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Abstract— We present an efficient optimization scheme for
gate sizing in the presence of process variations. Our method
is a worst-case design scheme, but it reduces the pessimism
involved in traditional worst-casing methods by incorporating
the effect of spatial correlations in the optimization procedure.
The pessimism reduction is achieved by employing a bounded
model for the parameter variations, in the form of an uncertainty
ellipsoid, which captures the spatial correlation information
between the physical parameters. The use of the uncertainty
ellipsoid, along with the assumption that the random variables,
corresponding to the varying parameters, follow a multivariate
Gaussian distribution, enables us to size the circuits for a
specified timing yield. Using a posynomial delay model, the
delay constraints are modified to incorporate uncertainty in
the transistor widths and effective channel lengths due to the
process variations. The resulting optimization problem isrelaxed
to a Geometric Program and is efficiently solved using convex
optimization tools. The effectiveness of our robust gate sizing
scheme is demonstrated by applying the optimization on the
ISCAS ’85 benchmark circuits and testing the optimized circuits
by performing Monte Carlo simulations to model the process
variations. Experimental results show that the timing yield of the
robustly optimized circuits improves manifold over the traditional
deterministically sized circuits. For the same transistorarea, the
circuits sized by of our robust optimization approach have,on
an average, 12% fewer timing violations as compared to the
gate sizing solutions obtained via the traditional, deterministically
based guard-banding method.

I. I NTRODUCTION TOROBUST GATE SIZING

The limitations of the manufacturing process in the current
technologies leads to random variations in various circuit
parameters such as the transistor width, channel length, and
oxide thickness, which may cause a large spread in the circuit
performance measures such as the delay and power. Since it is
impossible to control process-driven variations, it is essential
for the design tools to account for these uncertainties to enable
the design of robust circuits that are as insensitive to the device
parameter variations as possible.

The optimization of gate sizes offers a degree of flexibility
in addressing this issue. The gate sizing problem determines
an optimal set of transistor sizes, defined as the ratio of the
transistor width (w) to the effective channel length (Le), that
minimize the area or power consumption of a combinational
circuit, subject to meeting the specified delay constraints.
Conventional gate sizing tools employ a static timing analysis
(STA) routine to generate the delay constraints by adding
intermediate variables at the output of each gate in the circuit,
and then solve the resulting optimization problem to determine
the widths of the devices in the circuit. The minimum length
is chosen for all the devices.

However, due to the fact that the nominal designs are
perturbed by the random process variations, a large number
of chips may fail to meet the original delay specifications.
This leads to a reduction in the timing yield of the circuit,
defined as the fraction of total chips whose delay does not
exceed the original specified value. An obvious way to increase
the timing yield of the circuit is to design for the worst-case
scenario, e.g., choose a delay specification of the circuit much
tighter than the required delay. Unless this new specification
is appropriately selected, this could lead to large overheads
in terms of the circuit area and the power, as the optimizer
may have to aggressively size the critical as well as the non-
critical paths. Hence, it is necessary to develop smart worst-
casing methodologies in the presence of process uncertainties,
that keep the area and the power budgets within reasonable
bounds.

In this work, we present a novel worst-casing scheme, based
on robust optimization theory. In our method, we modify the
delay constraints to incorporate uncertainty in the parameters
due to the process variations. Anuncertainty ellipsoid method
is used to model the random parameter variations, assuming
normal distribution of parameters. Spatial correlations of intra-
die parameter variations are incorporated in the optimization
procedure. We impose no restriction on the sign of correlation
factor, i.e., the parameters may be positively or negatively
correlated. The resulting optimization problem is relaxed to
a geometric program (GP), and is efficiently solved using
convex optimization tools. By using the well-knownChi-
square probability distribution function, the desired timing
yield can be parameterized into the optimization formulation.
Our formulation is based on the principle of adding uncer-
tainty related, parameter correlation-aware, margins to delay
constraints at the output pin of each logic gate. However,
by using these guard-bands for the delay constraints at the
output of each node in the circuit graph1, instead of the
whole path delay, leads to a problem of overestimation of the
effect of variations. We reduce this problem by employing a
graph pruning technique to reduce the number of intermediate
nodes in the circuit graph, and the corresponding arrival time
variables in the optimization formulation. The use of variable
size uncertainty ellipsoid at different topological levels of
the circuit graph helps in further removing the extra timing
margins in the constraints.

1The graph obtained by modeling each pin of a gate as a vertex, and each
pin-to-pin connection, in the whole circuit, as an edge, is referred to as the
circuit graph or the timing graph.



The organization of this paper is as follows. We review
the previous work on uncertainty-aware gate sizing in Section
II. Section III covers the preliminaries of geometric program-
ming, the traditional gate sizing formulation, the ellipsoid set
and the Chi-square probability distribution. In Section IV, we
present our formulation of the robust sizing problem, and use
a simple example to explain the details of this formulation.
Section IV-C points out the problem of overestimation of
the effect of variations in our robust formulation. The graph
pruning technique and the use of variable amounts of timing
margins at different topological levels of the circuits, as
methods to reduce this pessimism in the robust formulation,
are described in Sections IV-D and IV-E. Experimental results
are presented in Section V, and Section VI concludes this
paper.

II. PREVIOUS WORK

Traditional gate sizing methodologies [1], [2] solve the
deterministic optimization problem of gate sizing without
accounting for variations in parameters. These methods use
posynomial delay constraints and formulate the problem as a
geometric program. Section III-B reviews the formulation used
in these conventional gate sizing works. While the method
of [1] performs sizing based on a sensitivity-based heuristic,
[2] offers an exact optimization algorithm to perform gate
sizing, based on convex programming techniques. There have
been several recent attempts to perform uncertainty-aware
gate sizing to reduce the timing violations or increase the
timing yield. In [3], the gate sizing problem is formulated
as a nonlinear optimization problem with a penalty function
added to improve the distribution of timing slacks. One of the
first works on statistical gate sizing [4], proposes formulation
of statistical objective and timing constraints, and solves the
resulting nonlinear optimization formulation. In other works
on robust gate sizing [5–8], the central idea is to capture the
delay distributions by performing a statistical static timing
analysis (SSTA), as opposed to the traditional STA, and
then use either a general nonlinear programming technique
or statistical sensitivity-based heuristic procedures to size the
gates. In [9], the mean and variances of the node delays in the
circuit graph are minimized in the selected paths, subject to
constraints on delay and area penalty.

Some of the abovementioned variation-aware gate sizing
works are heuristics [6–8] without provable optimality proper-
ties. The sensitivity-based approaches optimize the statistical
cost function in a local neighborhood, and cannot guarantee
convergence to the globally optimal solution. Others rely on
nonlinear nonconvex optimization techniques [4], [5], [9],
which are either not scalable to practical circuits or may get
stuck in locally optimal solutions. Some of these works [4], [5]
ignore important statistical properties of varying parameters
such as the spatial correlations.

In [10], the authors present an interesting approach to
optimize the statistical power of the circuit, subject to timing
yield constraints under convex formulation of the problem as a
second-order conic program. However, the formulation suffers
from the same problem of overestimation of statistical nodal
delay constraints as [11], which will be explained in Section
IV-C, and we partially correct this by the techniques described
in Section IV-D and IV-E. More importantly, the solution in
[10] relies on a local search over the gate configuration space

to identify a size that will absorb the slack assigned by the
optimization solution. Such a method based on local searches
has to assume that the delay of the gate depends only on the
fixed local choices, e.g., a particular size and the fanout load of
a gate. In reality, the gate delay is also a function of the slope
of the signals at the input pins of the gate, which in turn are
functions of the sizes of the fanin gates and the interconnect
delay. Hence, although local search method of [10] works well
for simple delay models as functions of output load only, it is
unlikely to work for a realistic delay model also considering
input slews.

Recently a novel method for optimizing the binning yield of
a chip was proposed in [12]. This method provides a binning
yield loss function that has a linear penalty for delay of the
circuit exceeding the target delay, and proves the convexity
of this formulation. However, the method has to rely on an
SSTA engine to evaluate the gradient of the binning yield
loss function for optimization purposes. This could potentially
make the overall procedure considerably slow for many iter-
ations of the optimization loop. As the objective function in
the optimization formulation in this work is non-differentiable,
the procedure could also run into some serious numerical
problems while generating the subgradients of the objective
function.

In this work, we propose a novel gate sizing technique
based on robust optimization theory [13]. For simplicity, our
implementation uses the Elmore delay based model, but our
approach is applicable to any posynomial delay model, such
as the rich class of generalized posynomial delay models
proposed in [14]. In our method, we first generate posyno-
mial constraints by performing an STA. We then addrobust
constraints to the original constraints set by modeling the
intra-chip random process parameter variations as Gaussian
variables, contained in a constant probability densityuncer-
tainty ellipsoid [15], centered at the nominal values. The
method of [16] also uses the ellipsoid uncertainty model, but
for optimization of small size analog circuits. We use the
well known Chi-square distribution tables to assign a timing
yield value in our optimization constraints. Under the ellipsoid
uncertainty model, the resulting optimization formulation is
relaxed to be a GP, and is efficiently solved using the convex
optimization tools. Furthermore, using a GP to perform robust
gate sizing ensures that the optimizer finds a global minimum,
which is not guaranteed in the case of a general nonlinear
program. The relaxation of the robust counterpart of the
conventional deterministic GP-based gate sizing solution as
another GP is a major contribution of this work; in general,
it is not true that the robust versions of convex programs are
also convex programs [13].

Our robust gate sizing scheme is a type of worst-case
design method, but by incorporating spatial correlations in the
design procedure, we reduce some pessimism in the design.
Spatial intra-die correlations between the parameter variations
are incorporated in the optimization scheme by using a grid-
based spatial correlation model used in [17] and [18]. In
addition, we show that the nodal constraints formulation adds
pessimism, and reduce some of this pessimism by employing
the graph pruning technique of [19]. Heuristic methods for
assigning smaller timing margins at lower topological levels
of the circuit graph, and increasing the guard-banding at higher
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levels, by employing different sized uncertainty ellipsoids, also
help in reducing the effects of this pessimism.

We focus on the intra-die variations inLe andw parameters;
however, the method can be easily modified to include inter-
die variations. Process-driven variations in the interconnect
widths and thickness can also be included in our method. The
following sections in this paper, describe in details the various
steps of our robust gate sizing method.

III. PRELIMINARIES

In this section, we will review some of the basic tools and
formulations that we build on to obtain our robust optimization
formulation.

A. Geometric Programming

A function is called amonomial function if it can be written
in the form: f(x) = cxa11 xa22 � � �xann= c nYi=1xaii (1)

where x 2 Rn++, c > 0 and ai 2 R. The variables in a
monomial function, and the coefficientc are strictly positive,
and the exponentsai can be any real numbers.

A sum of monomials is called aposynomial function. It can
be written as: f(x) = kXj=1 cj nYi=1 xaiji (2)

whereck > 0.
From Equations (1) and (2), a geometric program can be

defined as an optimization problem of the form:

Minimize f0(x)
Subject to fi(x) � 1; i = 1; � � � ;mhi(x) = 1; i = 1; � � � ; p (3)

wheref0; � � � ; fm are posynomial function as in Equation (2),
andh1; � � � ; hm are monomial functions as in Equation (1).

Geometric programs are not, in general, convex optimiza-
tion problems. However, by a simple transformation of vari-
ables,xi = eyi in the objective and the constraint functions
of Equation (3), they can be converted to a convex program
[13], and hence can be efficiently and globally solved using
the convex optimization methods.

B. Deterministic Gate Sizing as a Geometric Program

The conventional deterministic gate sizing problem is for-
mulated as:

Minimize Area = nXi=1 aixi0
Subject to: (4)8>><>>: ti � Tspec 8i 2 POtj + dji(X0) � ti 8j 2 fanin(i)

...xmin � xi0 � xmax 8gate i

wherexi0 represents the nominal size of the gate,ai is some
weighting factor such as the number of transistors in a gate
cell, tj are the intermediate input arrival time variables at the
fanin of gatei, dji is the delay of gatei, from thejth input
pin to the output pin, as a function of the vectorX0 of the
nominal gate sizes,Tspec is the specified target delay,xmin
andxmax are the lower and upper bounds on the gate sizes,
respectively.

Using the Elmore delay model2, each gatei in the circuit
can be replaced by an equivalentRoniCi element, whereRoni
represents the effective on resistance of the pull-up or the pull-
down network, and the termCi subsumes the source, drain and
gate capacitances of the transistors in the gate. The expressions
for Roni andCi for a gatei are given by:Roni = c1Leiwi ; Ci = c2Leiwi + c3 (5)

where, the constantsc1; c2 and c3 can be derived from [2].
Both the capacitances and the on resistance of the transistors in
a gate are posynomial functions of the gate size, characterized
by the widthsw of the transistors in the gate. Consequently,
the termRoniCi, which is the equivalent delay contribution
of gatei in the circuit, is also a posynomial function ofw.

From Equations (4) and (5), the delay constraints at each
node of the circuit graph can be written as:ti � Tspec 8i 2 POtj +Xl KlYk xaklk0 � ti 8j 2 fanin(i) (6)

where,Kl is a constant coefficient of thelth monomial term in
the posynomial delay expression, and can be derived from (5),xk represents the width of gatek , andak is the exponents
of the kth components of theX0 vector,2 f�1; 0; 1g. By
substituting Equation (6) in Equation (4) for all gates in the
circuit, the conventional transistor sizing is formulated as a GP
optimization problem of Equation (3), having a posynomial
objective function and posynomial constraints, which can be
solved using the convex optimization techniques. In Section
IV, we show how the robust version of the standard GP
formulation, for the deterministic case, can be converted to
another GP.

C. The Ellipsoidal Uncertainty Set

For any vectors
 and
0 2 Rn, and a non-singular matrixP 2 Rn�n, an ellipsoid setU is defined as [15]:U = f
 : (
�
0)TP�1(
�
0) �  2g (7)

If P is a symmetric and positive definite matrix, an al-
ternative representation of (7) is realized by substituting,P�1=2(
�
0) = u as:U = f
0 + P 1=2uj kuk2 �  g (8)

where kuk2 = uTu is the 2-norm of vectoru. For a
symmetric and positive definite matrixP , the matrixP 1=2 can
be computed by the eigen decomposition ofP . The ellipsoid

2Traditional gate sizing methods of [1] and [2] also use the Elmore delay.
In any GP based formulation, the Elmore delay model is used for simplicity.
Alternatively, generalized posynomial delay models [14],which have a higher
accuracy, can be used for the GP formulation.
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represents an-dimensional region, where the vector
 varies
around the center point
0. The vectoru characterizes the
movement of
 around
0.

�
�
�
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�
�
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Fig. 1. An uncertainty ellipsoid set in two dimensions. The ellipsoid set is
used as a bounded model for multivariate normal parameter variations.

Figure 1 illustrates the ellipsoid inR2. The half-lengths of
the axis of the ellipsoid are a factor of the square roots of
the eigenvalues,�1 and�2, of the matrixP , and the direction
of the axis is given by the eigenvectors ofP , e1 ande2.

Considering the vector
 to consist of random variables
corresponding to the parameters of variations, with an as-
sociated covariance matrix given byP , and assuming that
the parameters of variation follow a Gaussian distribution,
the ellipsoid set described in Equations (7) and (8), can be
used as a bounded model of variations. In particular, it can
be shown that the constant probability density contours of a
multivariate normal distribution represent an ellipsoid set. The
joint probability distribution function (PDF) of the multivariate
normal random vector
, with a covariance matrixP is:f
(
) = 1(2�)n=2jP j1=2 ef� 12 (
�
0)TP�1(
�
0)g (9)

wherejP j is the determinant of the covariance matrixP , andn is the number of components in the variation vector
. It is
clear from Equation (9), that the PDF of a multivariate normal
distribution would be a constantc, if (
 � 
0)TP�1(
 �
0) = c. This relation represents precisely the surface of
an ellipsoid given by Equation (7), withc =  2. Since the
covariance matrixP is symmetric and positive definite [15],
we can also equivalently represent the constant probability
ellipsoid as Equation (8). Thus from the discussion above,
by assuming normality of parameter distribution, the ellipsoid
set can be regarded as a high-dimensional region inside
which the parameters randomly vary. This bounded model of
parameter variations in the form of an ellipsoid set is referred
to as anuncertainty ellipsoid. In Section IV, we use this
uncertainty ellipsoid model to simplify our robust constraints
and formulate the robust GP optimization problem.

D. Chi-square Distribution

If ri aren independent normally distributed random vari-
ables with means�i and variances�2i , the random variablez =Pni=1( ri��i�i )2 is distributed according to the Chi-square
distribution (�2n), with n degrees of freedom [15]. The Chi-
square distribution is a special case of gamma distribution, and

for a random variablez following the Chi-square distribution,
the cumulative density function (CDF) ofz is given by [20]:F (z;n) = (n=2; z=2)�(n=2) (10)

where � is the gamma function, and is the incomplete
gamma function [20].

Referring back to Equation (7), it can be proved that the
random variablez = (
 � 
0)TP�1(
 � 
0) is �2n dis-
tributed [15]. Therefore, the solid ellipsoid given by Equation
(7) can be assigned a prespecified amount of probability� as:� = F�2n( 2) (11)

whereF is the Chi-square CDF function given by Equation
(10).

As will be explained in Section IV, we use the uncertainty
ellipsoid to pad the deterministic delay constraints, and with
the prespecified probability� given by the lower bound on
timing yield specification, we define the size of the ellipsoid.
This determines the amount of margin required for each delay
constraint.

IV. VARIATION -AWARE GATE SIZING

A. Effect of Variations on Constraints

The deterministic posynomial constraints of (6) can be
represented as: tj + fji(X0) � ti (12)

wheretj + fji(X0) = tj +PlKlQj xajlj0 represents thejth
constraint function,X0 is the vector representing the nominal
gate sizesx0i for all gates. The conventional GP optimization
assigns a set of optimalx0 to the vectorX0, so that each delay
constraint is satisfied, i.e.,tj + fi(X0) � ti for all constraintsi, and the area objective is minimized.

However, due to the effect of process variations, the posyn-
omial delay models of the gate can no longer be assumed to
be deterministic quantities. Thus, the constraint inequalities at
each node should be rewritten as:tj + fij(X0;
) � ti (13)

where
 is the random vector of perturbations around the
nominal values of the parameters. For the cases when the new
value of the constraint functiontj + fji(X0;
) > ti, the
effect of the random process variations leads to the original
constraints being violated and a possible timing failure for the
circuit.

Assuming that the random parameter perturbations around
the nominal values are small, the new value of the gate delay
modelfi(X0;
) can be approximated by a first order Taylor
series expansion as:fji(X0;
0 + �
) = fji(X0;
o) +Xj �fji(X0;
)�(
j ) ���
j0 (
j � 
j0 )= fji(X0;
0) +r
0fji(X0;
)�
= Xl KlYj xajlj0 +r
0 (Xl KlYj xajlj �
) (14)

wherer
0 represents the gradient calculated at the nominal
values of the parameters, and�
 represents the zero-mean
random variation in the parameters such as transistor width,
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effective channel length and oxide thickness, around the nom-
inal values. Note that the coefficientKl also depends on the
parameters, and therefore should be regarded as a functionKl(
) of the perturbation vector.

In (14) the term,r
0(PlKlQj xajj )�
 is the variational
term representing the effect of process variations, added to
the nominal term

PlKlQj xajj0 . To safeguard against the
uncertainty of process variations, it is necessary to meet the
constraint,tj+fi(X0;
) < ti, for the maximum value of the
variational term. In other words:tj +Xl KlYj xajlj0 +max8�
2U(r
0 (Xl KlYj xajlj �
) � ti (15)

Next, we show that by employing the concept of an uncertainty
ellipsoid U , the constraint of (15) can be transformed to a
set of posynomial constraints, so that the robust optimization
formulation remains a GP, and can be efficiently solved.
Our robust GP formulation is applicable for all cases where
the original constraints are in the form of a generalized
posynomial [14].

We use the uncertainty ellipsoid to model the process vari-
ations that randomly perturb the transistor parameters around
the nominal values for which they were designed. As the
random vector
 of uncertain parameters varies around the
nominal parameter vector
0, the variations are considered
to be bounded within the ellipsoid regions defined by (8). In
other words, referring to Equation (8), the variation�
 from
0 is given by�
 = P 1=2u with kuk2 �  .

Alternatively, we could have chosen the variation�
 in the
parameters to be bounded in ann-dimensional box given by
min � �
 � 
max. However, using the box as a model
for bounded variation, ignores any correlation information
between the random components of
, as each component
can move independently inside a box, assuming any values
between the minimum and maximum range. Thus, optimizing
for a maximum variation in such a box region would translate
to an overly pessimistic design. Moreover, ann-dimensional
box modeling of parameter variations would be accurate only
in the highly unlikely case when all parameters are statistically
independent with respect to each other, and follow a uniform
distribution. Most parameters have been observed to follow
a distribution that resembles a Gaussian one. The advantage
of using the ellipsoid uncertainty model is that it not only
accurately models the region of variation for normally dis-
tributed parameters, any correlations between the parameters is
directly captured by appropriately constructing the elements of
the covariance matrixP . The covariance matrix can be derived
from a spatial correlation model such as the ones used in [17]
and [18].

In the next section, we show with the aid of a small example,
the use of the uncertainty ellipsoid model in converting the
constraint of (15) to a set of posynomial constraints, and
formulating the robust GP for gate sizing in the presence of
process variations.

B. Robust GP formulation

We use a simple example to explain the procedure to in-
corporate the process variation effects in the delay constraints

1 2(w1; Le1) (w2; Le2) Cload
Fig. 2. A simple example circuit to explain the geometric program
formulation for robust gate sizing problem.

set. We use the toy circuit of Figure 2, comprising of just
one driver gate and one load gate, for this illustration, but
the idea can be generalized to arbitrarily large circuits. In this
example, we consider the widths (w1; w2) and the effective
channel lengths (Le1 ; Le2) of the two gates as the only varying
parameters. The scheme can be directly extended to include
other parameters.

Applying the Elmore delay model to the gates of circuit of
Figure 2, and for simplicity, neglecting the interconnect delay
and the effect of drain and source capacitances of the driver
gate, the delay constraint for the circuit can be written as:K1Le1Le2w2w1 + K2Le2w2 � Tspec (16)

whereK1 andK2 are constants. As explained in Section IV,
to ensure that the delay constraint of (16) is met under the
effect of random process variations, the first order Taylor series
expansion of the constraint function results in the following
relation: K1Le10Le20w20w10 + K2Le20w20 +max8�w;�Le2U �K1Le10Le20 �w2w10 + K1Le20w20�Le1w10 + (17)K1Le10w20�Le2w10 + K2�Le2w20 �K1Le10Le20w20�w1w210 � K2Le20 �w2w220 � � Tspec
wherew0 andLe0 represent, respectively, the nominal values
of the transistorw andLe, and�w and�Le are, respectively,
the random variations inw andLe. Employing the ellipsoid
uncertainty model of (8) for the random parameter variations,
leads to: 264 �w1�w2�Le1�Le2 375 = 2664 (P 1=2u)1(P 1=2u)2(P 1=2u)3(P 1=2u)4 3775 (18)

whereP is the covariance matrix of the random vector

consisting of the variations in gatew and Le of the driver
and the load gate of Figure 2, andu is the vector bounding
the variation within the 4-dimensional ellipsoid centered at the
nominal values ofw andLe, with kuk2 �  .

We introduce a vector� to collect the coefficients of the

5



variational parameters of (17) as:� = 26666664 �K1Le10Le20w20w210K1Le10Le20w10 � K2Le20w220K1Le20w20w10K1Le10w20w10 + K2w20
37777775 (19)

From the definitions in (18) and (19), (17) can be rewritten
as:K1Le10Le20w20w10 + K2Le10w20 +max8u �hP 1=2�;ui� � Tspec (20)

whereha; bi represents the inner product of vectorsa andb.
Since the covariance matrixP is symmetric and positive

definite [15]:P 1=2� = Q diag(p�1; � � � ;p�n) QT� (21)

where Q is the matrix containing eigenvectors ofP , and�i; � � � ; �n are then eigenvalues ofP . Next, definingM =P 1=2 = Q diag(p�1; � � � ;p�n) QT , the positive and negative
terms of the elements of vectorM� can be separated as:P 1=2� =M� = �1 + �2 (22)

where �1 and �2 contain all positive and negative terms,
respectively, of the elements of the vector3 M�.

From the well-known result of the Cauchy Schwartz in-
equality4: < a; b > � kak2 � kbk2 (23)

and from Equations (21) and (22), along with the fact that
in the ellipsoid uncertainty model,kuk2 �  , a sufficient
condition5 for (20) is:K1Le10Le20w20w10 + K2Le10w20 +  k�1k2 +  k�2k2 � Tspec (24)

We then introduce two additionalrobust variables r1 and r2
as: r1 =  k�1k2; i.e., r21 =  2�1T �1r2 =  k�2k2; i.e., r22 =  2�2T �2 (25)

The inequality of (24) is then replaced by the following relaxed
constraints:K1Le10Le20w20w10 + K2Le10w20 + r1 + r2 � Tspec (26) 2�1T �1r�21 � 1 (27) 2�2T �2r�22 � 1 (28)

3Note that the eigen decomposition of theP matrix, to obtainM = P 1=2,
has a one time cost associated with it. For a given correlation model,
the covariance matrixP does not change for different circuits or different
placements of a circuit. Hence, the eigen decomposition ofP can be obtained
in a precharacterization step.

4In our case, the equality in (23) also holds, as there are somepoints in
the ellipsoid set which havehP 1=2�;ui = kP 1=2�k2 � kuk2.

5An equivalent condition for (20) is:�K1Le10 Le20w20w10 + K2Le10w20 +  k(�1 + �2)k2� � Tspec. However,

this does not lead to the formulation of posynomial constraints of (27) and
(28).

As the optimizer tries to minimize the value of the robust
variablesr1 andr2, the relaxed inequality constraints of (27)
and (28) would enforce the equality constraint of Equation
(25).

The inequality of (26) is clearly a posynomial with the
robust variablesr1 and r2 added to the original variable list
of the gatew and the intermediate arrival time variablest (not
used in this example). From Equation (22), by construction, all
the elements of�1 are posynomials, and all the elements of�2
are negative of posynomials. Thus, the quadratic terms�1T �1,
and�2T �2 are a summation of monomials with positive coef-
ficients. Consequently, the constraints of (27) and (28) are also
posynomials. Hence, by following the procedure described in
the above equations, we convert the non-robust posynomial
constraint of (16) to a set of robust posynomial constraints
of (26-28), by introducing two additional variables. It is
worth emphasizing that unlike [11], the robust GP formulation
presented in this section does not restrict the elements of theP matrix to be only nonnegative, i.e., the method can handle
both positively and negatively correlated parameters.

Next, we address the issue of assigning a timing yield
parameter to the optimization formulation. As discussed in
Section III-D, we can assign a prespecified probability� to
the uncertainty ellipsoid model of variations by using the�2n
distribution. From Equation (11), we can determine 2 as
the upper100�th percentile of the�2n distribution from the
standard tables of the Chi-square CDF. For instance, for the
example circuit of Figure 2, corresponding to� = 0:9 or 90%,
the value of determined from the�24 CDF tables, for the
four-dimensional ellipsoid, is = 2:79. The value assigned to , determines the size of the uncertainty ellipsoid used to pad
the nominal terms in the timing constraints. The prespecified
probability� serves as the lower bound on the timing yield,
because the robust constraints formulated using the ellipsoid
margin corresponding to such an�, would be satisfied for at
least�% of all cases. Since there are other points outside the
ellipsoid set of the specified probability value that may not
cause timing violations, the timing yield could be more than�.

For a general circuit, the procedure described for the exam-
ple circuit of Figure 2 is repeated for each constraint. Thus, by
addition of at most two additional variables for each constraint,
robustness against the process uncertainties is added to the
original constraint set, while still maintaining the desirable
posynomial structure of the constraints. By this procedure, we
convert the conventional GP formulation of the gate sizing
problem to a robust gate sizing problem, which is also a
GP and hence, can be efficiently solved using the convex
optimization machinery.

C. Overestimation of Variations

The optimization formulation described in Section IV, adds
margins to the deterministic constraints generated by an STA
procedure. Due to the fact that separate margins are added at
each node of the circuit graph, instead of the whole path, the
resulting formulation could result in a large overestimation of
the variational component of the circuit delay, which could
lead to excessive design penalties.

To understand the problem of this overestimation of varia-
tion, consider a simple example circuit consisting ofm chain
of inverters as shown in Figure 3. For this simple circuit,
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Fig. 3. An example of a chain of inverters circuit to explain the problem of
overestimation of variations in the robust GP formulation.

an STA module would generate the following block-based
constraints: d1(X0) � t1t1 + d2(X0) � t2

...tm�1 + dm(X0) � tmtm � Tspec (29)

wheredi is the delay of theith inverter, which is a function of
the vector of nominal gate sizesX0. By the method explained
in Section IV, the equivalent robust constraints for the example
circuit of Figure 3, can be written as:d1(X0) + max8�
2U(r
0d1(X0;
)�
) � t1t1 + d2(X0) + max8�
2U(r
0d2(X0;
)�
) � t2

... (30)tm�1 + dm(X0) + max8�
2U(r
0dm(X0;
)�
) � tmtm � Tspec
It is easy to see that for the simple circuit of Figure 3, the
delay is given by the whole path delay asd1(X0;
) + � � �+dm(X0;
). Thus, the effect of variations can be accounted
for by a simple robust constraint of the form:d1(X0) + � � �+ dm(X0)+ (31)max8�
2U (r
0(d1(X0;
)) + � � �+ dm(X0;
)�
) � Tspec
For anym nonnegative functions,y1; � � � ; ym, the following
inequality is well-known:max(y1 + � � �+ ym) � max y1 + � � �+max ym (32)

Therefore, for the variation terms in the constraints of (30)
and (31), the following inequality holds:max8�
2U(r
0Xi di(X0;
)�
) �Xi max8�
2U(r
0di(X0;
)�
) (33)

It is clear from (30), (31) and (33), that the approach of adding
the variational component of delay at each node leads to extra
guard-banding.

Another way to understand the amount of pessimism in-
troduced in the formulations is by realizing that the actual
probability of failure, pfail1, for the circuit of Figure 3 is
given by:pfail1 = Pr(d1(X0;
) + � � �+ dm(X0;
)) > Tspec (34)

On the other hand, the probability of failure,pfail2, as
computed by the padding of constraints at the each node in

the circuit graph of Figure 3 is given by:pfail2 = [Pr(d1(X0;
) > t1)] [ [Pr(t1 + d2(X0;
) > t2)][� � � [ [Pr(tm�1 + dm(X0;
) > Tspec)] (35)

Clearly, from Equations (34) and (35),pfail1 � pfail2. Thus,
the robust GP formulation attempts to safeguard against a
probability of timing failure that is greater than the actual
failure probability, which could lead to extra design margins.

For a simple circuit similar to the one in Figure 3, it is
trivial to trace the path delay, and then add margin to the
whole path delay constraint. However, in general, the number
of paths in a circuit graph can be exponential in the number of
nodes. Therefore, enumeration of paths has a prohibitive cost
for large circuits consisting of thousands of gates.

To reduce the problem of unnecessary padding at the inter-
mediate nodes in the circuit, without incurring the exponential
cost of formulating the path-based constraints, we employ
a graph pruning technique proposed in [19]. The following
section discusses this pruning method.

D. Graph Pruning

In [19], the authors propose a technique to reduce the
number of variables, constraints and redundancy in the circuit
optimization formulation, by removing the internal nodes and
the original edges connected to them in the circuit graph. We
adapt this graph pruning technique to our method to reduce
the pessimism in our gate sizing formulation.

This technique alters the delay constraints formulation by
operating on the timing graph of the circuit. An initial timing
graph of the circuit is constructed by representing each pin of
a gate in the circuit as a vertex, and the connections between
an input and an output pin of the same gate, and between an
output pin of a gate and an input pin of its fanout gate, as
edges in the graph. The arrival time at a pin of a gate is used
to annotate the edge originating at the node corresponding to
that pin. Two additional nodes, representing the primary inputs
(PI) and primary outputs (PO) are added to the vertex set of the
graph. Figure 4 shows a simple circuit and its corresponding
timing graph.

(a) (b)

1

2

3

4

5

6

7PI PO

t1t1 t2t2
t3t3

t4t4
t5t5
t6t6 t7t7

d15d25d36d46
d57
d67

Fig. 4. A simple example circuit to illustrate the graph pruning method. (a)
A two-level combinatorial circuit. (b) Timing graph for thecircuit.

In the graph pruning method, the nodes of the graph are
iteratively screened for a possible elimination by evaluating
the cost of this node removal. The cost is typically expressed
as some simple function of change in the number of variables
and constraints in the optimization formulation, after the
vertex under consideration is removed from the graph. If the
evaluated cost is negative, implying a reduction in the problem
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size, the node is removed, and subsequently all incoming and
outgoing edges of this node are also pruned from the graph.

(a) (b)

l
o1o1 o2o2
onon

i1i1 i2i2
imim

Fig. 5. A segment of the timing graph of a circuit to illustrate the removal
of a node in the graph pruning method. (a) The original graph segment. (b)
The graph segment after pruning nodel.

The change in the formulation of delay constraints by a
node removal can be understood by considering a segment
of a circuit graph shown in Figure 5. In the above figure,
we assume that nodel meets the removal criterion according
to the pruning cost. This node hasm fanins, i1; � � � ; im, andn fanouts,o1; � � � ; om. The timing constraints for this graph
segment before the node removal, as depicted by the graph
segment of Figure 5(a) are:tik + dik ;l � tl 8k 2 1; � � � ;mtl + dl;oj � toj 8j 2 1; � � � ; n (36)

After eliminating nodel, and the corresponding arrival time
variabletl, from the above constraint set, we obtain:tik + dik;l + dl;oj � toj 8k 2 1; � � � ;m; 8j 2 1; � � � ; n (37)

These new constraints are shown graphically in Figure 5(b).
The two sets of constraints in (36) and (37) are equivalent,
and no timing information is lost in transforming from one set
to the other. Since the pruning cost determines the nodes to
be removed, a cost function constructed to reduce the problem
size, e.g., a weighted sum of change in the number of variables
and number of constraints, results in making the optimization
formulation more compact after every pruning step.

1) Example of the Pruning Procedure: The application of
the graph pruning method of [19] to reduce the pessimism in
our optimization formulation can be best explained using a
simple example circuit, and its corresponding timing graph.
For this we refer back to the circuit of Figure 4. As shown
in the figure, the arrival times at each pin of the logic gates
are represented by variablest1; � � � ; t7. For simplicity, it is
assumed that the interconnects have zero delay and that all
primary inputs arrive at a timet = 0. The dji variables in
Figure 4(a), represent the pin to pin delay of a logic gate.
Figure 4(b) shows the corresponding timing graph for the
example circuit. By employing an STA procedure, the delay
constraints at the output of pin of each gate in the circuit of
Figure 4(a) can be written as:0 � ti i 2 f1; 2; 3; 4gt1 + d15(X0;
) � t5t2 + d25(X0;
) � t5t3 + d36(X0;
) � t6t4 + d46(X0;
) � t6

t5 + d57(X0;
) � t7t6 + d67(X0;
) � t7t7 � Tspec (38)

whereX0 is the vector consisting of the sizes of the three gates
of Figure 4(a), and
 is the random vector corresponding to
the process uncertainties. From the discussion in Section IV-C,
adding margins for each of the constraints of (38) can result in
excessive guard-banding against the effect of variations, and
hence a pessimistic design.

(a)
(b)

(c)(d)

1

2

3

4

5 5

6 6

7

7 7PIPI

PI PI POPO

PO PO

t1 t1t2 t2t3 t3t4 t4
t5 t5
t6 t6

t7

t7 t7

t1, t5t2, t5t3, t6t4, t6
t1, t5, t7t2, t5, t7t3, t6, t7t4, t6, t7

Fig. 6. The graph pruning method applied to the example circuit of Figure
4. (a) The original circuit graph. (b) Graph after removing nodes 1, 2, 3 and
4. (c) Graph after removing nodes 5 and 6. (d) The final pruned graph.

As described in the previous section, the circuit timing graph
of Figure 4(b), and the corresponding constraints formulation
of (38) can be altered by selectively removing nodes from the
graph. Figure 6 illustrates the application of the graph pruning
technique on the example circuit of Figure 4. For this specific
example, the pruning cost chosen is simply the difference in
the number of variable and constraints after removing a node
from the graph. Figure 6(a) shows the graph obtained after
eliminating nodes 1, 2, 3 and 4 in the original graph. Similarly,
Figure 6(b) represents the graph after removing nodes 5 and
6, as well. The final pruned graph, obtained after removing
all nodes except the PI and the PO nodes is shown in Figure
6(d). For each pruned node, a new edge is added between the
fanin and fanout nodes of the removed node, and the new edge
is annotated with the pruned arrival times. This annotation is
required to generate the timing constraints at the end of the
pruning procedure.

From the edge annotations, and the original constraints of
(38), the constraints corresponding to the final pruned circuit
graph of Figure 6(d) can be written as:d15(X0;
) + d57(X0;
) � Tspecd25(X0;
) + d57(X0;
) � Tspecd36(X0;
) + d67(X0;
) � Tspecd46(X0;
) + d67(X0;
) � Tspec (39)

In the above set of constraints, the pruning method elim-
inates all nodes, except the ones corresponding to primary
inputs and the primary output. Since all intermediate arrival
time variablesti are pruned, the above formulation does
away with the problem of keeping redundant margins for the
constraints at the output pin of each node. It should be em-
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phasized that the example circuit of Figure 4 is an extremely
simple case for which the pruning method can eliminate all
intermediate nodes, and arrive at the path delay constraints
of (39). Therefore, the problem of overestimation of effect of
variation, as described in Section IV-C is completely resolved
for this example circuit. In general, for practical circuits,
the graph pruning procedure could determine some nodes
unsuitable for pruning, and some intermediate nodes could
still remain in the final pruned circuit graph. However, due to
the removal of many intermediate nodes, the pessimism in the
robust optimization formulation is considerably reduced.

2) Practical Issues in Using Graph Pruning for the Robust
GP Formulation: By removing a node withm fanins andn fanouts from the circuit graph, the change�con, in the
number of constraints is�con = 2(mn� (m + n)), and the
change�var, in the number of variables is�var = �2,
as the variables corresponding to both rise and fall delays
of the pruned node are eliminated. A pruning criterion can
thus be established as some functionfcost(�con;�var), of
change in the number of variables and constraint. The pruning
procedure operates iteratively, in which the nodes with the
lowest nonpositivefcost are pruned in the first pass. After the
first iteration, the number of fanins and fanouts of the unpruned
nodes are recalculated due to the addition of new edges in the
pruned graph. This iterative method continued until all nodes
in the graph produce a positivefcost. At this point, no more
nodes can be removed from the graph according to the given
pruning metric. Typically, the pruning criterion is chosen asfcost = a:�con+ b:�var, wherea andb are some normalized
weighting factors. However, due to some practical problems
in applying the graph pruning method to our formulation, we
use a slightly modified pruning cost function. The following
discussion explains these practical issues.

From (37), the number ofdji terms, corresponding to the
posynomial gate delay models, increase in every constraint
during the pruning procedure. This results in the following
problem for our robust GP formulation. Referring back to
our robust GP method described in Section IV-B, we modify
each delay constraint to include the terms corresponding to the
maximum effect of variations inside the bounded uncertainty
ellipsoid model. This is achieved by adding to each constraint,
new robust variablesr1 andr2, defined in Equation (25), and
including additional constraints to the formulation, given by
(27) and (28), as 2�1T �1r�21 � 1 and  2�T2 �2r�22 � 1.
For constraints at each node of circuit graph, the vector� is
typically sparse, as this vectors consist of entries correspond-
ing to a few parameters, affecting only a single gate delay.
As a result, the vectors�1 and�2, derived, respectively, from
the positive and negative terms of the elements ofP 1=2� are
also sparse. However, during the graph pruning method, as
the intermediate nodes are removed, the number ofdji terms
increase in every constraint. Thus, the sparsity of� vector, and
consequently, the sparsity of�1 and�2 is adversely affected.
Moreover, as these vectors become dense, the number of
monomial terms in the quadratic expansion of the constraints 2�1T �1r�21 , and 2�T2 �2r�22 grow rapidly. As a result many
constraints have monomial terms involving a large number
of variables. Consequently, the constraint Jacobian matrix
becomes very dense, which can considerably slow down the
gradient computations required by the convex optimization

methods, such as the interior point algorithm.
To overcome this issue of potential slow down of the

gate sizing procedure, due to the increase in density of the
constraint Jacobian matrix, we modify the pruning cost to
include a penalty term related to increasing the number of
terms in the�1 and �2 vectors. We defineMononum as the
maximum number of monomial terms in all the constraints
affected by removing the node under consideration. The cost
of pruning this node is then calculated as:fcost = a�con + b�var + cmax(Mononum �Monospec; 0)

(40)

wherec is a weight factor, andMonospec is a user specified
quantity to represent the maximum number of monomial terms
allowed in each constraint. A higher value ofMonospec could
result in more pruning, but at the cost of a potential slow down
in obtaining the solution of the GP optimization problem.
Thus, by adjusting theMonospec parameter, the user can
choose an engineering tradeoff between the runtime and the
amount of pessimism reduction desired in the gate sizing
procedure.

In the next section, we elaborate on another heuristic method
to further reduce the pessimism in our formulation.

E. Using Variable Size Ellipsoids

The graph pruning procedure of [19], explained in Section
IV-D, helps in eliminating many intermediate arrival time
variables, and reduce the problem of variation overestimation
in our formulation. However, as described in the previous
section, it may not be possible to remove all intermediate
nodes from the graph, and leave only the ones corresponding
to the primary inputs and the primary outputs unpruned. The
number of fanins and fanouts of a node increase monotonically
during the pruning procedure. Therefore, for a given pruning
cost of Equation (40), if a node is unsuitable for pruning in any
iteration of the pruning method, i.e., it has a positive pruning
cost, it will never be pruned under the same criterion. Due to
the presence of the unpruned nodes in the circuit graph, the
pessimism in our optimization formulation is not completely
eradicated.

We present another method, to be employed after the graph
pruning procedure, to further reduce the excessive margins
from the timing constraints formulated at the unpruned nodes
of the graph. This method is based on setting variable margins
at different topological levels of the circuit. We use a simple
example circuit consisting of just two inverters to explain this
method.

��
��
��
��

�
�
�
�t1d1 d2U1 U2

Fig. 7. An example circuit to explain the use of variable sizeellipsoids to
reduce the pessimism in the robust GP formulation.
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Consider the circuit of Figure 7 consisting of two inverter
gates. For this simple circuit, the intermediate node, corre-
sponding to the output pin of the first inverter, can be easily
removed to formulate the path delay constraint. However, for
the purposes of exposition of the method of using variable
ellipsoids, we do not employ any pruning and formulate the
constraints for this circuit as:d1(X0) + max8�
2U1(r
0d1(X0;
)�
) � t1 (41)t1 + d2(X0) + max8�
2U2(r
0d2(X0;
)�
) � Tspec(42)

We use different guard-bands for the constraints (41) and (42),
by employing two uncertainty ellipsoids,U1 andU2 given by:U1 = f
 : (
�
0)TP�1(
�
0) �  21g (43)U2 = f
 : (
�
0)TP�1(
�
0) �  22g (44)

where 1 <  2. As explained in Section III-D, we can use
the CDF tables of the�2n distribution to associate probability
values,�1 and�2 with the ellipsoidsU1 andU2, respectively.
As  1 <  2, it follows that�1 < �2.

A simple probabilistic analysis to achieve the timing yield
of the circuit of Figure 7, provides insights into the idea of
using variable ellipsoids. Using the bounded ellipsoid model
for parameter variations, we first define two random variables�1 and�2 as:�1 = max8�
2U1(r
0d1(X;
)�
)� (8�
d1(X;
))(45)�2 = max8�
2U2(r
0d2(X;
)�
)� (8�
d2(X;
))(46)

The random variables defined in Equations (45) and (46),
relate to the values�1 and�2 as :�1 � Pr(�1 > 0) (47)�2 � Pr(�2 > 0) (48)

By using a smaller ellipsoidU1 to guard-band the timing
constraint of (41), we associate a smaller probability�1, as
a lower bound on the chance that this small design margin
would be sufficient to meet the constraint in the face of
variations. However, even if the design margin is not sufficient
to meet this constraint, corresponding to the case that�1 < 0,
by employing a larger ellipsoidU2, and the corresponding
bigger probability�2, to pad the timing constraint of (42),
we have a better chance to compensate for the violation of
constraint (41). Mathematically, ifA is the probabilistic event
that constraint (41) is not met, andB is the event that the
circuit fails to meet the specified delay, the following relation
holds6:Pr(B=A) = Pr(�1 < 0)Pr(�2 > 0=�1 < 0)Pr((j�1j > j�2j)=�2 > 0;�1 < 0) + Pr(�2 < 0)Pr(�1 < 0=�2 < 0) (49)

The use of a larger ellipsoidU2 with an associated lower
bound probability�2 � Pr(�2 > 0), ensures that for the
cases when�1 < 0, the termPr(�2 < 0) and the conditional
probability term Pr((j�1j > j�2j)=�2 > 0; �1 < 0) in
Equation (49) are reasonably small. Therefore, the scheme of
using a smaller design margin for a lower topological level,

6Since the parameters of the two inverters may be correlated,Equation (49)
contains terms corresponding to conditional probabilities.

followed by a sufficiently large design margin for higher levels
can still provide the necessary guard-banding to achieve the
desired timing yield.

For a general circuit withk topological levels, we employk uncertainty ellipsoids,U1; U2; � � � ; Uk, characterized by the
constants, 1;  2; � � � ;  k, with  1 <  2 < � � � <  k. Since
it is extremely difficult to relate the individual ellipsoid sizes
with the timing yield specification, we heuristically chose k
to correspond to the lower bound on the specified timing yield�k, and progressively decrease the constants k�1; � � � ;  1.
The value of k is determined from the tables of the�2n
distribution. The margins at logic levels,1; � � � ; k � 1, are
determined by setting:�i = �k � :(k � i) i = 1; � � � ; k � 1 (50)

where  is an empirically determined factor. Using smaller
timing margins at lower topological levels, as compared to
choosing the same margin at all levels, corresponding to
the lower bound on timing yield�k, helps in reducing the
pessimism in our formulation.

It should be noted that this scheme of using variable
sized ellipsoids is employed for the unpruned nodes, only
after the graph pruning step. The graph pruning method of
[19], followed by the heuristic scheme of keeping variable
guard-bands at different topological levels of the final pruned
circuit, significantly reduces the problem of overestimation of
variation in our gate sizing procedure.

F. Incorporating Spatial Correlations

We use the grid based spatial correlation model of [18]
and [17] to incorporate the intra-die correlations between the
parameters variations that exhibit spatial dependence, such as
the transistorw andLe.

1

2

4

3

Fig. 8. A grid based spatial correlation model. The layout isdivided into a3�3 grid. The gates in the same grid are assumed to have a perfect correlation.
Gates in the nearby grids are assigned a high correlation factor, and the gates
in far away grids are assigned a low or a zero correlation factor.

Figure 8 refers to such a model, where the layout area is
partitioned intom = 9 grids. The widths (channel lengths)
of the devices located in the same grid are assigned a perfect
correlation factor, device widths (channel lengths) in nearby
grids are assigned a high correlation factor, and the ones in
far away grids have a low or zero correlation factor. As seen
in Figure 8, gatesf1,2g have perfect correlation between their
widths (channel lengths), gatesf1,3g and f2,3g have high
correlations, where as gatesf1,4g andf2,4g are uncorrelated.
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For a random vector
 representing the variations inw andLe, and its corresponding covariance matrixP , the entryPij =�i�j�ij denotes the covariance between componentsi andj of
, where� is the standard deviation of each random variable,
and�ij is the correlation factor between the random variablesi
andj. By employing the spatial correlation model of Figure 8,
the correlation factor between all elements of
 is computed,
and stamped out in matrixP . The ellipsoid uncertainty model,
described in Section III-C, then incorporates the impact of
correlations in the robust optimization formulation.

The following simple example explains how the correlations
are captured by the uncertainty ellipsoid. Consider a simple
constraint involving the transistor widths of two gates:tj + K1w1w2 � ti (51)

For simplicity, we assume that the gate widths,w1 andw2, are
the only two varying parameters, and the other parameters are
subsumed in the constantK1. Furthermore, we assume that
the gates are placed in the same grid of the spatial correlation
model, hence, the variations in the two gate widths are same,
i.e., �w1 = �w2. If the nominal gate sizes are also assumed
to be identical, i.e.,w10 = w20 , the effect of process variation
cancels out in the numerator and denominator of (51), and no
guard-banding is required. To verify that the ellipsoid uncer-
tainty correctly incorporates this perfect correlation scenario,
we apply our robust optimization procedure to the constraint
of (51). Generating a first order Taylor series expansion of the
constraint around the nominal values (w10 ; w20 ), and applying
the ellipsoid uncertainty yields: tj + K1w10w20 +max8ujkuk2� (K1(P 1=2u)1w20 � K1w10(P 1=2u)2w220 ) � ti (52)

However, since we have perfect correlation betweenw1 andw2, the correlation factor,�12 = �21 = 1. Therefore, the
correlation matrixP is given by:P = � �21 �1�2�1�2 �22 �
Furthermore, since the variations inw1 andw2, and the mean
values are same, we must have�1 = �2. It then follows that
for all vectorsu = [u1; u2], which characterize the uncertainty
ellipsoid, we have(P 1=2u)1 = �21u1+�1�2u2 = (P 1=2u)2 =�22u2 + �1�2u1, and the variational term in (51) is:K1(P 1=2u)1w20 � K1w10(P 1=2u)2w220 = 0
Thus, the ellipsoid uncertainty model easily captures the
effects of correlations between random variables, and incorpo-
rates the same in the optimization procedure. Incorporating the
correlations in gate sizing optimization procedure reduces the
pessimism involved with a worst-casing scheme, and provides
opportunities for saving expensive design resources.

G. The Complete Sizing Procedure

The complete gate sizing procedure can be recapitulated by
the following steps:

1) Generate the initial non-robust timing constraints by an
STA procedure.

2) On the original circuit graph, employ the graph pruning
method of [19], described in Section IV-D, to remove
as many intermediate nodes as possible according to the
pruning cost function of Equation (40).

3) For the final pruned graph, generate new timing con-
straints using the edge annotations in the final pruned
graph.

4) Generate a first order Taylor series expression for each
constraint at the nominal values of the parameters.

5) Employing the uncertainty ellipsoid model, transform
each constraint to a set of robust constraints as described
in Section IV-B. For this step, use variable size ellipsoids
at each topological level of the circuit, as explained in
Section IV-E.

6) Solve the resulting GP by using convex optimization
tools.

The solution of the convex optimization problem provides the
gate sizes for the circuit that minimize the area objective,
subject to the specified timing yield constraints.

V. EXPERIMENTAL RESULTS

The proposed robust gate sizing procedure was implemented
in C++, and an optimization software [21] was used to solve
the final GP. All experiments were performed on P-4 Linux
machines with a clock speed of 3.2GHz, and 2GB of memory.
The robust gate sizing technique was applied to the ISCAS
85 benchmark circuits. The cell library selected comprised
inverters, and two and three input NAND and NOR gates.
We assume capacitive loading for the gates. For simplicity we
consider the variations in the transistor width, and the effective
channel length as the only sources of variation. However, our
approach can be easily extended to incorporate various other
parameters of variation for the gate and interconnect delays.
We use a simple Elmore delay model to generate posynomial
gate delay models. Our approach can work just as well for
any other posynomial based delay models, such as the ones
based on generalized posynomials proposed in [14].

We use the spatial correlation model of [18] and [17] to
generate the elements of the covariance matrixP . To use these
spatial correlation models, we first place the circuits using
the placement tool Capo [22], and then divide the chip area
into different number of grids, depending on the circuit size,
so that each grid size is no greater than 50� � 50 �. The
standard deviations of thew andLe parameters are chosen
from [23] for a 100 nm technology node. Using this spatial
correlation model, all the elements of the covariance matrixP
are obtained to be nonnegative, which simplifies the implemen-
tation of the robust constraint generation process. However, the
formulation, as described in Section IV-B, does not impose
any sign restrictions for the elements of theP matrix. The
objective function chosen for the optimization is to minimizeArea = Pi aiwi0 , whereai is the number of transistors in
gatei. For each circuit, the value ofTspec is chosen to be the
point of 15% slack, i.e.,Tspec = Dmin+0:15(Dmax�Dmin),
whereDmin andDmax are, respectively, the minimum and the
maximum possible delays of the circuit, found by setting all
gates to the minimum and the maximum size, respectively.

We implement the graph pruning technique of [19] to ad-
dress the problem of overestimation of variation. As described
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in Section IV-D.2, we set the pruning cost of a node asfcost = a�con + b�var + cmax(Mononum �Monospec; 0).
For this cost function, we choosea = 1:5, b = 1, c = 1. We
choose different values for the termMonospec, that determines
the maximum number of monomial terms allowed in each
constraint. As described in Section IV-E, we employ smaller
sized uncertainty ellipsoids at lower topological levels of the
circuit, and progressively increase the ellipsoid size at higher
logic levels. The size of the largest ellipsoid employed at the
highest logic levelk, characterized by k, is chosen to cor-
respond to the lower bound on the timing yield specification,�k. The value of k is determined from the tables of the�2n distribution. The margins at logic levels,1; � � � ; k � 1, are
determined by using Equation(50) and choosing the factor
to be in the interval of[0:05; 0:10], which corresponds to
a 5%-10% decrement from the value of�k, that specifies
the lower bound on the timing yield. The value of each i,
corresponding to the�i in Equation (50), is determined from
the CDF tables of the Chi-square distribution.

In the first set of experiments, we compare the gate sizing
solution obtained by our method with a deterministic gate
sizing solution. The deterministic gate sizing is also formulated
as a GP, using the formulation of Section 4, but it does not take
into account the effect of parameter variations. For our robust
optimization procedure, we set the lower bound on timing
yield,�k = 85%, and choose the value ofMonospec = 35. To
simulate the effect of parameter variations, we perform Monte
Carlo analysis. We refer to the set of gate sizes obtained from
the deterministic, and the robust optimization asX0det andX0rob , respectively. Using these sizes, we generate10; 000
samples each, from two multivariate normal distributions,N1(X0det ; P ) andN2(X0rob ; P ). Next, we perform an STA
for each of these samples, and record the number of times
the circuit meets the specified target delay. The timing yield
of the two optimizations are then determined asY lddet =ndet�100=M , andY ldrob = nrob�100=M , wherendet is the
number of samples drawn from theN1(X0det ; P ) distribution
that meet the timing requirements, andnrob is the number of
samples drawn from theN2(X0rob ; P ) distribution that meet
the specified target delay. The total number of Monte Carlo
samples is given byM = 10000. Table I contains the relevant
data for this comparison.

Deterministic Design Robust Design
Ckt

Gates Ar Y lddet% Time Ar Y ldrob% Time
(sec) (sec)

C432 616 1.00 22.31% 3 1.12 99.91% 15
C499 1262 1.00 30.34% 2 1.18 99.94% 23
C880 854 1.00 28.46% 8 1.10 99.92% 18
C1355 1202 1.00 32.34% 12 1.15 98.89% 31
C1908 1636 1.00 35.14% 18 1.14 99.56% 159
C2670 2072 1.00 39.91% 30 1.17 99.83% 189
C3540 2882 1.00 33.31% 25 1.08 98.82% 212
C5315 4514 1.00 38.46% 43 1.12 98.76% 579
C6288 5548 1.00 37.45% 58 1.14 99.22% 742
C7552 6524 1.00 34.78% 90 1.17 99.13% 845

TABLE I

A TIMING YIELD COMPARISON OF DETERMINISTIC AND ROBUST GATE

SIZING SOLUTIONS.

The first column in Table I lists the benchmark circuit,
and the number of gates in each circuit is shown in column

two. The timing yield of the deterministically sized circuits,Y ielddet, is listed in column four of the table. Since the
non-robust gate sizing method does not take into account the
effect of variations, the timing yield, as expected, is quite
low for these circuits. Our robust sizing method, eliminates
these timing violations by keeping adequate design margins.
Column seven list the timing yield,Y ieldrob, of the robustly
sized circuits. It should be noted that a value of�k = 85%, as
a lower bound on the timing yield, is sufficient to provide an
actual yield of about 99% for all benchmark circuits. The area
overhead that the robust circuits have to employ to safeguard
against the parameter variations is shown in sixth column of
Table I. At the cost of an area increase of about 8% to 18%, the
robustly sized circuits are able to eliminate almost all timing
violations. The runtimes of the deterministically, and robustly
sized circuits are listed, respectively, in columns five and eight
of the table. As seen in the table, the robust methods is much
slower than the deterministic sizing procedure. The steps of
employing graph pruning, and the increased problem size of
the robust gate sizing procedure due to the presence of robust
variables and constraints lead to this relatively higher runtimes.
However, the overall runtimes of the gate sizing method are
very reasonable.

We perform another series of experiments to compare our
approach with a gate sizing methodology employing a conven-
tional worst-case design approach. The worst-case designs are
obtained by iteratively solving the standard GP, but for delay
specifications tighter than the original required target delay,
until the area of the worst-case design is the same as that of
the robust design. These circuits are thus designed using an in-
built guard-band, determined by the difference of the original
target delay and the tighter delay specification. Furthermore,
to explore the area-robustness tradeoff we vary the size of the
largest uncertainty ellipsoid used, by choosing different values
of the factor�k, that determines the lower bound on the timing
yield of the robustly sized circuits. For these experiments, as
before, we set the values ofMonospec = 35, to define the
pruning cost function of Equation (40). Having sized these
circuits, we perform Monte Carlo simulations to determine
the timing yield of the worst-case and the robust circuits.

Table II lists the results of these experiments. As seen
from the table, the number of timing violations reduces with
increase in area, for both the worst-case and the robust circuits.
However, in all cases, our robust design has a better timing
yield than the worst-case design having the same area. On an
average, the robust design has about 12% greater timing yield
than the worst-case design having the same area. The better
performance of our robust sizing solution is not surprising
because of the fact that the spatial correlation information,
stored in theP matrix, is used by the optimization scheme.
The worst-case circuit is expected to have a large overhead,
since designing by setting tighter delay specifications results
in rendering critical some of the earlier non-critical paths.
Therefore, the optimizer now has to aggressively size the
gates on these paths, which results in greater transistor area
than actually required. Since, the runtimes for our robust gate
sizing solutions are not prohibitively high, the user can run the
optimization for different values of�k, to select the amount
of robustness required against the process uncertainties, at the
cost of additional chip area.

12



Timing Yield for the Same Area Worst-Case (WC) and Robust (Rob) Designs�k = 0:55 �k = 0:65 �k = 0:75 �k = 0:85
Ckt

WC Rob Ar WC Rob Ar WC Rob Ar WC Rob Ar
C432 45.63% 68.65% 1.05 86.78% 97.03% 1.08 91.62% 98.14% 1.10 93.12% 99.91% 1.12
C499 51.45% 63.45% 1.08 67.12% 74.28% 1.11 85.12% 97.01% 1.14 94.20% 99.94% 1.18
C880 52.36% 67.52% 1.03 77.38% 88.50% 1.06 88.42% 97.34% 1.08 92.38% 99.92% 1.10
C1355 55.78% 75.21% 1.08 66.17% 84.89% 1.11 82.66% 98.11% 1.13 91.43% 98.89% 1.15
C1908 50.67% 72.76% 1.06 70.69% 87.14% 1.10 84.53% 96.67% 1.12 93.89% 99.56% 1.14
C2670 56.32% 73.68% 1.08 72.86% 88.21% 1.11 89.23% 95.33% 1.14 92.34% 99.83% 1.17
C3540 60.22% 78.14% 1.02 76.15% 89.12% 1.04 89.32% 95.56% 1.06 94.14% 98.82% 1.08
C5315 55.81% 74.98% 1.05 75.50% 87.67% 1.08 90.56% 96.89% 1.10 93.45% 98.76% 1.12
C6288 55.39% 77.16% 1.07 69.79% 88.12% 1.10 85.78% 95.78% 1.12 91.91% 99.22% 1.14
C7552 49.08% 70.48% 1.08 66.21% 85.56% 1.12 83.89% 94.54% 1.15 90.11% 99.13% 1.17

TABLE II

A COMPARISON OF THE ROBUST AND WORST CASE GATE SIZING DESIGNS USING THE SAME AREA.

Deterministic Design Rob1 Design Rob2 Design
Ckt

Gates Ar Y lddet% Time Ar Y ldrob1% Time Ar Y ldrob2% Time
(sec) (sec) (sec)

C432 616 1.00 22.31% 3 1.08 97.03% 15 1.15 98.32% 14
C499 1262 1.00 30.34% 2 1.11 74.28% 23 1.17 76.78% 21
C880 854 1.00 28.46% 8 1.06 88.50% 18 1.14 90.23% 16
C1355 1202 1.00 32.34% 12 1.11 84.89% 31 1.20 85.34% 27
C1908 1636 1.00 35.14% 18 1.10 87.14% 159 1.22 89.12% 123
C2670 2072 1.00 39.91% 30 1.11 88.21% 189 1.24 89.03% 158
C3540 2882 1.00 33.31% 25 1.04 89.12% 212 1.17 90.32% 181
C5315 4514 1.00 38.46% 43 1.08 87.67% 579 1.23 89.32% 398
C6288 5548 1.00 37.45% 58 1.10 88.12% 742 1.24 90.45% 587
C7552 6524 1.00 34.78% 90 1.12 85.56% 845 1.27 87.29% 693

TABLE III

A COMPARISON OF ROBUST GATE SIZING SOLUTIONS, WITH AND WITHOUT USING GRAPH PRUNING AND VARIABLE SIZE ELLIPSOIDS.

In the next set of experiments, we investigate the usefulness
of the graph pruning method, and employing different sized
ellipsoids, in reducing the pessimism in our robust formula-
tion. We first employ graph pruning, and use variable sized
ellipsoids to optimize the benchmark circuits. At the highest
topological circuit level, we use the largest ellipsoid corre-
sponding to a value of�k = 0:65. At the lower topological
levels, we progressive decrease the ellipsoid size by choosing
a lower �, as given by Equation (50). We use a value ofMonospec = 35 to set the pruning cost according to Equation
(40). These circuits are referred to asRob1 designs. Next,
we optimize the benchmark circuits without any pruning, and
using the same sized ellipsoids at all nodes, determined by the
values of�k = 0:65. These optimized circuits are referred to
asRob2 designs.

Table III contains the results of these experiments. The
yields of the two designs,Y ldrob1 and Y ldrob2 , are listed,
respectively, in columns seven and ten of the table. The
area employed by theRob1 and Rob2 designs are shown,
respectively, in columns six and nine of the table. As seen
from this data in Table III, the designs employing the heuristic
techniques of graph pruning, and using variable size ellipsoids
use about 7% to 15% lesser circuit area compared to the design
without any pruning, and using a constant size ellipsoid. The
timing yields ofRob2 designs are only slightly better,< 2%
for all circuits, compared to the timing yields ofRob1 design.
This indicates that employing the graph pruning method, and
the strategy of keeping variable guard-bands for the timing
constraints, leads to considerable pessimism reduction in our

optimization formulation, without a significant loss in the
timing yield of the circuit. The runtimes for theRob2 designs
are smaller compared toRob1 designs. This is due to the fact
the robust constraints of (27) and (28) have fewer monomial
terms for the procedure not employing any pruning compared
to the one that prunes some intermediate nodes. As a result,
the constraint functions are sparser for the former method,
which helps in speeding up the optimization. The absence of
the graph pruning step also makes the procedure forRob2
design run faster.

In the last set of experiments, we explore the tradeoff
obtained by tuning the pruning cost function by changing the
value of theMonospec term, which regulates the maximum
number of monomials allowed in a constraint. This term in the
pruning cost of Equation (40) helps in preventing the constraint
Jacobian matrix from becoming immoderately dense. Table
IV contains the results of these experiments. As seen in the
table, as the value ofMonospec term is increases, the runtime
of the procedure increases. For the larger benchmark circuits,
the slow down of the optimizer is significant, e.g., for C6288
circuit, the runtime increases by almost 40% by increasing the
value of theMonospec term from 20 to 50. This is due to the
fact that for larger circuits, with thousands of constraints, the
sparsity of the large constraint matrix has a greater impact
on the speed of the convex optimization tool. Although, the
runtime of the robust optimization method increases, for higher
values ofMonospec term, there is also a greater reduction of
pessimism in the formulation, due to more aggressive pruning.
This results in lesser use of the circuit area for a higher valuer
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of Monospec term. For example, for C6288 circuit, there is
a 5% reduction in area by increasing the value ofMonospec
from 20 to 50. The timing yield is not significantly impacted
by changing the value of theMonospec term. Based on this
runtime and reduction in circuit area tradeoff, the user can
appropriately set the value ofMonospec term to be employed
in the pruning cost function of Equation (40).Monospec = 20 Monospec = 35 Monospec = 50

Ckt
Ar Y ld Time Ar Y ld Time Ar Y ld Time

(sec) (sec) (sec)
C432 1.09 97.58% 15 1.08 97.03% 15 1.07 96.89% 17
C499 1.11 74.89% 22 1.11 74.28% 23 1.10 74.10% 25
C880 1.07 88.91% 18 1.06 88.50% 18 1.05 87.78% 20
C1355 1.12 85.12% 29 1.11 84.89% 31 1.10 83.67% 33
C1908 1.10 87.89% 147 1.10 87.14% 159 1.09 86.57% 172
C2670 1.13 88.95% 176 1.11 88.21% 189 1.10 87.34% 231
C3540 1.06 90.05% 200 1.04 89.12% 212 1.04 88.78% 294
C5315 1.09 88.34% 504 1.08 87.67% 579 1.07 86.89% 681
C6288 1.13 89.57% 657 1.10 88.12% 742 1.08 87.34% 920
C7552 1.14 86.78% 784 1.12 85.56% 845 1.10 84.12% 1027

TABLE IV

A COMPARISON OF THE ROBUST GATE SIZING DESIGNS OBTAINED BY

CHANGING THE PRUNING COST FUNCTION OFEQUATION (40).

VI. CONCLUSION

In this paper were present a gate sizing procedure as a
worst-casing methodology that attempts to keep smart design
margins to safeguard against the effect of variations. Assuming
a multivariate normal distribution for the process-driven pa-
rameter variations, an uncertainty ellipsoid set is employed as a
bounded model for these variations. This uncertainty ellipsoid,
defined by the appropriate covariance matrix of the varying
parameters, incorporates the effect of spatial correlations in
the optimization set up. The multivariate Gaussian assumption
for parameter distributions allows the use of Chi-square CDF
tables to specify a lower bound on the timing yield of the
circuit. Using posynomial delay models, the optimization
formulation for the gate sizing procedure is relaxed to a
geometric program, that is solved using convex optimization
tools. To reduce the pessimism associated with the node-
based formulation, we employ the techniques of graph pruning
and heuristically choosing variable sized ellipsoids at different
topological levels of the circuit. Experimental results show that
for the same transistor area, the circuits sized by of our robust
optimization approach have, have fewer timing violations
as compared to the gate sizing solutions obtained via the
traditional, deterministically based guard-banding method.

REFERENCES

[1] J. Fishburn and A. Dunlop. TILOS: A Posynomial Programming Ap-
proach to Transistor Sizing. InProceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 326–328, 1985.

[2] S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang. An Exact
Solution to the Transistor Sizing Problem for CMOS CircuitsUsing
Convex Optimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 12:1621–1634, Nov 1993.

[3] X. Bai, C. Visweswariah, P. N. Strenski, and D. J. Hathaway.
Uncertainty-Aware Circuit Optimization. InProceedings of ACM/IEEE
Design Automation Conference, pages 58–63, 2002.

[4] E. T. A. F. Jacobs and M. R. C. M. Berkelaar. Gate Sizing Using a
Statistical Delay Model. InProceedings of IEEE Design Automation
and Test in Europe, pages 283–291, 2000.

[5] S. H. Choi, B. C. Paul, and K. Roy. Novel Sizing Algorithm for Yield
Improvement under Process Variation in Nanometer Technology. In
Proceedings of ACM/IEEE Design Automation Conference, pages 454–
459, 2004.

[6] D. Sinha, N. V. Shenoy, and H. Zhou. Statistical Gate Sizing for
Timing Yield Optimization. InProceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 1037–1042, 2005.

[7] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov. CircuitOptimization
Using Statistical Static Timing Analysis. InProceedings of ACM/IEEE
Design Automation Conference, pages 338–342, 2005.

[8] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester.
Parametric Yield Maximization using Gate Sizing based on Efficient
Statistical Power and Delay Gradient Computation. InProceedings of
IEEE/ACM International Conference on Computer Aided Design, pages
1023–1028, 2005.

[9] S. Raj, S. B. K. Vrudhala, and J. Wang. A Methodology to Improve
Timing Yield in the Presence of Process Variations. InProceedings of
ACM/IEEE Design Automation Conference, pages 448–453, 2004.

[10] M. Mani, A. Devgan, and M. Orshansky. An Efficient Algorithm for
Statistical Power under Timing Yield Constraints. InProceedings of
ACM/IEEE Design Automation Conference, pages 309–314, 2005.

[11] J. Singh, V. Nookala, T. Luo, and S. Sapatnekar. Robust Gate Sizing
by Geometric programming. InProceedings of ACM/IEEE Design
Automation Conference, pages 315–320, 2005.

[12] A. Davoodi and A. Srivastava. Variability Driven Gate Sizing for
Binning Yield Optimization. InProceedings of ACM/IEEE Design
Automation Conference, pages 959–964, 2006.

[13] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[14] K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar. A New Class of Convex
Functions for Delay Modeling and their Application to the Transistor
Sizing Problem. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19:779–788, Jul 1998.

[15] R. A. Johnson and D. W. Wichern.Applied Multivariate Statistical
Analysis. Prentice Hall, Upper Saddle River, NJ, 2002.

[16] Y. Xu, K. L. Hsiung, X. Li, I. Nausieda, S. Boyd, and L. Pileggi.
OPERA: Optimization with Ellipsoidal Uncertainty for Robust Analog
IC Design. InProceedings of ACM/IEEE Design Automation Confer-
ence, pages 632–637, 2005.

[17] H. Chang and S. S. Sapatnekar. Statistical Tming Analysis Considering
Spatial Correlations Using a Single PERT-like Traversal. In Proceedings
of IEEE/ACM International Conference on Computer Aided Design,
pages 621–625, 2003.

[18] A. Agarwal, D. Blaauw, and V. Zoltov. Statistical Timing Analysis for
Intra-Die Process Variations with Spatial Correlations. In Proceedings of
IEEE/ACM International Conference on Computer Aided Design, pages
900–907, 2003.

[19] C. Visweswariah and A. R. Conn. Formulation of Static Circuit
Optimization with Reduced Size, Degeneracy and Redundancyby Tim-
ing Graph Manipulation. InProceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 244–252, 1999.

[20] M. H. Degroot and M. J. Schervish.Probability and Statistics. Addison
Wesley, Boston, MA, 2002.

[21] MOSEK Optimization Software. Available athttp://www.mosek.c
om.

[22] A. Caldwell, A. B. Kahng, and I. Markov. Capo: a large-scale fixed-die
placer. available athttp://vlsicad.ucsd.edu/GSRC/books
helf/Slots/Placement.

[23] S. Nassif. Delay Variability: Sources, Impact and Trends. InProceedings
of IEEE International Solid State Circuit Conference, pages 368–369,
2000.

14


