip are assumed to be adiabatic [17], and the bottom surface
of the chip is assumed to be convective, with an effective heat
transfer coefficienth (W/(m2·°C)) [18]. In mathematical form,
these boundary conditions can be expressed as

∂T (r)

∂x

∣∣∣∣
x=0,a

=
∂T (r)

∂y

∣∣∣∣
y=0,b

= 0 (2)

∂T (r)

∂z

∣∣∣∣
z=0

= 0 (3)

kN

∂T (r)

∂z

∣∣∣∣
z=−dN

= h (T (r)|z=−dN
− Ta) (4)

whereTa is the ambient temperature, andkN is the thermal con-
ductivity of the bottom layer of the chip. In addition, we enforce
the continuity conditions at the interface between adjacent layers
within the multilayered chip, i.e.,

T (r)|z=−di+ε = T (r)|z=−di−ε (5)

ki

∂T (r)

∂z

∣∣∣∣
z=−di+ε

= ki+1
∂T (r)

∂z

∣∣∣∣
z=−di−ε

(6)

whereε is an infinitesimally small quantity andki is the thermal
conductivity of theith material layer in the multilayered chip
structure.

B. Green function for the rectangular-shaped multilayeredstruc-
ture

Let G(r, r′), with r = (x, y, z) and r
′ = (x′, y′, z′), be the

distribution of temperature aboveTa in the multilayer when a
unit point power source of 1W is placed at positionr

′. Then
G(r, r′) satisfies the equation

∇2G(r, r′) = −
δ(r− r

′)

kl(r)
(7)
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and the boundary conditions

∂G(r, r′)

∂x

∣∣∣∣
x=0,a

=
∂G(r, r′)

∂y

∣∣∣∣
y=0,b

= 0 (8)

∂G(r, r′)

∂z

∣∣∣∣
z=0

= 0 (9)

kN

∂G(r, r′)

∂z

∣∣∣∣
z=−dN

= hG(r, r′)|z=−dN
(10)

G(r, r′)|z=−di+ε = G(r, r′)|z=−di−ε (11)

ki

∂G(r, r′)

∂z

∣∣∣∣
z=−di+ε

= ki+1
∂G(r, r′)

∂z

∣∣∣∣
z=−di−ε

(12)

where δ(r − r
′) = δ(x − x′)δ(y − y′)δ(z − z′) is the three-

dimensional Dirac delta function, andG(r, r′) is the Green
function. The temperature field under an arbitrary power density
distribution can be obtained easily as

T (r) = Ta +

∫ a

0

dx′

∫ b

0

dy′

∫ 0

−dN

dz′G(r, r′)g(r′) (13)

As shown in [10] and [11] for electrical problems, the Green
function can be generally written in the form

G(r, r′) =

∞∑

m=0

∞∑

n=0

cos
(mπx

a

)
cos
(nπy

b

)
×

cos

(
mπx′

a

)
cos

(
nπy′

b

)
Z ′

mn(z, z′) (14)

whereZ ′
mn(z, z′)′s are functions of only thez coordinates of the

source and field points. The specific form of eachZ ′
mn(z, z′)

depends on the boundary conditions, and it can be derived
similarly to that shown in [10] and [11].

In the following analysis, we assume that both the heat sources
and the field regions are located on discrete horizontal planes.
Since the vertical dimensions of the devices are much smaller
than that of the silicon chip, this assumption is reasonablefor
most practical purposes. For a particular pair of source andfield
planes, i.e., for a particularz andz′, the Green function can be
written as

G(x, y, x′, y′) =
∞∑

m=0

∞∑

n=0

Cmncos
(mπx

a

)
cos
(nπy

b

)
×

cos

(
mπx′

a

)
cos

(
nπy′

b

)
(15)

The temperature distribution on the field plane due to the heat
sources on the source plane is given by

T (x, y) = Ta +

∫ a

0

dx′

∫ b

0

dy′G(x, y, x′, y′)Pd(x
′, y′) (16)

wherePd(x
′, y′) is the power density distribution on the source

plane.

III. T HERMAL SIMULATION ALGORITHMS

A. Algorithm I: Thermal simulation using the DCT and table
look-up

Since practically all of the on-chip geometries can be de-
composed into combinations of rectangles, we only focus on

Region

Field
Region

Source 

(a1, b1)

(a2, b2)
(a3, b3)

(a4, b4)

Fig. 2. Source and field regions for computing the temperature distribution.

the rectangular-shaped source and field regions in the following
analysis. Fig. 2 shows a schematic of a source and a field
region. Note that the two regions can have differentz coordinates
if the field plane does not coincide with the source plane.
Our objective here is to calculate the average temperatureTf

of the field region efficiently given the power densityPd of
the source region. To simplify the analysis, we assume that
Pd is a constant within the source region. This is not a very
restrictive assumption, since if the power density is not uniformly
distributed in the source region, we can always divide the source
region into smaller rectangular-shaped sub-regions and assume
that the power density is uniform within each sub-region.

The average temperature in the field region can be computed
using

Tf =
1

(a2 − a1)(b2 − b1)

∫ a2

a1

dx

∫ b2

b1

dyT (x, y) (17)

Substituting (15) and (16) into (17), and modifying the integra-
tion limits of (16) according to the location and dimensionsof
the source region, we obtain

Tf = Ta +
Pd

(a2 − a1)(b2 − b1)
×

Z a2

a1

dx

Z b2

b1

dy

Z a4

a3

dx′

Z b4

b3

dy′G(x, y, x′, y′)

= Ta + C00Pd(a4 − a3)(b4 − b3)+


Pd(b4 − b3)

(a2 − a1)

∞
X

m=0

Dm0

h

sin
“mπa2

a

”

− sin
“mπa1

a

”i

×

h

sin
“mπa4

a

”

− sin
“mπa3

a

”i

ff

+



Pd(a4 − a3)

(b2 − b1)

∞
X

n=0

E0n

»

sin

„

nπb2

b

«

− sin

„

nπb1

b

«–

×

»

sin

„

nπb4

b

«

− sin

„

nπb3

b

«–ff

+



Pd

(a2 − a1)(b2 − b1)

∞
X

m=0

∞
X

n=0

Fmn

h

sin
“mπa2

a

”

− sin
“mπa1

a

”i

×

h

sin
“mπa4

a

”

− sin
“mπa3

a

”i

»

sin

„

nπb2

b

«

− sin

„

nπb1

b

«–

×

»

sin

„

nπb4

b

«

− sin

„

nπb3

b

«–ff

(18)
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where

Dm0 =

{
Cm0

(
a

mπ

)2
if m 6=0

0 if m = 0
(19)

E0n =

{
C0n

(
b

nπ

)2
if n 6=0

0 if n = 0
(20)

Fmn =

{
Cmn

(
a

mπ

)2 ( b
nπ

)2
if m 6=0, n 6=0

0 otherwise
(21)

Using the identity

sin(θ1)sin(θ2) =
1

2
(cos(θ1 − θ2) − cos(θ1 + θ2)) (22)

the first summation
∞
X

m=0

Dm0

h

sin
“mπa2

a

”

− sin
“mπa1

a

”i h

sin
“mπa4

a

”

− sin
“mπa3

a

”i

(23)
can be re-written as a sum of eight terms in the form

±
1

2

∞∑

m=0

Dm0cos

(
mπ(ai±aj)

a

)
(24)

wherei = 1, 2 andj = 3, 4.

To utilize the DCT, we first discretize the source and field
planes intoM equal divisions along thex direction andN equal
divisions along they direction and form the grids. Then we
truncate the summation in equation (24) at indexM . As will
be discussed later, the indicesM andN are determined by the
considerations of both the resolution of thermal analysis and
the convergence of the Green function. If we assume that all
the vertices of the field and source regions are located on grid
points, i.e.,ai

a
= ki

M
, aj

a
=

kj

M
, whereki andkj are integers, and

0≤ki≤M , 0≤kj≤M , then equation (24) becomes

±
1

2

M∑

m=0

Dm0cos

(
mπ(ki±kj)

M

)
(25)

Let

k =





ki±kj if 0≤ki±kj≤M
−(ki±kj) if ki±kj < 0
2M − (ki±kj) if ki±kj > M

(26)

then0≤k≤M and equation (25) can be re-written as

±
1

2

M∑

m=0

Dm0cos

(
mπk

M

)
(27)

This is precisely one term in the type-I DCT of the sequence
Dm0, and the DCT sequence can be computed efficiently using
the fast Fourier transform (FFT) inO(M log(M)) time [19].
After the DCT sequence is obtained, it can be stored in a vector
and used many times in future temperature calculations. As a
result, the computation of summation (23) is reduced to eight
look-ups in the DCT vector in constant time and then adding up
the look-up results. Similarly, the summation involvingE0n in
equation (18) can also be obtained efficiently using the DCT and
table look-ups.

The double summation in equation (18) can be re-written as a

sum of 64 terms in the form

±
1

4

∞∑

m=0

∞∑

n=0

Fmncos

(
mπ(ai±aj)

a

)
cos

(
nπ(bp±bq)

b

)
(28)

wherei = 1, 2, j = 3, 4, p = 1, 2, andq = 3, 4. Using a similar
approach, equation (28) can be cast into

±
1

4

M∑

m=0

N∑

n=0

Fmncos

(
mπk

M

)
cos

(
nπl

N

)
(29)

where0≤k≤M and0≤l≤N . This is one term in the 2-D type-I
DCT of the matrixFmn. The 2-D DCT matrix can be computed
using the FFT inO((M ·N) × log(M ·N)) time, and after the
2-D DCT table is obtained, the double summation reduces to 64
table look-ups in constant time and then adding up the look-up
results.

Note that when multiple heat sources are present, their effects
on the average temperature rise aboveTa in the field region, i.e.,
the integral term in equation (16), can be summed up to obtain
the total average temperature rise.

The selection of the discretization parametersM and N
deserves some more considerations. Assume that the minimum
feature size along thex and y directions that must be resolved
arexmin andymin, respectively, thenM andN must satisfy

M≥Mr =
a

xmin

and N≥Nr =
b

ymin

(30)

whereMr andNr represent the minimum values ofM and N
from resolution considerations. However, sinceM and N are
also the truncation points of the summations in equation (18),
they must be large enough to ensure the convergence of the
summations. As pointed out in [20], the summations converge
more slowly asxmin and ymin become smaller relative to the
chip dimensionsa and b. Thus, the actual values ofM and N
cannot be determined merely based onMr andNr. Let Mc and
Nc be the minimum values ofM≥Mr andN≥Nr such that the
convergence is achieved in (18). In our implementation,Mc and
Nc are determined as follows. We consider nine representative
regions on each of the source and field planes as shown in
Fig. 3. Each region has dimensions ofxmin×ymin. We first set
Mc = Mr andNc = Nr. Then we increaseMc andNc gradually
until the convergence of the summations in (18) is achieved for all
of the possible locations of the source and field regions provided
the source region coincides with one of the nine representative
regions on the source plane while the field region coincides with
one of the nine representative regions on the field plane. Finally,
to assist the utilization of the FFT in the DCT computations,M
andN are chosen to be integers that are powers of 2 and are no
smaller thanMc andNc, respectively.

Compared with the classical Green function method, the ad-
vantage of our algorithm is that it replaces the expensive double
summations in the expressions involving the Green function
by the inexpensive summations of a few numbers in the pre-
calculated look-up table and vectors. The look-up table and
vectors only depend on the chip dimensions and the physical
properties of the substrate, but are independent of the layout
and power distribution. Hence, the look-up table and vectors
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xmin

ymin

Fig. 3. The locations of the nine representative regions on the source plane.
Each region has dimensions ofxmin×ymin. One region is located at the center
of the plane, one is at the mid-point of each edge, and one is ateach corner.
Similarly, we have nine representative regions on the field plane.

can be calculated once and then used many times in thermal-
aware physical designs, which significantly reduces the amortized
cost of obtaining the table and vectors, and improves the overall
efficiency of the algorithm.

B. Algorithm II: Full-chip thermal simulation using the spectral
domain computations

Algorithm I gained its efficiency from the faster evaluations
of the expressions involving the Green function. Asymptotically,
however, it is still an expensive method for simulations involving
a large number of heat sources and field regions because the
effects of the heat sources on the field regions are calculated in a
pair-wise fashion. The second algorithm we present in this section
targets full-chip thermal simulations with large problem sizes.
It uses spectral domain analysis to reduce the asymptotic time
complexity of calculating the on-chip temperature distribution. In
the following analysis, we focus on the effect of one source plane
on the temperature distribution in the field plane. When multiple
source planes are present, their effects can be easily summed up
to obtain the final solution.

Since the convolution integral in (16) can be considered as the
governing equation of a linear system determined by the Green
function G(x, y, x′, y′), we can use spectral domain analysis to
accelerate the computations corresponding to the convolution
integral.

The first step of our algorithm is to obtain the spectral domain
representation of the power density map in the form

Pd(x
′, y′) =

∞∑

i=0

∞∑

j=0

aijφij(x
′, y′) (31)

where

φij(x, y) = cos

(
iπx

a

)
cos

(
jπy

b

)
(32)

It is easy to show thatφij(x, y) satisfies the equation

λijφij(x, y) =

∫ a

0

dx′

∫ b

0

dy′G(x, y, x′, y′)φij(x
′, y′) (33)

where

λij =






abCij if i = j = 0
1
2abCij if i = 0, j 6=0 or i 6=0, j = 0
1
4abCij if i 6=0, j 6=0

(34)

is the response of the linear system to the spectral component
φij(x, y) [12]. After the spectral domain representation of the
power density distribution in the source plane is obtained,the
temperature distribution in the field plane can be calculated easily
by

T (x, y) = Ta +

∞∑

i=0

∞∑

j=0

λijaijφij(x, y) (35)

As will be shown next, both the spectral decomposition in (31)
and the double-summation in (35) can be calculated efficiently
using the DCT and IDCT through the FFT.
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Fig. 4. The arrangement of theMs×Ns grid cells on the source plane.

Now we assume that the source plane is divided intoMs×Ns

rectangular grid cells of equal size as shown in Fig. 4, and the
power density in each grid cell on the source plane is uniform,
i.e., the power density distribution can be written in the piece-
wise constant form

Pd(x
′, y′) =

Ms−1∑

m=0

Ns−1∑

n=0

PmnΘ(x′−(m+
1

2
)∆xs, y

′−(n+
1

2
)∆ys)

(36)

where

Θ(x′, y′) =

{
1 if |x′|≤ 1

2∆xs and |y′|≤1
2∆ys

0 otherwise
(37)

and ∆xs = a
Ms

, ∆ys = b
Ns

. Pmn is the power density of the
mnth grid cell.

Note that if the piece-wise constant power density map is not
directly given in the form of (36), it can be conveniently derived
from the layout geometries and the power generated by each
circuit component. Assume that the layout of each component
is within a rectangular-shaped region as shown in Fig. 5, and
the region corresponding to theith componentCi is defined by
xL

i ≤ x ≤ xR
i and yB

i ≤ y ≤ yT
i . The range of the indicesm

andn of the grid cells that theith component overlaps is given
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Ci

x′

y′

∆xs

∆ys

xL
i xR

i
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yT
i

Fig. 5. Calculating the power density map from the given layout geometries
and the power generated by each circuit component.

by

b
xL

i

∆xs

c ≤ m ≤ b
xR

i

∆xs

c

b
yB

i

∆ys

c ≤ n ≤ b
yT

i

∆ys

c (38)

Assume that the total power generated by theith component is
given by PT

i , then its contribution to the power density of the
mnth grid cell that overlaps with it is

δP i
mn = PT

i ×
Si

mn

(xR
i − xL

i )(yT
i − yB

i )
×

1

∆xs · ∆ys

(39)

where Si
mn is the overlap area of the rectangle corresponding

to theith component and themnth rectangular-shaped grid cell,
and it can be calculated in constant time. Therefore, obtaining
the piece-wise constant power density map from the layout
geometries and the power generated by each circuit component
has only a linear time complexity with respect to the number
of components in the circuit, and it can be usually ignored
compared with the costs of other calculations involved in the
thermal simulation.

Substituting (36) into (31) and using the orthogonality property
of the cosine functions in the integral sense, we obtain

aij = Aij

Ms−1
X

m=0

Ns−1
X

n=0

Pmncos

„

iπ(2m + 1)

2Ms

«

cos

„

jπ(2n + 1)

2Ns

«

(40)

where

Aij =





1
MsNs

if i = j = 0
4

iNsπ
sin
(

iπ
2Ms

)
if i 6=0, j = 0

4
Msjπ

sin
(

jπ
2Ns

)
if i = 0, j 6=0

16
ijπ2 sin

(
iπ

2Ms

)
sin
(

jπ
2Ns

)
if i 6=0, j 6=0

(41)

Note that to accurately represent the power density distribution
Pd(x

′, y′) using (31), the theoretical upper limit of the double
summation should be infinity. In practical implementations, how-
ever, the summation must be truncated to ensure a reasonable
runtime. Since (31) is essentially the Fourier expansion of

Pd(x
′, y′), a natural criterion for determining the truncation point

is that enough “energy” contained inPd(x
′, y′) is covered by the

truncated Fourier expansion. Mathematically, we have
∫ a

0

dx′

∫ b

0

dy′P 2
d (x′, y′) = ab

∞∑

i=0

∞∑

j=0

sija
2
ij (42)

where

sij =






1 if i = j = 0
1
2 if i = 0, j 6=0 or i 6=0, j = 0
1
4 if i 6=0, j 6=0

(43)

Substituting (36) into the left hand side of (42), we obtain

1

MsNs

Ms−1∑

m=0

Ns−1∑

n=0

P 2
mn =

∞∑

i=0

∞∑

j=0

sija
2
ij (44)

which can be considered as a form of the Parseval’s theorem.
The truncation pointsM ′ andN ′ are then determined by

M ′
−1∑

i=0

N ′
−1∑

j=0

sija
2
ij ≥ η

(
1

MsNs

Ms−1∑

m=0

Ns−1∑

n=0

P 2
mn

)
(45)

whereη is the proportion of the “energy” of the space domain
signal Pd(x

′, y′) that must be covered by the truncated Fourier
expansion. In practice, we found that settingη to 90% will
usually be enough to obtain very accurate results in temperature
calculations.

We emphasize here that (45) does not imply that only a
fraction, η, of the total power generated by the heat sources is
included in the truncated expansion. In reality, the total power
is completely contained in the DC term of expansion (31), and
(45) only describes how accurately we are approximating the
exactshape of the space domain signal, i.e.,Pd(x

′, y′). A smaller
η implies that more components with high spectral numbers in
Pd(x

′, y′) are ignored, or equivalently, morezero meannoises
with high spectral numbers are added to the approximating power
distribution. Since the temperature distribution is calculated using
(16) and the convolution with the Green function has a low-
pass filtering effect,η does not have to be extremely close to 1
in order to calculate the temperature accurately. We also point
out that althoughη is set to a constant number, the truncation
pointsM ′ andN ′ are not determineda priori in our algorithm.
Instead, they depend onPd(x

′, y′) according to (45). Our strategy
of determining the truncation points is to first setM ′ = Ms and
N ′ = Ns. If (45) is not satisfied, then we increaseM ′ to 2Ms and
N ′ to 2Ns. The summation limitsM ′ andN ′ continue to increase
with steps ofMs andNs until (45) is satisfied. The importance
of determining the truncation points dynamically based on the
input data will become more obvious as the size of the problem
increases.

Note that for0≤i<Ms and 0≤j<Ns, the double summation
in (40) can be considered as a term in the 2D type-II DCT [19]
of the power density matrixP . For i≥Ms or j≥Ns, we can
always find integerss1 ands2 such thati = 2s1Ms±î andj =
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2s2Ns±ĵ where0≤î<Ms and0≤ĵ<Ns
1. Hence, for anyi and

j, we always have
aij = ±AijP̃îĵ (46)

where

P̃îĵ =

Ms−1∑

m=0

Ns−1∑

n=0

Pmncos

(
îπ(2m + 1)

2Ms

)
cos

(
ĵπ(2n + 1)

2Ns

)

(47)
with 0≤î<Ms and 0≤ĵ<Ns is the 2D type-II DCT of theP
matrix and the sign of (46) is determined by whethers1 ands2

are even or odd numbers [12]. Equation (47) can be calculated
efficiently using the 2D FFT inO((Ms·Ns)×log(Ms·Ns)) time.
After the 2D DCT matrixP̃ is obtained, the calculation ofaij

simply involves computing the coefficientAij and finding the
corresponding term̃Pîĵ .

From (32), (35), and (45), the temperature distributionT (x, y)
can now be written as

T (x, y) = Ta +

M ′
−1∑

i=0

N ′
−1∑

j=0

λijaijcos

(
iπx

a

)
cos

(
jπy

b

)
(48)

If we assume that the temperature field plane is divided into
Mf×Nf rectangular grid cells of equal size, then the average
temperature of themnth grid cell can be obtained by

Tmn =
1

∆xf∆yf

∫ (m+1)∆xf

m∆xf

dx

∫ (n+1)∆yf

n∆yf

dyT (x, y)

= Ta +

M ′
−1∑

i=0

N ′
−1∑

j=0

Bijcos

(
iπ(2m + 1)

2Mf

)
cos

(
jπ(2n + 1)

2Nf

)

(49)

where∆xf = a
Mf

, ∆yf = b
Nf

, and

Bij =





λijaij if i = j = 0

2λijaij
Mf

iπ
sin
(

iπ
2Mf

)
if i 6=0, j = 0

2λijaij
Nf

jπ
sin
(

jπ
2Nf

)
if i = 0, j 6=0

4λijaij
Mf Nf

ijπ2 sin
(

iπ
2Mf

)
sin
(

jπ
2Nf

)
if i 6=0, j 6=0

(50)
Similar to the analysis shown previously, anyi≥Mf andj≥Nf

can be written asi = 2s3Mf±
ˆ̂i and j = 2s4Nf±

ˆ̂j such that

0≤ˆ̂i<Mf , 0≤ˆ̂j<Nf , and s3 and s4 are integers. Using the
periodicity of the cosine function, we can finally castTmn into
the form

Tmn = Ta +

Mf−1
X

ˆ̂
i=0

Nf−1
X

ˆ̂
j=0

Lˆ̂
i
ˆ̂
j
cos

 

ˆ̂iπ(2m + 1)

2Mf

!

cos

 

ˆ̂jπ(2n + 1)

2Nf

!

(51)

1If i equals an odd multiple ofMs, we will not be able to writei as i =
2s1Ms±î. However, for this kind ofi, it can be easily shown thataij = 0

becausecos
“

iπ(2m+1)
2Ms

”

= 0. Similarly, we know thataij = 0 if j equals an
odd multiple ofNs.

Input:

• Chip geometry and physical properties of the material
layers.

• Power density map - matrixP .

Output: Temperature distribution map - matrixT .
Algorithm:

1) Calculate the Green function coefficientsCij
′s;

2) Calculate the spectral responses of the systemλij
′s;

3) Calculate the type-II 2D DCT of the power density
matrix P̃ = 2DDCT(P );

4) TSE = 1
MsNs

∑Ms−1
m=0

∑Ns−1
n=0 P 2

mn;
5) M ′ = Ms, N ′ = Ns;

ASE =
∑M ′

−1
i=0

∑N ′
−1

j=0 sija
2
ij ;

while ( ASE < η×TSE )
M ′ = M ′ + Ms, N ′ = N ′ + Ns;
UpdateASE;

end while;
6) Calculate the matrixL;
7) Calculate the temperature distribution map using the

type-II 2D IDCT T = Ta + 2DIDCT(L);

Fig. 6. Thermal simulation algorithm using the Green function method, the
DCT, and the spectral domain computations.

where

Lˆ̂
i
ˆ̂
j

=





B00 if ˆ̂i = ˆ̂j = 0
∑

i < M′

i = 2s3Mf ±
ˆ̂
i

±Bi0 if ˆ̂i 6=0, ˆ̂j = 0

∑
j < N′

j = 2s4Nf±
ˆ̂
j

±B0j if ˆ̂i = 0, ˆ̂j 6=0

∑
i < M′

i = 2s3Mf ±
ˆ̂
i

∑
j < N′

j = 2s4Nf±
ˆ̂
j

±Bij if ˆ̂i 6=0, ˆ̂j 6=0

(52)
and the signs of theB′s in (52) are determined by whethers3

ands4 are even or odd numbers. After the matrixL is obtained,
the double summation in (51) can be calculated efficiently using
the 2D IDCT.

The complete thermal simulation algorithm using the Green
function method, the DCT, and the spectral domain computa-
tions is shown in Fig. 6. The asymptotic time complexity of
the algorithm isO(Ngs×log(Ngs))+ O(Ngf×log(Ngf )) where
Ngs = Ms·Ns is the total number of grid cells in the power
density map, andNgf = Mf ·Nf is the total number of grid
cells in the resulting temperature profile. This is a significant
improvement over theO(Ngs·Ngf ) complexity of Algorithm I
for full-chip thermal simulations.

C. Algorithm III: Thermal simulation with local high accuracy
requirements

Although Algorithm II can achieve aO(Ngs×log(Ngs)) +
O(Ngf×log(Ngf )) time complexity as opposed to a
O(Ngs·Ngf ) complexity of Algorithm I for full-chip thermal
simulations, Algorithm I is still more efficient for performing
the localized analysis, where the effects of a few critical circuit
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blocks on the temperature distribution in a few key field regions
are of interest. This is because to apply Algorithm II, we must
always superimpose regular grids over the entire source and
field planes and calculate the complete temperature profile from
the complete power density distribution. The size of each grid
cell must be comparable with that of the resolution requirement
of the calculation, and the total number of grid cells determines
the problem size. Therefore, although Algorithm II has a smaller
asymptotic time complexity than Algorithm I for full-chip
thermal simulations, it may also require the formulation of
a problem with much larger size than Algorithm I if only
some localized temperature calculations are required by circuit
designers.

We will face an even more difficult decision concerning
whether Algorithm I or Algorithm II should be used when a
circuit designer has different requirements on the accuracy of
the thermal simulation over different parts of the same chip.
For example, in mixed signal designs where analog circuits are
fabricated on the same chip as digital circuits, the analog blocks
often have more stringent accuracy requirements on the thermal
simulation because the operations of the analog circuits are more
sensitive to temperature. If the full-chip temperature profile is
required, then Algorithm I will be too slow to use. However,
in order to use Algorithm II, the size of each grid cell must
be small enough so that the high accuracy requirements of the
analog blocks are satisfied. This may result in very dense grids
and a large problem size. For these kinds of problems, a better
strategy can be adopted to accelerate the runtime of the algorithm
further by combining the advantages of both Algorithm I and II.
The key idea is to use coarse grids to divide the source and
field planes where each grid cell in the source plane can contain
several logic gates or analog functional units, and the sizeof each
grid cell in the field plane satisfies the accuracy requirements of
the digital circuits. The power density of each grid cell in the
source plane is calculated by summing up the power dissipations
of all the logic gates and analog functional units located init
and dividing the sum by the area of the grid cell. A coarse
temperature map for the field plane is then obtained from the
coarse power density map using Algorithm II and is used for the
digital blocks. Finally, for each analog functional unit onthe field
plane whose temperature is to be calculated more accurately, we
use Algorithm I to compute the contributions to its temperature
rise from the nearby logic gates and analog function units on
the source plane, and use this result to correct the temperature
obtained by Algorithm II over the coarse grid cell. To simplify
the presentation, we assume in the following analysis that the
source plane coincides with the field plane and both of them are
divided intoM×N coarse grid cells. However, this assumption
is not essential to the algorithm and it can be relaxed easily
to handle multiple source and field planes such as that in the
emerging three-dimensional IC technologies.

Fig. 7 shows a chip that is divided intoM×N coarse grid cells
each of which contains several logic gates or analog functional
units, and let the shaded area represent the analog block. An
M×N temperature map is first obtained. The inaccuracies in
the temperature calculations, besides that due to the truncation

M grid cells

N
gr

id
ce

lls

Fig. 7. A mixed signal chip where the analog block has higher requirement on
the accuracy of thermal simulations. The logic gates and analog functional units
within the dashed line constitute the setC(A).

of the spectral domain representation of the power density map,
will come from two sources which include

• Assuming that the power density in each grid cell is uniform.
• Only the average temperature of each grid cell is calculated,

i.e., all of the logic gates and analog functional units inside
the same grid cell obtain the same calculated temperature.

Now assume that we need to calculate the temperature of the
analog functional unitA located in the ijth grid cell and
represented by the black rectangle more accurately. LetTij be
the average temperature of theijth grid cell obtained using
Algorithm II, and let Tij,S be the contribution to the average
temperature rise of theijth grid cell from the logic gate or
analog functional unitS assuming that the power generated by
S is uniformly distributed in the grid cell in which it resides.
Denote the more accurate average temperature of the analog
functional unitA by T accurate

A , and letT accurate

A,S be the accurate
contribution to the temperature rise ofA from the logic gate
or analog functional unitS. The temperatureT accurate

A can be
obtained by

T accurate

A = Tij −
∑

S∈C(A)

Tij,S +
∑

S∈C(A)

T accurate

A,S (53)

where C(A), which will be called the interaction set ofA in
the following analysis, is the set of logic gates and analog
functional units that are physically close toA, and hence, whose
contributions to the temperature rise ofA must be re-calculated
accurately. The size ofC(A) is determined by the actual accuracy
requirement on the temperature ofA, and a higher accuracy
requirement is usually associated with a largerC(A). Both Tij,S

and T accurate

A,S can be calculated efficiently using Algorithm I,
and the overall efficiency of the combined algorithm is higher
than that of Algorithm II applied with a fine grid over the entire
chip that satisfies the high accuracy requirements of the analog
functional units.

D. Time complexity analysis

We summarize the time complexities of the three algorithms
in this section. Note that the calculations involved in eachof
the algorithms can be divided into two parts, i.e., those only
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depend on the chip geometry and the physical properties of the
chip materials, and those depend on the input power density
distribution. The computation steps that only involve the chip
geometry and material properties can be performed in the pre-
characterization phase of the design, and their results canbe
stored for further uses. Therefore, the amortized costs of these
steps are usually rather low in the overall physical design process,
where the optimization routine executes the thermal simulation
many times. The steps that involve the input power density
distribution, however, must be executed within the optimization
routine in physical designs. Hence, they usually dominate the
overall runtime of the thermal-aware physical design algorithms
such as the thermal-aware floorplanning and placement. The
establishment of the look-up table and vectors in AlgorithmI and
the calculation of the spectral responses of the linear system in
Algorithm II can both be performed in the pre-characterization
phase, and in the following analysis, we will ignore the costs
of these steps and only focus on the time complexity of the
calculations that depend on the input power density distribution.

For the input-power-dependent steps in thermal simulations,
Algorithm I has a time complexity ofO(Ns×Nf ), whereNs

and Nf are the number of heat sources and field regions,
respectively. Algorithm II always works with full-chip power
density distribution and generates the complete on-chip temper-
ature profile. It has a time complexity ofO(Ngs×log(Ngs)) +
O(Ngf×log(Ngf )) whereNgs = Ms·Ns is the total number of
grid cells in the input power density map, andNgf = Mf ·Nf is
the total number of grid cells in the obtained temperature profile.
Here, Ms and Ns are the number of grid divisions along the
x and y directions on the source plane, andMf and Nf are
the number of grid divisions along thex and y directions on
the field plane. It is obvious that Algorithm II is better than
Algorithm I for full-chip temperature profiling, because the latter
has a time complexity ofO(Ngs·Ngf ). For the localized analysis
where only a few source and field regions are involved, however,
Algorithm I can often perform better becauseNgs andNgf are
determined by the highest resolution requirement of the analysis,
andNs andNf are usually much smaller thanNgs andNgf for
this type of problems.

To compare Algorithm II and Algorithm III, we assume that
there areNtotal logic gates and analog functional units in the
design. Using Algorithm II directly with a grid size comparable
to the smallest size of the gates and functional units will result
in a time complexity ofO(Ntotal×log(Ntotal)). For Algorithm
III, a coarse grid is first used in the calculation. If we assume
that each coarse grid cell containsK gates and functional units,
then the time it takes to obtain the coarse temperature profile is
O(Ntotal

K
×log(Ntotal

K
)). Now, if the accurate temperature correc-

tion is to be performed over all of the gates and functional units,
then an additional cost ofO(Ntotal·K ′) is required whereK ′ is
the size of the interaction set of each gate or functional unit, and
the total cost becomesO(Ntotal × ( 1

K
log(Ntotal

K
) + K ′)). Note

that theO(Ntotal·K ′) term in the complexity analysis involves
a relatively large pre-factor due to the 80 look-ups needed to
calculate the correction corresponding to a pair of gates orfunc-
tional units. Hence, the actual runtime of Algorithm III is often

longer than that of Algorithm II when the accurate temperature
correction is to be performed over all of the gates and functional
units. However, as pointed out previously, it frequently happens
in real design environments that the temperature correction is
only required for a small portion of the circuit. Therefore,the
total cost of Algorithm III becomesO(Ntotal

K
×log(Ntotal

K
) +

Nc·K
′), whereNc is the number of gates and functional units

that require temperature corrections, and Algorithm III becomes
more efficient than Algorithm II under this situation.

IV. EXPERIMENTAL RESULTS

In this section, we present in detail the performance of the three
algorithms, which are implemented in C++ and compiled using
the level 3 optimization of g++. The experiments are performed
on a desktop with a 3.2GHz Intel Pentium-4 CPU running the
Red Hat Linux 8.0 operating system. We first compare the
results obtained from Algorithm I with that from a commercial
computational fluid dynamic (CFD) software package and that
from the direct application of the Green function method in
terms of accuracy and efficiency. Then we use Algorithm I as
our base method to characterize the performance of the other
two algorithms.

The commercial CFD software package uses a finite volume
approach which meshes the entire substrate. Because of the
discretized nature of the method, meshing errors are unavoidable.
In order to control the meshing errors while still complete the
computation within a reasonable amount of time, we start with
a relatively rough mesh and continue refining it and re-running
the simulation until the maximum error converges to around 1%.
By doing this, we ensure that the result produced by the CFD
software itself is accurate, and therefore it can be used as avalid
criterion to evaluate the accuracy of our algorithms.

A. Accuracy and efficiency of Algorithm I

Fig. 8(a) shows the top surface of a silicon chip with di-
mensions of2mm×2mm×0.5mm. The area is divided into8×8
equal square sections, and five power sources are placed in
the corresponding sections as shown in the figure. The thermal
conductivity k of silicon is 148W/(m·°C), and the effective
heat transfer coefficienth of the bottom surface of the chip
is chosen to be8700W/(m2·°C), which is consistent with the
value used in [18]. The strength of the five power sources are
(P1, P2, P3, P4, P5) = (0.2W, 0.1W, 1W, 0.1W, 0.2W).

Fig. 8(b) shows the top surface temperature map obtained using
Algorithm I, whereT − Ta is the temperature rise above the
ambient. In obtaining the temperature map, the top surface of
the chip was divided into64×64 small square regions with equal
size and the average temperature in each small square regionwas
computed. The parametersM and N were both set to 64, the
minimum required values from resolution considerations, because
the convergence of the Green function has already been achieved
with M = N = 64. Fig. 8(c) shows the relative error in the
temperature map compared with the computation result obtained
from a commercial CFD software package for thermal analysis.
We can see clearly that the error is below1%, which demonstrates
the accuracy of our method.
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Fig. 8. Accuracy of Algorithm I (a) power source locations (b) computed temperature distribution aboveTa using the proposed algorithm (c) relative error of the
proposed algorithm compared with the result from a commercial CFD software package.

We next compare the efficiency of Algorithm I with that of the
direct application of the Green function method to compute the
temperature distribution. We still use the same chip dimensions
and physical properties as in the previous example. However,
only one power source is used this time to make the presen-
tation clearer. The power source occupies a square region with
dimensions of 2

128mm× 2
128mm at the exact center of the chip.

The strength of the power source isPs = 50mW. The average
temperature aboveTa of the source region itself is computed. The
parametersM andN are both chosen to be 512 in our algorithm
from convergence considerations for the Green function, i.e.,
we require the truncation error to be within1%. The infinite
summations in the Green function are more difficult to converge
in this example because the sizes of the source and field regions
relative to the chip dimensions are smaller than those in the
previous example.

Using Algorithm I, the average temperature of the source
region itself aboveTa is found to be 11.537°C. The total com-
putation time using the pre-calculated look-up table and vectors
is only 5.5×10−4msec. As a comparison, we also computed the
average temperature aboveTa of the source region using equation
(18) directly, which corresponds to the direct applicationof the
Green function method. In the direct method, it is unnecessary
to consider the resolution issue because equation (18) doesnot
require the vertices(ai, bi) of the source and field regions to
coincide with some grid points. So the parametersM andN are
completely determined by the convergence consideration. Since
the chip is square, we setM = N in our analysis.

Fig. 9 shows the relative error and the corresponding runtime
of the direct method. We can observe from the figure that even
for a 5% relative error inT − Ta, the truncation point must be
higher than 160. The runtime at this truncation point is 19msec,
which is four orders of magnitude slower than our algorithm,and
the accuracy of our algorithm is much higher.

B. Comparison between Algorithm I and Algorithm II

Now, we compare the efficiency and accuracy of Algorithm I
and II using a real chip example. Fig 10(a) shows a floorplan
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Fig. 9. Accuracy and computation time of the direct application of the Green
function method (a) relative error inT − Ta versus truncation point (b) runtime
versus truncation point.

from [21], which is similar to that of the DEC Alpha 21264
processor but is scaled from the350nm to the65nm technology.
The scaled chip dimensions are3.3mm×3.3mm×0.506mm, and
we assume that the chip has the same physical properties as those
used in the previous examples except that a layer representing the
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Fig. 10. Power and temperature distribution of a realistic chip (a) floorplan (b) schematic of the substrate and interconnect layers (c) power distribution (d)
temperature distribution obtained using Algorithm I (e) temperature distribution obtained using Algorithm II (f) difference in the temperature distribution map
obtained using the two algorithms.

interconnects is inserted between the insulating top surface and
the substrate as shown in Fig 10(b). The added layer is assumed
to have a thickness of6µm and an effective thermal conductivity
of 101W/(m·°C), which corresponds to a mixing of25% copper,
which has a thermal conductivity of401W/(m·°C), and 75%
oxide, which has a thermal conductivity of1W/(m·°C). In real
designs, the effective thermal conductivity of the interconnect
layer can be estimated by taking the weighted average of the ther-
mal conductivities of interconnect metal and oxide based onthe
designers’ experiences on the interconnect densities of previous
designs2. We further assume that the power is generated by the
modules located at the interface between the interconnect layer
and the substrate, and the temperature profile of this interface
where the modules are located is calculated. Fig. 10(c) shows
the power density distribution of the modules inW/cm2. We
divided the module layer into64×64 small square regions with
equal size and computed the temperature maps using Algorithm I
and II, which are shown in Fig. 10(d) and (e). Fig. 10(f) showsthe
difference between the temperature maps obtained using thetwo
algorithms, and we can see that the results match each other very

2For early stages of physical design where the detailed information about
routing is usually unavailable, it is reasonable to use a uniform effective thermal
conductivity to characterize the thermal property of each interconnect layer.

well. From the figures, we can also observe that the temperature
maps are much smoother than the power density map. This can
be explained by the relatively high thermal conductivity ofthe
silicon substrate and the horizontal heat transfer [22]. For the
CPU times required to obtain the temperature maps, Algorithm
I uses 30msec after the look-up table and vectors have been pre-
calculated, while Algorithm II only uses 10msec after the spectral
responses of the linear system determined by the underlying
Green function have been pre-calculated. Note that the runtime of
Algorithm I is linear with respect to the number of heat sources
and there are only 14 heat sources in the example shown here. For
cell level full-chip simulations where the number of heat sources
is significantly larger, the advantages of Algorithm II willbecome
even more obvious. Therefore, we conclude that Algorithm IIis
more suitable for full-chip temperature profiling, where a large
number of heat sources and field regions are involved.

To further demonstrate the efficiency of Algorithm II in full-
chip thermal simulations, we tested a chip with dimensions of
1cm×1cm×0.5mm and has the same physical properties as the
chips used in Section IV.A. There are 1024×1024 square grid
cells of equal size located on the top surface of the chip and
a 1024×1024 temperature distribution map of the cell layer
is calculated. Fig. 11 shows the input power density map and
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Fig. 11. Cell level power density and temperature distribution of a 1cm×1cm chip (a) power density distribution (b) temperature distribution.

the resulting temperature map. The time it takes to obtain this
temperature map containing 1.05M grid cells is only 3.7sec,
excluding the time for the pre-calculations, while the runtime
of Algorithm I becomes intractable.

C. Effectiveness of Algorithm III

Finally, we show an example of thermal simulation with
local high accuracy requirement. We consider a chip that con-
tains 8×8 coarse grid cells each of which has dimensions of
3.3mm×3.3mm, as shown in Fig. 12(a). The chip has the same
material properties as the ones used in Section IV.A. We embed
the layout and power density distribution shown in Fig. 10(a)
and (c) in the coarse grid cell located at the lower left corner
of the chip, which we denote byCGC(0, 0) in the following
analysis, and the power density of each of the other 63 coarse
grid cells is randomly generated between 0 and 100W/cm2.
Suppose that we want to obtain a 8×8 coarse temperature map
over the 64 coarse grid cells and a 64×64 fine temperature
map within CGC(0, 0). We compare two simulation schemes.
In the first scheme, Algorithm II alone is used. In order to
achieve the accuracy requirement of the fine temperature map
within CGC(0, 0), we have to divide each of the 64 coarse grid
cells into 64×64 fine cells, which results in a total of 512×512
fine cells over the entire chip. The time it takes to complete
this simulation is 850msec. In the second simulation scheme,
we first obtain a 8×8 coarse temperature map from the 8×8
coarse power density map assuming that the power density within
each coarse grid cell is uniform. The average temperature of
CGC(0, 0) is found to be 79.4°C, while we know from the first
simulation scheme that the actual temperature withinCGC(0, 0)
can vary from 71.2°C to 84.9°C. Next, we use a correction step
as described in Section III.C to obtain the fine temperature map
within CGC(0, 0). The overall runtime of the second simulation
scheme for obtaining both the coarse and the fine temperature
maps is only 70msec, which is an order of magnitude faster than
the direct application of Algorithm II with a fine grid over the
entire chip. In Fig. 12(b) and (c), we show the fine temperature
map withinCGC(0, 0) achieved after the correction step and the

relative error compared with the result obtained using the first
simulation scheme. We can see that the maximum relative error
is only about 1.3%. This demonstrates that using Algorithm III
with a coarse grid and the correction scheme can indeed achieve
a local accuracy comparable to that obtained by Algorithm II
with a fine grid over the entire chip, while the overall runtime is
significantly reduced.

V. CONCLUSIONS

In this paper, we presented three highly accurate thermal
simulation algorithms based on the Green function method
and analyzed in detail the relative advantages of each of the
algorithms. Algorithm I combines the DCT and the table look-
up technique to significantly reduce the time required for each
evaluation of the Green function, and it is suitable for efficiently
performing the localized analysis, where the effects of a few
critical circuit blocks on the temperature distributions in a few
field regions are sought. Algorithm II is based on the spectral
domain analysis, and it takes advantage of the high efficiency
of the FFT algorithm in transforming signals between the space
and spectral domains. For full-chip thermal simulations, it can
achieve anO(Ngs×log(Ngs)) + O(Ngf×log(Ngf )) asymptotic
time complexity as opposed to theO(Ngs · Ngf ) complexity of
Algorithm I, whereNgs andNgf are the total number of grid
cells in the source and field planes, respectively. Algorithm III
is a combination of both Algorithm I and Algorithm II, and it
reflects the idea of the pre-corrected FFT. Its key application
area is the full-chip thermal simulation with different accuracy
requirements over the same chip, such as in the mixed signal
design environments, where the analog blocks often have more
stringent requirements on the accuracy of thermal simulations
over the digital blocks. Experimental results show that allthree
algorithms can achieve around 1% errors compared with that
of a commercial computational fluid dynamics software package
for thermal analysis, while at the same time gaining orders of
magnitude speedups over the classical Green function methods.
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Fig. 12. Effectiveness of Algorithm III (a) location of the coarse grid cellCGC(0, 0) that has higher requirement on thermal simulation (b) temperature map
within CGC(0, 0) calculated using Algorithm III (c) relative error of Algorithm III compared with Algorithm II applied with a fine grid over the entire chip.
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