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A Framework for Scalable Post-Silicon Statistical
Delay Prediction under Spatial Variations

Qunzeng Liu and Sachin S. Sapatnekar,

Abstract— Due to increased variability trends in nanoscale
integrated circuits, statistical circuit analysis and optimization
has become essential. While statistical timing analysis has an
important role to play in this process, it is equally important
to develop die-specific delay prediction techniques using post-
silicon measurements. We present a novel method for post-
silicon delay analysis. We gather data from a small number
of on-chip test structures, and combine this information with
presilicon statistical timing analysis to obtain narrow, die-specific,
timing probability density function (PDF). Experimental r esults
show that for the benchmark suite being considered, taking all
parameter variations into consideration, our approach canobtain
a PDF whose standard deviation is 79.0% smaller, on average,
than the statistical timing analysis result. The accuracy of the
method defined by our metric is 99.6% compared to Monte-Carlo
simulation. The approach is scalable to smaller test structure
overheads and can still produce acceptable results.

I. I NTRODUCTION

Feature sizes in VLSI design have been shrinking for several
decades, and are currently in the tens of nanometers. In this
regime, process variations play a critical role in determining
circuit performance, and it is widely accepted that they must
be taken into consideration during the design process in order
to ensure that a manufactured circuit meets its specifications.
Generally speaking, process variations can be classified as
inter-die variations and intra-die variations. Inter-dievariations
are fluctuations in process parameters from chip to chip, while
intra-die variations are the variations among different elements
within a single die. Some, but not all, intra-die variationsmay
show the property of spatial correlation, which implies that the
process parameters associated with transistors or wires that are
close to each other are more likely to vary in a similar way than
those of transistors or wires that are far away from each other.
The variation in the effective channel lengthL and transistor
width W are observed to show a spatial correlation structure,
while the dopant concentrationNA and the oxide thickness
Tox are generally considered not to be spatially correlated.

These variations pose great challenges to analyzing the
timing behavior of a circuit, as traditional corner-based static
timing analysis (STA) may be overly pessimistic [1]. To over-
come this problem, statistical static timing analysis (SSTA) has
been proposed as an alternative that replaces the deterministic
delay values from STA with probability density functions
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(PDFs) that capture the mean as well as the spread of the
delay in manufactured parts. Many techniques aimed at devel-
oping accurate and efficient SSTA algorithms, such as [2]–[8],
have been developed, among which parameterized block-based
SSTA methods [2]–[6] have distinguished themselves by easily
taking into consideration the spatial and structural correlations
of the parameter variations in the circuit to be analyzed. The
computational efficiency of these methods is made practical
through a preprocessing step, proposed in [2], [3], which
has shown that Gaussian-distributed correlated variations can
be orthogonalized using principal component analysis (PCA).
Much of the work in this area assumes that all parameter
variations are Gaussian and that a linear delay model obtained
by Taylor expansion for each circuit component is sufficient
to capture the impact of the variations. More recently, non-
Gaussian parameter variations as well as nonlinear delay
models have been addressed in, for example, [5], [6], [9].

With the aid of SSTA tools, designers can optimize a circuit
before it is fabricated, in the expectation that it will meetthe
delay and power requirements after being manufactured. In
other words, SSTA is a presilicon analysis technique used
to determine the range of performance (delay or power)
variations over a large population of dies. A complementary
role, after the chip is manufactured, is played by post-silicon
diagnosis, which is typically directed toward determining
the performance of an individual fabricated chip based on
measurements on that specific chip. This procedure provides
particular information that can be used to perform post-silicon
optimizations to make a fabricated part meet its specifications.
Because presilicon analysis has to be generally applicableto
the entire population of manufactured chips, the statistical
analysis that it provides shows a relatively large standard
deviation for the delay. On the other hand, post-silicon proce-
dures, which are tailored to individual chips, can be expected
to provide more specific information. Since tester time is
generally prohibitively expensive, it is necessary to derive the
maximum possible information through the fewest post-silicon
measurements.

In the past, the interaction between presilicon analysis and
post-silicon measurements has been addressed in several ways.
In [10], post-silicon measurements are used to learn a more
accurate spatial correlation model, which is fed back to the
analysis stage to refine the statistical timing analysis frame-
work. In [11], a path-based methodology is used for correlating
post-silicon test data to presilicon timing analysis. In [12],
a statistical gate sizing approach is studied to optimize the
binning yield. Post-silicon debug methods and their interaction
with circuit design are discussed in [13].



The method that we present in this paper differs from these
in terms of its goals. Our approach forms a framework for post-
silicon statistical delay prediction: the role of this stepis seated
between presilicon SSTA and post-silicon full chip testing. We
combine the results of presilicon SSTA for the circuit with
the result of a small number of post-silicon measurements on
an individual manufactured die to estimate the delay of that
particular die.

Given theoriginal circuit whose delay is to be estimated,
the primary idea is to determine information from specific on-
chip test structuresto narrow the range of the performance
distribution substantially; for purposes of illustration, we will
consider delay to be the performance metric in this work.
In particular, we gather information from a small set of
test structures such as ring oscillators (ROs), distributed over
the area of the chip, to capture the variations of spatially
correlated parameters over the die. The physical sizes of the
test structures are small enough that it is safe to assume
that they can be incorporated into the circuit using reserved
space that may be left for buffer insertion, decap insertion,
etc. without significantly perturbing the layout. To illustrate
the idea, we show a die in Figure 1, whose area is gridded
into spatial correlation regions1. Figure 1(a) and 1(b) show
two cases where test structures are inserted on the die: the
two differ only in the number and the locations of these test
structures. Figure 2 shows a sample test structure consisting
of a 3-stage RO; however, in practice, the number of stages in
this structure may be larger, and these trade-offs are explored
in Section VI. The data gathered from the test structures in
Figures 1(a) and 1(b) are used in this paper to determine a
new PDF for the delay of the original circuit, conditioned on
this data. This PDF has a significantly smaller variance than
that obtained from SSTA, as is illustrated in Figure 3; detailed
experimental results are available in Section VII.
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Fig. 1. Two different placements of test structures under the grid spatial
correlation model.

The plots in Figure 3 may be interpreted as follows. When
no test structures are used and no post-silicon measurements
are performed, the PDF of the original circuit is the same
as that computed by SSTA. When 5 ROs are used, a tighter
spread is seen for the PDF, and the mean shifts towards the
actual frequency for the die. This spread becomes tighter still

1For simplicity, we will assume in this example that the spatial correlation
regions for all parameters are the same, although the idea isvalid, albeit with
an uglier picture, if this is not the case.
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Fig. 2. An example of a test structure: A three-stage ring oscillator.
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Fig. 3. Reduced-variance PDFs, obtained from statistical delay prediction,
using data gathered from the test structures in Figure 1.

when 10 ROs are used. In other words, as the number of test
structures is increased, more information can be derived about
variations on the die, and its delay PDF can be predicted with
greater confidence: the standard deviation of the PDF from
SSTA is always an upper bound on the standard deviation of
this new delay PDF. In other words, by using more or fewer
test structures, the approach isscalablein terms of statistical
confidence.

The focus of our approach is on post-silicon delay analysis,
but we will outline a use case scenario for this analysis in the
realm of post-silicon tuning. Adaptive Body Bias (ABB) [14]–
[16] is a post-silicon method that determines the appropriate
level of body bias to be applied to a die to influence its
performance characteristics. ABB is typically a coarse-grained
optimization, both in terms of the granularity at which it can be
applied (typically on a per-well basis) as well as in terms ofthe
granularity of the voltage levels that may be applied (typically,
the separation between ABB levels is 50 to 100 mV). Current
ABB techniques use a critical path replica to predict the delay
of the fabricated chip, and use this to feed a phase detector
and a counter, whose output is then used to generate the
requisite body bias value. Such an approach assumes that one
critical path on a chip is an adequate reflection of on-chip
variations. In general, there will be multiple potential critical
paths even within a single combinational block, and there will
be a large number of combinational blocks in a within-die
region. Choosing a single critical path as representative of all
of these variations is impractical and inaccurate. In contrast,
our approach implicitly considers the effects of all paths in a
circuit (without enumerating them, of course), and provides a
PDF that concretely takes spatially correlated and uncorrelated
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parameters into account to narrow the variance of the sample,
and has no preconceived notions, prior to fabrication, as to
which path will be critical. The 3σ or 6σ point of this PDF
may be used to determine the correct body bias value that
compensates for process variations. Temperature variations
may be compensated for separately using temperature sensors,
for example, as in [17].

The remainder of this paper is organized as follows. Section
II abstracts the physical problem as a mathematical abstraction.
Next, Sections III through V introduce our approach in detail
and outline its limitations. Section VI then discusses the
impact of changing the number of stages in the RO test
structures on the quality of the results. Experimental results
are shown in Section VII, followed by concluding remarks in
Section VIII.

II. BACKGROUND AND PROBLEM FORMULATION

A. Spatial Correlations

Spatial correlations of parameter variations were considered
as a challenge in SSTA until the arrival of parameterized
methods. We use the grid-based spatial correlation model [2] in
this paper. Under this model, we assume that variations of the
same process parameter inside each grid are fully correlated,
variations of the same process parameter between grids that
are physically close to each other are more correlated than is
the case for grids that are far away.

From the post-silicon analysis perspective, these spatial
correlations may be exploited to generate information based
on a limited number of test structures. More specifically,
the parameter variations for the test structures in a chip are
correlated with those of the gates near them. For the specific
case where only inter-die variations are seen, and no intra-
die variations exist (a special case of spatial correlations), the
parameters of a test structure anywhere on a chip are identical
to those of the original circuit to be tested. The presence of
intra-die variations creates some challenges: the parameters of
the test structure may now be correlated with, but not identical
to, those in the original circuit. In such a case, the parameter
variation of a test structure cannot reveal information for
all the parameters of the original circuit, but can reveal
some characteristics for the devices nearby. Therefore, our
proposed post-silicon statistical delay prediction approach uses
a number of test structures, placed at different locations on
chip, to provide diverse test data. The presence of uncorrelated
variations creates further challenges, which are examinedin
this paper.

B. Problem Formulation

We assume that the circuit undergoes SSTA prior to man-
ufacturing, and that the random variable that represents the
maximum delay of the original circuit isd. Further, if the
number of test structures placed on the chip isn, we define a
delay vectordt =

[

dt,1 dt,2 · · · dt,n

]T
for the test struc-

tures, wheredt,i is the random variable (over all manufactured
chips) corresponding to the delay of theith test structure.

For a particular fabricated die, the delay of the original
circuit and the test structures correspond, respectively,to one

sample of the underlying process parameters, which results
in a specific value ofd and of dt. After manufacturing,
measurements are performed on the test structures to de-
termine the sample ofdt, which we call theresult vector
dr =

[

dr,1 dr,2 · · · dr,n

]T
. This corresponds to a small

set of measurements that can be performed rapidly. The
objective of our work is to develop techniques that permit
these measurements to be used to predict the corresponding
sample ofd on the same die. In other words, we define the
problem of post-silicon statistical delay prediction as finding
the conditional PDF given byf(d|dt = dr).

In the ideal case, given enough test structures, we can
estimate the delay of the original circuit with very little
variance by measuring these test structures. However, practical
constraints limit the overhead of the added test structures(such
as area, power, and test time) so that the number of these
structures cannot be arbitrarily large. Moreover, as stated in
Section II-A, our method is made possible by spatial correla-
tions of parameter variations at different locations. However,
the variations in some parameters, such asTox and NA, are
widely believed to show no spatial correlation structure atall.
Test structures are inherently not capable of capturing anysuch
variations in the original circuit (beyond the overall statistics
that are available to the SSTA engine): these parameters can
vary from one device to the next, and thus, variations in the test
circuit are totally independent of any variations in the original
circuit, but even under these limitations, any method that
can narrow down the variational range of the original circuit
through a few test measurements is of immense practical use.

We develop a method that robustly accounts for the afore-
mentioned limitations by providing a conditional PDF of the
delay of the original circuit with insufficient number of test
structures and/or purely random variations. In the case when
the original circuit delay can actually be computed as a fixed
value, the conditional PDF is an impulse function with mean
equal to the delay of the original circuit and zero variance.
The variance becomes larger with fewer test structures, and
shows a graceful degradation in this regard. We include all
of these in a single generalized framework and automatically
take each case into consideration.

III. STATISTICAL DELAY PREDICTION

A. The SSTA Framework

SSTA provides a PDF of the delay distribution of the circuit,
rather than predicting a specific delay value at a process corner,
as is the case for STA methods. The parameterized approach to
SSTA propagates a canonical form of the delay PDF, typically
including the nominal value, a set of normalized underly-
ing independent sources of variation (for spatially correlated
variations, these should be the principal components (PCs)
[2], computed by applying PCA to the underlying covariance
matrix of the correlated variations; uncorrelated variations are
typically captured by a single independent random variable).

In this work, we assume that the process parameters, which
affect both the original circuit and test structures, are Gaussian-
distributed. Them PCs affect the statistical distribution of both
the original circuit and the test structures on the same chip,
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and the canonical form for the delay is represented as:

d = µ +

m
∑

i=1

aipi + R = µ + aT p + R, (1)

whered is defined in Section II-B, andµ is the mean of the
delay distribution. The value ofµ is also an approximation
of its nominal value2. The random variablepi corresponds to
the ith principal component, and is normally distributed, with
zero mean and unit variance; note thatpi andpj for i 6= j are
uncorrelated by definition, stemming from a property of PCA.
The parameterai is the first order coefficient of the delay with
respect topi. Finally,R corresponds to a variable that captures
the effects of all the spatially uncorrelated variations. It is a
placeholder to indicate the additional variations of the delay
caused by the spatially uncorrelated variations, and cannot be
regarded as a principal component. For simplicity, we refer
to p =

[

p1 p2 · · · pm

]T ∈ Rm as thePC vectorand

a =
[

a1 a2 · · · am

]T ∈ Rm as thecoefficient vectorfor
the original circuit.

Equation (1) is general enough to incorporate both inter-
die and intra-die variations. It is well known that for a
spatially correlated parameter, the inter-die variation can be
taken into account by adding a valueσ2

inter , the variance of
inter-die parameter variation, to all entries of the covariance
matrix of the intra-die variation of that parameter before
performing PCA. The uncorrelated componentR accounts for
contributions from both the inter-die and intra-die variations.
Systematic variations affect only the nominal values and the
PC coefficients in SSTA. Therefore, they can be accounted for
by determining the shifted nominal values and sensitivities
prior to SSTA, and computing the nominal values and PC
coefficients in SSTA based on these shifted values. While our
theory is general enough to capture this, for simplicity, our
experimental results do not consider this effect.

In a similar manner, the delay of theith of the n test
structures can also be represented in the canonical form as:

dt,i = µt,i + aT
t,ip + Rt,i. (2)

The meanings of all variables are inherited from Equation (1).
We defineµt =

[

µt,1 µt,2 · · · µt,n

]T ∈ Rn as the

mean vector, Rt =
[

Rt,1 Rt,2 · · · Rt,n

]T ∈ Rn as
the independent parameter vector, and At ∈ Rm×n as the
coefficient matrixof the test structures, respectively, where
At =

[

at,1 at,2 · · · at,n

]

. We can then stack the delay
equations of all of the test structures into a matrix form.

dt = µt + AT
t p + Rt (3)

wheredt is defined in Section II.
To illustrate the procedure more clearly and in an easier

way, we will first assume, in the remainder of this section
and in Section IV, that the spatially uncorrelated parameters

2The nominal value of the delay of the circuit is the delay value when
no parameter variations are present. This can be computed exactly by a
conventional static timing analysis with all parameters attheir nominal values.
However, because of the approximation of the max operation in the statistical
timer, the mean value we computed from the pert-like traversal is more
compatible with the rest of the canonical form.

can be ignored, i.e.,R = 0 and Rt = 0. We will relax this
assumption later in Section V, and introduce the extension of
the method to include those parameters.

The variance of the Gaussian variabled and the covariance
matrix of the multivariate normal variabledt can be conve-
niently calculated as:

σ2 = aT a (4a)

Σt = AT
t At. (4b)

B. Conditional PDF Evaluation

The objective of our approach is to find the conditional
PDF of the delay,d, of the original circuit, given the vector of
delay values,dr. The values ofdr are measured from the test
structures after the circuit is manufactured, corresponding to
one set of samples ofdt. We first introduce a theorem below;
a sketch of the proof of the theorem can be found in [18].

Theorem 3.1:Consider a Gaussian-distributed vector

[

X1

X2

]

with meanµ and a nonsingular covariance matrixΣ. Let us
defineX1 ∼ N(µ1,Σ11), X2 ∼ N(µ2,Σ22). If µ andΣ are
partitioned as follows,

µ =

[

µ1

µ2

]

andΣ =

[

Σ11 Σ12

Σ21 Σ22

]

, (5)

then the distribution ofX1 conditional on X2 = x is
multivariate normal, and its mean and covariance matrix are
given by

X1|(X2 = x) ∼ N(µ̄, Σ̄) (6a)

µ̄ = µ1 + Σ12Σ
−1

22
(x − µ2) (6b)

Σ̄ = Σ11 − Σ12Σ
−1

22
Σ21. (6c)

It can be shown that our problem can be mapped directly to
the theorem. To show this correspondence, we defineX1 as the
original subspace, andX2 as thetest subspace. By stacking
d and dt together, a new vectordall =

[

d dT
t

]T
is formed,

with the original subspace containing only one variabled and
the test subspace containing the vectordt. The random vector
dall is multivariate Gaussian-distributed, with its mean and
covariance matrix given by:

µall =

[

µ

µt

]

andΣall =

[

σ2 aT At

AT
t a Σt

]

. (7)

We may then apply the result of Theorem 3.1 to obtain the
conditional PDF ofd, given the delay information from the
test structures. We know the conditional distribution ofd is
Gaussian, and its mean and variance can be obtained as:

PDF(dcond) = PDF(d|(dt = dr)) ∼ N(µ̄, σ̄2) (8a)

µ̄ = µ + aT AtΣ
−1

t (dr − µt) (8b)

σ̄2 = σ2 − aTAtΣ
−1

t AT
t a. (8c)

C. Interpretation of the Conditional PDF

In this section, we analyze the information provided by the
equations that represent the conditional PDF. From equations
(8b) and (8c), we conclude that while the conditional mean of
the original circuit is adjusted making use of the result vector,
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dr, the conditional variance isindependentof the measured
delay values,dr.

Examining Equation (8c) more closely, we see that for a
given circuit, the variance of its delay before measuring the
test structures,σ2, and the coefficient vector,a, are fixed and
can be obtained from SSTA. The only variable that is affected
by the test mechanism is the coefficient matrix of the test
structures,At, which also impactsΣt. Therefore, the value
of the conditional variance can be modified by adjusting the
matrix At. We know thatAt is the coefficient matrix formed
by the sensitivities with respect to the principal components of
the test structures. The size ofAt is determined by the number
of test structures on the chip, and the entry values ofAt is
related to the type of the test structures and their locations on
the chip. Therefore if we use the same type of test structures
on the circuit, then by varying their number and locations,
we can modify the matrixAt, hence adjust the value of the
conditional variance. Intuitively, this implies that the value of
the conditional variance depends on how many test structures
we have, and how well the test structures are distributed, in
the sense of capturing spatial correlations between variables.

In our problem,AT
t ∈ Rn×m, wheren is the number of

test structures on chip, andm is the number of principal
components. In the grid-based spatial correlation model, a
large circuit is usually tessellated into numerous grids, and
hence is affected by numerous principal components, whereas
the number of test structures we can place on-chip is limitedby
several factors mentioned in Section II. Thereforen is usually
less thanm. Theorem 3.1 assumes thatΣt = AT

t At is of full
rank and has an inverse, which meansAT

t must have full row
rank. A detailed discussion about the ranks ofAT

t andΣt can
be found in Section IV. For the present, we will assume that
AT

t is of full row rank.

Based on this assumption, consider the special case when
m = n; in other words, that the number of test structures
is identical to the number of PCA components. Intuitively,
this means that we have independent data points that can
predict the value of each of these components. In this case,
At is a square matrix with full rank and has an inverseA−1

t .
SubstitutingΣ−1

t = (AT
t At)

−1 = A−1

t (AT
t )−1 into Equation

(8b),

µ̄ = µ + aT AtΣ
−1

t (dr − µt)

= µ + aT (AT
t )−1(dr − µt). (9)

It is interesting to note that the term(AT
t )−1(dr −µt) is the

solution of the linear equations

dt = µt + AT
t p = dr (10)

with p as the set of unknowns. Therefore, Equation (9) is
equivalent to first solvingp from linear equations (10), then
substituting its value into Equation (1) (with uncorrelated
parameters disregarded for now) to findd. We can see that

in this case,

σ̄2 = σ2 − aT AtΣ
−1

t AT
t a

= σ2 − aT AtA
−1

t (AT
t )−1AT

t a

= σ2 − aT a

= 0. (11)

Thus the derived PDF is an impulse function with the mean
equal to the original circuit delay and the variance equal to
zero, and Equation (8) automatically takes the special caseof
m = n into consideration.

We end this section by pointing out that an equivalent way
of looking at the problem is to first stack the PC vectorp

and the delay vectordt together, wherep is the original
subspace, anddt is the test subspace. From this, we obtain
the conditional distribution ofp, using Theorem 3.1, as:

PDF(pcond) = PDF(p|(dt = dr)) ∼ N(µ̄p, Σ̄p) (12a)

µ̄p = AtΣ
−1

t (dr − µt) (12b)

Σ̄p = I− AtΣ
−1

t AT
t (12c)

where I represents the identity matrix, which is the uncon-
ditional covariance matrix ofp. The result (12) tells us that
given the conditiondt = dr, the mean and covariance matrix
of pcond are no longer0 and I. In other words, the entries
in pcond can no longer be perceived as principal components.
Due to the linear relationship betweenpcond and the process
parameter variations, we are in fact gaining information onthe
parameter variations inside each grid.

According to Theorem 3.1,pcond remains Gaussian dis-
tributed. Becausedcond has a linear relationship withpcond,
dcond is also Gaussian-distributed. Sincea is fixed for a
given circuit, the conditional mean and variance ofd can be
calculated as:

µ̄ = µ + aT E(pcond) = µ + aT AtΣ
−1

t (dr − µt)

σ̄2 = E(µ + aTpcond − (µ + aT
µ̄p))2

= aT E((pcond − µ̄p)(pcond − µ̄p)T )a

= aT (I− AtΣ
−1

t AT
t )a

= σ2 − aT AtΣ
−1

t AT
t a (13)

Not surprisingly, this end result is exactly the same as (8).
However, dividing the derivation into two steps, as we have
done here, provides additional insight into the problem.

IV. L OCALLY REDUNDANT BUT GLOBALLY INSUFFICIENT

TEST STRUCTURES

In practice, correlation matrices tend to be sparse since the
spatial density of correlation goes up to a limited radius. As a
consequence, it is found that a number of entries of each row
of AT

t are zero for typical correlation matrices. For such a
scenario, it is possible that we place too many test structures
that collectively capture only a small portion of PCs, with
the coefficients of other PCs being all zeros. In other words,
in some portion of the chip, the number of test structures
may exceed the number of PCs with nonzero coefficients, but
overall there are not enough test structures to actually compute
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the delay of the original circuit. We refer to this as alocally
redundant but globally insufficientproblem.

We show below that in such a scenarioΣt would be rank
deficient. While this problem can be overcome by appropriate
placement of the test structures, the placement of these struc-
tures is beyond the scope of this paper: we assume that this
has been done by the designer, and that it is provided as an
input to our problem. Instead, we provide a general solution
to take the locally redundant but globally insufficient problem
into consideration during the evaluation of the conditional
distribution. Our approach groups the redundant equations
together and use a least-squares approach to capture the
information.

With locally redundant but globally insufficient test struc-
tures, the matrixAT

t has the following structure after grouping
the all-zero coefficients for a group of test structures together:

AT
t =

[

B11 0

B21 B22

]

(14)

whereB11 ∈ Rs×q, with s being the number of test structures
that have all-zero coefficients for the lastn − q principal
components, ands > q, which means we have locally
redundant test structures for theseq principal components.
Since we have prohibited two test structures with the same
configurations from being placed in one grid,B11 must be of
full column rank with rankq. Therefore, the maximum rank
of AT

t is q+n−s, less thann, soΣt also has a rank less than
n and is singular. In this case, Equation (10) can be divided
into two sets of equations:

B11pu = dr,u − µr,u (15)

B21pu + B22pv = dr,v − µr,v (16)

wherepu, pv, dr,u, dr,v, µr,u, µr,v are sub-vectors of the
PC vectorp, the result vectordr, and the mean vectorµt,
correspondingly. Note thatB11 is not square, and Equation
(15) is an over-determined system. This can be solved in
several ways, and we take the least-squares solution as its
equivalence.

p̄u = (BT
11B11)

−1BT
11 (dr,u − µr,u) (17)

Under conditions (17) as well as (16), the conditional PDF of
d can be computed as follows.

PDF(dcond) = PDF(d|dt = dr)

= PDF(d|pu = p̄u,B21p̄u + B22pv = dr,v − µr,v)

(18)

This step is safe because Equation (15) does not provide any
information forpv. The statistical properties ofpv have not
been changed, meaning they can still act as PCs. Assumeau

is the sub-vector ofa corresponding topu, andav is the sub-
vector corresponding topv, thend = µ + aT

u p̄u + aT
v pv. The

mean, variance ofd andB21p̄u +B22pv, and their covariance
can be easily updated. The same technique introduced in
Section III can be applied to calculate the final conditional
PDF of d.

Special cases include whenq = m, in which case we

can compute all the PCs and the delay of the original circuit
by applying least-squares approach to the whole system, and
whens = n, in which case we cannot obtain any information
on pv, and the PCs will still be uncorrelated Gaussians with
zero mean and unit variance.

V. SPATIALLY UNCORRELATEDPARAMETERS

In Section III, we had developed a theory for determining
the conditional distribution of the delay,d, of the original cir-
cuit, under the data vector,dr, provided by the test structures.
This derivation neglected the random variablesR and Rt in
the canonical form of Equation (1) and (3), corresponding to
spatially uncorrelated variations.

We now extend this theory to include such effects, which
may arise due to parameters such asTox and NA that can
take on a different and spatially uncorrelated value for each
transistor in the layout. While these parameters can show
both inter-die and intra-die variations, because the inter-die
variation of each such parameter can be regarded as a PC
and easily incorporated in the procedure of Section III, we
hereby focus on the intra-die variations of these parameters,
i.e., the purely random part. Thus,R is the random variable
generated by merging the intra-die variations for each gate
during traversal of the whole circuit [3], with mean 0 and
varianceσ2

R 6= 0. Considering this effect, the variance of the
original circuit is adjusted to be

σ′2 = aT a + σ2

R. (19)

The covariance matrix of the test structures must also be
updated as follows:

Σ′
t = AT

t At + diag[σ2

Rt,1
, σ2

Rt,2
, · · · , σ2

Rt,n
]. (20)

The same kind of technique from Section III can still be
applied. However, in this case, due to the nonzero diagonal
matrix added toΣt, σ̄ is never equal to zero, meaning that
we can never compute the actual delay of the original circuit,
which is a fundamental limitation of any testing-based diagno-
sis method. Any such strategy is naturally limited to spatially
correlated parameters. The values of uncorrelated parameters
in the original circuit cannot be accurately replicated in the
test structures: these values may change from one device to
the next, and therefore, their values in a test structure cannot
perfectly capture their values in the original circuit.

VI. CHANGING THE NUMBER OF STAGES IN THE ROS

In Section V, it was shown that spatially uncorrelated
parameter variations impose a challenge for our method, since
it is physically impossible for a test structure to capture uncor-
related variations. However, it is possible to dilute the effects
of uncorrelated variations, and to overcome this problem, an
intuitive idea is to increase the number of stages of the RO
test structures.

The essential idea of increasing the number of stages is
that it leaves the spatially correlated variations unchanged:
since each RO is small and lies within a spatial correlation
grid, all spatially correlated parameters that affect its delay
show identical variations. However, variations for spatially
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uncorrelated parameters may be in opposite directions and thus
increasing the number of stages increases the likelihood of
cancellations, implying that spatially uncorrelated parameters
are likely to become relatively less important. In other words,
this implies that the delay of each RO as a variable will be
more correlated to the delay of the original circuit.

On the other hand, while increasing the number of stages
of the ROs increases the correlation coefficient between the
delays of the RO and the original circuit, it also makes the
delays of the ROs more correlated with each other. This
suggests that the RO test structures may collectively yieldless
independent information about the variations.

There is a clear trade-off here, and in this section, we
illustrate the above qualitative argument from a more rigid,
mathematical perspective, and present it in a quantitativeway.
We will show in Section VII that for our implementation,
increasing the number of stages does indeed yield better
estimations of the post-silicon delay.

As stated in Section III, the delay of the original circuit can
be written in the canonical form of Equation (1). We rewrite
the equation below.

d = µ +

m
∑

i=1

aipi + R = µ + aT p + R. (21)

Similarly, the delay of ROi can be written in the form of
Equation (2), which is

dt,i = µt,i + aT
t,ip + Rt,i. (22)

First, if we assume that there is only one ROi on the chip,
Equation (8c) becomes

σ̄2 = σ2 −
aT at,ia

T
t,ia

σ2

t,i

= σ2
(

1 − ρ2

i

)

. (23)

whereρi is the correlation coefficient between the delay of
the original circuit and the delay of ROi. It is obvious that
in this case, the result only depends onρi.

Second, we explain how the number of stages affects the
value of ρi, so that we can observe clearly how the number
of stages affects our results. Let us assume that ROi hask

stages, and for purposes of illustration, we will assume that
each stage of the RO is identical, with a canonical delay of the
form αi +

∑m
j=1

γijpj + ζi = αi + Γip + ζi. The half-period
of RO i, which is a surrogate for its delay, is therefore given
by

dt,i = kαi + kΓip +
√

kζi (24)

From Equation (20) in Section V, the variance of the delay of
RO i can be written as

σ2

t,i = k2ΓT
i Γi + kζ2

i . (25)

The correlation coefficient between ROi and the original
circuit can thus can be calculated from the relation:

ρ2

i =
k2aT ΓiΓ

T
i a

σ2
(

k2ΓT
i Γi + kζ2

i

) =
aT ΓiΓ

T
i a

σ2
(

ΓT
i Γi + 1

k
σ2

r

) . (26)

It is easy to see that ask increases, the correlation coefficient
between ROi and the original circuit increases, implying that
the conditional variance of the delay of the original circuit

decreases. Therefore, we have more specific information about
the delay of the original circuit. This is in accordance withthe
intuition that increasing the number of stages in the RO helps
in reducing the effect of the spatially uncorrelated parameters.

Third, we illustrate the fact that as the number of stages
increases, the ROs can become more correlated with each other
and might not give as much information collectively. To see
this, we consider the delays of two ROsdt,1 and dt,2. If we
assume that each hask stages, then

dt,1 = kα1 + kΓT
1 p +

√
kζ1 (27)

dt,2 = kα2 + kΓT
2 p +

√
kζ2. (28)

The correlation coefficient between the two can be calculated
as

ρ1,2 =
k2ΓT

1 Γ2
(

k2ΓT
1
Γ1 + kζ2

1

) (

k2ΓT
2
Γ2 + kζ2

2

)

=
ΓT

1
Γ2

(

ΓT
1
Γ1 + 1

k
ζ2
1

) (

ΓT
2
Γ2 + 1

k
ζ2
2

) . (29)

It is easily observed that ask increases, the correlation
coefficient between the delays of the two ROs increases.

The conditional variance of the delay of the original circuit
can be calculated based on the testing results of the delays of
these two ROs, using Equation (8c), as

σ̄2 = σ2 − aT
[

at,1 at,2

]

[

σ2
t,1 aT

t,1at,2

aT
t,2at,1 σ2

t,2

]−1 [

aT
t,1

aT
t,2

]

a

= σ2

(

1 − ρ2
1

+ ρ2
2
− 2ρ1ρ2ρ1,2

1 − ρ2
1,2

)

(30)

This result confirms our intuition that the conditional variance
of the delay of the original circuit is not only dependent upon
the correlation coefficient between the delay of the original
circuit and the delay of each RO (ρ1,ρ2), but also dependent
upon the correlation coefficient between the two ROs (ρ1,2).

To see the effect ofk on the conditional variance more
clearly, we write the above equation as

σ̄2 = σ2 − C2
1

(

V2 + 1

k
ζ2
2

)

− C2
2

(

V1 + 1

k
ζ2
1

)

+ 2C1C2Γ
T
1
Γ2

(

V2 + 1

k
ζ2
2

) (

V1 + 1

k
ζ2
1

)

−
(

ΓT
1
Γ2

)2

(31)
where Ci = aT Γi and Vi = ΓT

i Γi are not dependent on
k. As k increases, both the numerator and the denominator
decrease, the function is not guaranteed to be monotonic with
respect tok. Therefore theoretically increasing the number of
stages doesn’t necessarily reduce the conditional variance of
the delay of the original circuit we can get. We show in Section
VII that for the practical results that we show, we lie within
a monotone decreasing region with respect tok.

VII. E XPERIMENTAL RESULTS

We summarize the proposed post-silicon statistical delay
prediction approach as follows:

We use the software packageMinnSSTA[2] to perform
SSTA, and use Monte-Carlo methods to test our approach. The
original circuits correspond to the ISCAS89 benchmark suite,
and each test structure is assumed to be a RO. Specifically,
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Algorithm 1 Post-silicon statistical delay prediction.
1: Perform SSTA on both the original circuit and the

test structures to determineµ, a, µt, At, and σR,
σRt,1

, · · · , σRt,n
.

2: After fabrication, test the delay of the test structures on-
chip to obtaindr.

3: Compute the conditional mean̄µ and variancēσ2 for the
original circuit using the expressions in Equation (8).

the RO used in our experiments has five stages. Section VI,
combined with simulation later in this section, shows that
increasing the number of stages can compensate for the effects
of spatially uncorrelated parameter variations in practice.

A grid-based spatial correlation model [19] is used to
compute the covariance matrix for each spatially correlated
parameter. Under this model, if the number of grids isG, and
the number of spatially correlated parameters being considered
is P , then the total number of principal components is no
more thanP · G. Because we only use one type of test
structure in the experiments, we place at most one RO inside
each grid. The parameters that are considered as sources of
spatially correlated variations include the effective channel
lengthL, the transistor widthW , the interconnect widthWint,
the interconnect thicknessTint and the inter-layer dielectric
HILD. The dopant concentration,NA, is regarded as the
source of spatially uncorrelated variations. For interconnects,
instead of two metal tiers used in [20], we use four metal
tiers (corresponding to two horizontal and two vertical layers).
Parameters of different metal tiers are assumed to be uncorre-
lated. Table I lists the level of parameter variations assumed
in this work. The process parameters are Gaussian-distributed,
and their mean and3σ values are shown in the table. For each
parameter, half of the variational contribution is assumedto be
from inter-die variations and half from intra-die variations. Our
experiments ignore the effects of systematic variations, but if
available, this information may be used to alter the nominal
values and sensitivities of the gate delays. We assume this
variation model is accurate in our simulation. In practice,the
model should be tailored according to manufacturing data.

TABLE I

PARAMETERS USED IN THE EXPERIMENTS.

L W Wint Tint HILD NA

nmos/pmos
(nm) (nm) (nm) (nm) (nm) (1017cm−3)

µ 60.0 150.0 150.0 500.0 300.0 9.7/10.04
3σ 12.0 22.5 30.0 75.0 45.0 1.45

In the first setof experiments, only one variation is taken
into consideration in the Monte Carlo analysis: in this case,
we consider the effective channel lengthL, which we observe
to be the dominant component of intra-die variations. Under
the grid-based correlation model, there will only beG inde-
pendent variation sources in this case, and by providingG test
structures, we can use the techniques in Section III to calculate
the delay of the original circuit.

The result is shown as a scatter plot in Figure 4. The
method is applied to 1000 chips: we simulate this by per-
forming 1000 Monte-Carlo simulations on each benchmark,
each corresponding to a different set of parameter values. For
each of these values, we compute the deterministic delays of
the test structures3 and the original circuit: we use the former
as inputs to our approach, and compare the delay from our
statistical delay prediction method with the latter. The fact that
all of the points lie closely around they = x line indicates
that the circuit delays predicted by our approach matches very
well with the Monte-Carlo simulation results.

500 1000 1500 2000 2500

500

1000

1500

2000

2500

Real delay (ps)

E
st

im
at

ed
 d

el
ay

Real circuit delay vs. estimated circuit delay

 

 
s1196
s5378
s9234
s13207
s15850
s35932
s38584
s38417
y=x

Fig. 4. The scatter plot: real circuit delay vs. predicted circuit delay.

The precise testing error for each benchmark is listed in
Table II. If we denote the delay of the original circuit at a
sample point asdorig and the delay of the original circuit, as
predicted by our statistical delay prediction approach, asdpred,
the test error for each simulation is defined as|dorig−dpred|

dorig
×

100%. The second column of the table shows the average test
error, based on all 1000 sample points, which indicates the
overall aggregate accuracy: this is seen to be well below 1%
in almost all cases. The third column shows the maximum
deviation from the mean value of statistical timing over all
1000 sample points, as a fraction of the mean. The test error
at this point is shown in the fourth column of the table. These
two columns indicate that the results are accurate even when
the sampled delay is very different from the mean value.

Note that in theory, according to the discussion in Sec-
tion III, when one test structure is placed in each variational
grid, the prediction should be perfect. However, some inac-
curacies creep in during SSTA, primarily due to the error in
approximating themax operation in SSTA, during which the
the distribution of the maximum of two Gaussians, which is
a non-Gaussian, is approximated as a Gaussian to maintain
the invariant. For circuits like s35932, which show the largest
average error among this set, of under 2%, the canonical form
(1) is not perfectly accurate in modeling the circuit delay.Note
that our experimental setup is based on simulation, and does
not include any measurement noise.

3Because of the way in which these values are computed in our exper-
imental setup, variations in the test structure delays are only caused by
random variations. In practice, the measured test structure delays will consist
of deterministic variations, random variations, and measurement noise. It is
assumed here that standard methods can be used to filter out the effects of
the first and the third factor.
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TABLE II

TEST ERRORS CONSIDERING ONLY VARIATIONS INL.

Benchmark Average Maximum Error at
Error Deviation Maximum

(% of mean) Deviation
s1196 0.18% 24.2% 0.20%
s5378 0.58% 25.7% 0.02%
s9234 0.35% 22.7% 0.50%
s13207 0.09% 25.2% 0.51%
s15850 0.25% 26.1% 0.47%
s35932 1.31% 22.4% 1.01%
s38584 0.10% 27.5% 0.69%
s38417 0.09% 27.4% 0.58%

For the unoptimized ISCAS89 benchmark suite, one or a
small number of critical paths tend to dominate the circuit,
which is unrealistic. However, s35932 is an exception and
thus is used to compare our approach with the critical path
replica approach currently used in ABB. We assume that in the
critical path approach, the entire critical path for the nominal
design can be perfectly replicated, and compare the delay of
that path and the delay of the whole circuit during the Monte-
Carlo simulation. It is observed that the critical path replica
can show a maximum error of 15.5%, while our approach has
a maximum error of 6.92%, an improvement of more than
50%. The average error of critical path replica for this circuit
is 1.92%, also significantly larger than our result of 1.31%.

To show the confidence scalability of our approach, in
the second setof experiments, we consider cases in which
the number of test structures is insufficient to completely
predict the delay of the original circuit. In this experiment,
different numbers of test structures are implanted on the die.
Specifically, for circuits divided into 16 grids, we investigate
Case 1, when 10 test structures and Case 2, when 5 test
structures are available.

For circuits where the die is divided into 256 grids, Case
1 corresponds to a die with 150 test structures, and Case 2
to 60 test structures. To show how much more information
than SSTA we can obtain from the test structures, we define
σreduction as σ−σ̄

σ
× 100% which is independent of the test

results but is dependent on how the available test structures are
placed on the chip. To be as general as possible, we perform
1000 random selections of the grids to place test structures
in. Theµ, σ of the original circuit, obtained from SSTA, and
the averagēσ, σreduction of the statistical delay prediction
approach for both cases, over the 1000 selections, are listed in
Table III for each benchmark circuit. It is observed that there
is a trade-off between test structure overhead andσreduction.
In order to understand what the result would be like if a really
bad set of grids are selected to place test structures in, in this
table we also show the minimum (Min.)σreduction over the
1000 random selections for each circuit in both cases.

Figure 5 shows the predicted delay distribution for a typ-
ical sample of the circuit s38417, the largest circuit in the
benchmark suite. Each curve in the circuit corresponds to a
different number of test structures, and it is clearly seen that
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Fig. 5. PDF and CDF with insufficient number of test structures for circuit
s38417 (consideringL).

even when the number of test structures is less thanG, a sharp
PDF of the original circuit delay can still be obtained using
our method, with a variance much smaller than provided by
SSTA. The trade-off between the number of test structures and
the reduction in the standard deviation can also be observed
clearly. For this particular die, while SSTA can only assert
that it can meet a 1400 ps delay requirement, using 150 test
structures we can say with more than99.7% confidence that
the fabricated chip meets a 1040 ps delay requirement, and
using 60 test structures we can say with such confidence that
it can meet a 1080 ps delay requirement.

In our third setof experiments, we consider the most general
case in which all parameter variations are included. While
the first two sets of experiments provided general insight into
our method, this third set shows the result of applying it to
real circuits under the full set of parameter variations listed in
Table I. In Case I of this set of experiments, the number of test
structures is equal to the number of grids. The values ofσ̄ and
σreduction are fixed in this case. Case II and Case III are set
up the same way as in Case 1 and Case 2, respectively, of the
second set of experiments described earlier. Theµ, σ of each
benchmark circuit obtained by SSTA, thēσ, σreduction for
Case I, the averagēσ, the average and minimumσreduction for
Case II and Case III obtained from the post-silicon statistical
delay prediction are listed in Table IV. The distribution plot
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TABLE III

PREDICTION RESULTS WITH INSUFFICIENT NUMBER OF TEST STRUCTURES(CONSIDERINGL): CASE 1 AND CASE 2 ARE DISTINGUISHED BY THE

NUMBER OF ROS AVAILABLE FOR EACH CIRCUIT.

Benchmark SSTA Results Case 1 Case 2

Name #Cells #Grids µ(ps) σ(ps) #RO
Avg. σreduction #RO

Avg. σreduction

σ̄(ps) Avg. Min. σ̄(ps) Avg. Min.
s1196 547 16 577.06 35.32 10 6.48 81.64% 73.6% 5 11.97 66.1% 64.1%
s5378 2958 16 475.97 29.84 10 5.96 80.02% 75.5% 5 10.77 63.9% 61.7%
s9234 5825 16 775.36 51.51 10 9.50 81.55% 68.1% 5 18.85 63.4% 56.5%
s13207 8260 256 1399.8 92.81 150 9.63 89.62% 81.9% 60 18.56 80.0% 70.4%
s15850 10369 256 1573.7 100.48 150 8.25 91.79% 86.7% 60 16.88 83.2% 78.0%
s35932 17793 256 1359.5 82.17 150 11.08 86.52% 76.8% 60 27.69 76.3% 70.7%
s38584 20705 256 1994.0 120.83 150 16.54 86.31% 74.4% 60 29.96 75.2% 68.3%
s38417 23815 256 1139.8 76.38 150 9.40 87.69% 76.2% 60 17.87 76.6% 61.8%

TABLE IV

PREDICTION RESULTS CONSIDERING ALL PARAMETER VARIATIONS: CASE I, CASE II AND CASE III ARE DISTINGUISHED BY THE NUMBER OFROS.

Benchmark
SSTA Results Case I Case II Case III
µ σ #RO σ̄

σreduction #RO Avg. σ̄ σreduction #RO Avg. σ̄ σreduction

(ps) (ps) (ps) (ps) Avg. Min. (ps) Avg. Min.
s1196 577.42 45.61 16 11.32 75.2% 10 12.67 72.2% 65.3% 5 15.20 66.7% 58.4%
s5378 475.65 37.24 16 6.35 82.9% 10 7.69 79.4% 71.4% 5 10.28 72.4% 59.8%
s9234 776.79 62.63 16 9.17 85.4% 10 12.20 80.5% 66.7% 5 17.21 72.5% 56.2%
s13207 1404.25 109.41 256 20.90 80.9% 150 22.97 79.0% 74.6% 60 27.13 75.2% 66.5%
s15850 1579.73 119.45 256 19.59 83.6% 150 21.09 82.3% 79.4% 60 24.69 79.3% 73.7%
s35932 1371.55 98.45 256 24.75 74.9% 150 27.11 72.5% 67.7% 60 30.69 68.8% 63.9%
s38584 2011.62 147.46 256 39.47 73.2% 150 43.16 70.7% 64.7% 60 48.77 66.9% 60.8%
s38417 1146.56 89.84 256 22.01 75.5% 150 24.09 73.2% 67.2% 60 28.17 68.6% 57.3%

for this set of experiment is similar to that in Figure 5, and the
conditional PDFs of one particular sample of the circuit s1196
for Case II and Case III are shown in Section I as Figure 3,
with the SSTA PDF as a comparison. Note that the conditional
PDF obtained by our approach would be even sharper for Case
I.

The reduction in the standard deviation is only able to
demonstrate that our predicted delay is within a certain range.
To see whether the prediction is reasonable and accurate, in
our third set of experiments, we also perform the following
Monte-Carlo simulations. In Case I of this experiment, because
in each grid we have one RO, we just perform one thousand
Monte-Carlo simulations based on this structure. In Case II
and Case III, however, the number of ROs is smaller than
the number of grids. Therefore we use five randomly selected
sets of grids to place ROs in, and for each set of grids, we
perform 1000 Monte-Carlo simulations, which means totally
we have 5000 Monte-Carlo simulations for each circuit of Case
II and Case III. While each Monte-Carlo simulation generates
a specific delay number, our prediction result is a conditional
distribution of the delay. Therefore if the Monte-Carlo result
falls within ±3σ̄ of the predicted distribution, then we call the
result ahit. Otherwise, we call it amiss. The hit rate of our
prediction for a circuit is then defined as the number of hits
divided by the total number of Monte-Carlo simulations. We
show the hit rates for each circuit in Table VI. It is observed
that most hit rates are above 99.9%.

Now we show that for the ISCAS89 benchmark circuits and

TABLE VI

HIT RATES CONSIDERING ALL PARAMETER VARIATIONS: CASE I, CASE II

AND CASE III ARE DISTINGUISHED BY DIFFERENT NUMBER OFROS

AVAILABLE FOR EACH CIRCUIT.

Benchmark
Hit Rate

Case I Case II Case III
s1196 100.0% 99.9% 99.9%
s5378 99.8% 99.7% 99.9%
s9234 100.0% 99.9% 99.9%
s13207 99.9% 100.0% 100.0%
s15850 99.9% 99.9% 99.9%
s35932 97.2% 97.7% 98.7%
s38584 100.0% 99.9% 99.8%
s38417 99.9% 100.0% 99.9%

our experimental setup, increasing the number of stages can
compensate for the effect of spatially uncorrelated parameter
variations and give us more specific information about the
circuit delay after fabrication. We assume that each grid
contains an RO, and for each RO, every stage has the same
timing characteristics. Therefore we can use the coefficients
and the spatially uncorrelated variable calculated for a 5-
stage RO to derive the corresponding coefficients and spatially
uncorrelated variable for a unit stage of that RO. Based
on these timing characteristics of one unit stage, the timing
characteristics of a RO with any number of stages can be
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TABLE V

RUNTIME RESULTS.

Circuit s1196 s5378 s9234 s13207 s15850 s35932 s38584 s38417
Runtime (sec) 5.68 × 10−4 5.70 × 10−4 5.96 × 10−4 0.39 0.39 0.35 0.37 0.68
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Fig. 6. Conditional variance of the delay of the original circuit with respect
to the number of stages of ROs.

calculated. This procedure is repeated for each of the ROs
on chip. For each circuit we draw a curve, with the y axis
being the conditional variance of the circuit delay computed by
our approach, and the x axis being the number of unit stages
we have for every ring oscillator built on this circuit. This
plot shows that for our set of benchmarks, as the number of
stages increases, the conditional variance we obtain becomes
progressively smaller. Sample results of the circuits s13207
and s5378 are shown in Figure 6. It is easily observed that the
curves are monotonically decreasing. The results are similar
for all other circuits in the benchmark set.

Finally we provide runtime results for our approach. It is
easily observed that our algorithm can be divided into two
parts, separated by the physical measurements of the delays
of the ring oscillators. The first part corresponds to SSTA,
and because the framework is similar to [2], the readers are
referred to that paper for a runtime estimate. The runtime for
the second part, which is conditional PDF evaluation, is listed
in Table V. The experiments are run on a Linux PC with a
2.0GHz CPU and 256MB memory. The results we show here
are for Case I of Table IV, where the matrixΣt in Section

II is the largest of all three cases. It is shown that for all the
benchmark circuits, the runtime is less than one second.

VIII. C ONCLUSION

In this paper, a general framework for the post-silicon
statical delay prediction approach is proposed, using SSTA
and a conditional PDF evaluation method, making use of test
data from RO test structures. Future directions include the
development of methods for placing these structures optimally
and designing appropriate structures that are better at delay
prediction than ring oscillators.

In cases where the circuit is dominated by a single critical
path (this is not often the case, since most circuits are timing-
optimized, which implies that there are numerous near-critical
paths), it may be beneficial to use a critical path replica instead
of our ring oscillator based scheme. The critical path replica
can also be viewed as a type of test structure, which means that
after determining the nominal critical path, we can replicate
it, perform SSTA on this path, and calculate the conditional
variance of the original circuit delay, given that the delayof
this path is known. If a circuit is highly dominated by this
path, then the conditional variance would be small. We then
can compare the conditional variance calculated in this way
with the conditional variance calculated by our approach.

Depending on which variance is smaller, we can choose the
appropriate approach and start building the circuit embedded
with the proper test structure. This choice can be made
entirely through presilicon analysis. The variances of the
conditional PDFs for the two possible test structures (a setof
RO measurements, or a critical path replica) may be computed
using Equation (8c). Note that (8c) provides results that are
independent of measurement data, and hence depending on
which structure has the smaller covariance, we can choose an
appropriate test structure.
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