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Abstract—Approximate computing has emerged as a circuit de-
sign technique that can reduce system power without significantly
sacrificing the output quality in error-resilient applications.
However, there exists only a few approaches for systematically
and efficiently determining the error introduced by approximate
hardware units. This paper focuses on the development of
error analysis techniques for approximate circuits consisting of
adders and multipliers, which are the key hardware components
used in error-resilient applications. A novel algorithm has been
presented, using the Fourier and the Mellin transforms, that
efficiently determines the probability distribution of the error
introduced by approximation in a circuit, abstracted as a directed
acyclic graph (DAG). The algorithm is generalized for signed
operations through two’s complement representation, and its
accuracy is demonstrated to be within 1% of Monte Carlo
simulations, while being over an order of magnitude faster.

Index Terms—Approximate Computing, Fourier Transform,
Mellin Transform, Error Distribution.

I. INTRODUCTION

While performance reliability of circuits is imperative in
safety-critical and security applications, deliberate inaccuracy
is permissible in certain error-tolerant applications, thus al-
lowing relaxation of design effort and reduction of system
power. Recognition, mining, and synthesis applications related
to image, video, and audio processing [1] have significant
levels of error-tolerance, since they pertain to the limited
human perception of visual and auditory senses. Approximate
computing [2], [3] is a new design paradigm that leverages
this inherent error-tolerance, and can potentially achieve large
efficiencies in the design by deliberately introducing errors in
computation by either simplifying a circuit logic or architec-
ture, or by modifying its operating conditions.

A vital ingredient of any methodology based on approxi-
mate design is a fast and accurate procedure that can quantify
the error injected into a computation by an approximation
scheme. We propose a novel technique to quantify this error
through its probability mass function (PMF) in this paper,
using the concepts of transform calculus.

At the gate level of approximate circuit design, the error of
a logic function can be quantified by comparing the truth table
of the approximate and exact implementations. However, this
is not scalable beyond a small number of inputs because the
size of the truth table grows exponentially with the number
of inputs. Additionally, in several scenarios, it is essential
to determine the entire probability distribution of error, e.g.,
for hypothesis testing in stochastic sensor circuits [4] and for
accuracy evaluation [5], [6] of approximate circuits (which is
currently performed by exhaustive/Monte Carlo simulations).
In this paper, we present an algorithm that captures the

entire probability distribution of the error in approximate
circuits. A preliminary version of our work appeared in [7],
where we quantified the error PMFs in unsigned approximate
multipliers.Our approach first develops methods that compute
the entire error PMF for individual blocks such as adders
and multipliers. When these blocks are placed in a DAG, our
approach propagates the error PMF through the DAG using a
topological traversal to compute the error PMF at the DAG
outputs. Some prior works have addressed the first aspect, but
the second aspect has not received much attention.

A. Related work

Prior approaches that attempt to overcome the computa-
tional bottleneck of error estimation in approximate circuits
(generally, individual circuit blocks) can be classified into
two categories: (a) those that estimate the range of error,
and (b) those that estimate the error statistics. The first
category, which captures the range of the error in terms
of its minimum and maximum value, is primarily based on
interval and affine arithmetic [8]–[10]. The runtime for such
interval-based approaches increases exponentially when more
intervals are required for large ranges of signals, and they
clamp the errors to maximum/minimum values in the range,
thus often overestimating/underestimating the actual errors.
While the theoretical complexity of our proposed approach
is also exponential, we apply various techniques to improve
the practical runtime, and achieve Monte-Carlo like accuracy,
without overestimating the errors as evident from the results.

The second category, which estimates the error statistics,
uses either computationally intensive Monte Carlo simulations
using millions of random input vectors or other error composi-
tion techniques to obtain various quality metrics in an approx-
imate computation, such as the error rate, error significance,
average error, and mean square error [6], [11]–[14]. Our work,
on the other hand, provides an analytical expression for the
entire error PMF, which has more information and yields the
simpler quality metrics listed above.

While [15] proposes a method to characterize error PMF
in the basic block of adders only, [16] develops a technique
for modeling operation-level error PMFs (in adders and mul-
tipliers) similar to our earlier approach [7], and propagates
only certain metrics (such as the mean, variance, or the
extremum values) instead of the actual PMF, as implemented
in our work. In fact, the existing literature lacks a rigorous
exploration of the error propagation through an approximate
circuit comprising of not only adders, but also multipliers, and
this is what we attempt to achieve in this paper. To the best of



2

our knowledge, this is the first work that analytically computes
the total error PMF in an approximate circuit considering both
the errors generated at each approximate operation, and the
errors propagated through them to the outputs of the circuit.

Our approach is applied to approximation schemes where
the fundamental block, such as a full adder or a group of full
adders can be abstracted by a Boolean function, e.g., as in [17].
For cases where approximation is introduced by modifying the
logic, such a function can be obtained from the truth table, as
explained in Section III. Although the equations outlined in
the rest of the paper correspond to the specific case of logic
approximations, they can be extended to more general cases
if a Boolean function can be formulated at full adder level.

B. Summary of contribution

The input to our algorithm is the data flow graph of a circuit,
represented as a directed acyclic graph (DAG) whose nodes
correspond to fixed-point arithmetic units that can potentially
be approximated, and whose edges indicate the connections
between these units. Since the most common circuits that are
used to build hardware for error-resilient computations are
adders/subtractors [13], [14], [17], [18] and multipliers [5],
[6], [12], we consider these operations within the approximate
DAGs for our analysis.

We consider signed operations using the two’s complement
representation, where approximation is introduced in each
node by simplifying the logic function of the constituent full
adders (FAs) [17] of a fixed-width adder or multiplier array
within the DAG under study. The Boolean function of the
simplified FAs is also an input to our approach, along with the
statistics of the operands to each node connected to primary
inputs of the DAG. Our approach proceeds as follows:
1) For an FA, we obtain the PMF at the output, and the error

in the output as impulse functions from its truth table that
can be computed using its Boolean function (Section III).

2) Next, we use the above PMFs to compute the PMF of
error generated at each approximate node of a circuit (Sec-
tion IV). Specifically, for adders, the operation proceeds
through an array of approximate and/or exact FAs, and the
error generated in an approximate adder is the weighted
sum of errors generated within the approximate FAs in the
array. for multipliers, the operation proceeds by generat-
ing partial products, and successively adding each partial
product to the partial sum computed so far. Each such
addition is performed by an array of approximate and/or
exact FAs, and the error generated in the approximate
multiplier is the weighted sum of errors in these arrays.
We show that the PMF of the error generated at each node
can be expressed as a convolution of a weighted set of
error PMFs for individual FAs, and demonstrate how we
perform this convolution efficiently by using the Fourier
transform [19] on the PMFs.

3) Since the error at the output of a node within a DAG
consists of both the generated error (explained in the pre-
vious step) and the error that is propagated from its inputs,
we next obtain the PMF of such propagated errors, using
suitable assumptions regarding the statistics of the inputs,

and the errors in the inputs. The error propagation through
adders is implemented by adding the errors in its inputs,
which translates to convolution of the input error PMFs
to obtain the error PMF at the output. We use the Fourier
transform to efficiently solve this convolution problem. The
error propagation through multipliers proceeds by adding
the products of error in one input with the true value of
the other input. We propose a novel technique by using the
Mellin transform [20], followed by the Fourier transform,
to obtain the PMF of the propagated error.

4) Finally, we combine the PMF of the generated and the
propagated errors at the output of each node, and through
a topological traversal of the entire DAG, we compute the
PMF of error at its primary outputs (Section V).

We present the results of error PMF computation for a few
benchmark circuits for digital signal processing (DSP) appli-
cations, represented as DAGs [21], and approximated using the
FAs from [17], in Section VI, and conclude in Section VII.

II. A DAG MODEL FOR AN APPROXIMATE CIRCUIT

An approximate circuit represented as a DAG can be illus-
trated in Fig. 1, where each node implements a fixed-width
signed operation. Since a circuit may be used in a variety
of user conditions (inputs vectors, voltage, temperature, etc.),
to ensure its robustness, the inputs to an approximate circuit
are typically considered as random variables [17], [22] whose
distribution depends on the type of application the circuit is
used for. As a result, the output is also a random variable, and
so is the error in the output introduced due to approximations
in the circuit. A schematic of both the input and output PMFs
are also depicted in Fig. 1.

... ...
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...

...

PO POPO

A B

C=Ct + ΔR

A, B: Erroneous inputs 
Ct: Error-free output 
ΔR: Output error
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errors only
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Fig. 1. Representation of a DAG with approximate operations, producing
erroneous outputs that can be characterized by PMFs.

Let us consider each node of this DAG to represent an
N -bit operation, having N -bit inputs and an N -bit output.
Hence, the carry bit out of the most significant bit (MSB)
FA of an adder node is ignored; similarly, the N MSBs
within a multiplier node are ignored, by considering only the
lower triangle of the multiplier array (further explanations
through Figs. 4 and 5, respectively, in Section IV). Within
such a node, transistor-level FA logic simplifications [17], [23]
introduce approximation when the operation is implemented
as an array of exact and approximate FAs. The structure of
the array depends on whether the operation is an addition
(or subtraction) or a multiplication. Since an approximate
implementation of the hardware unit yields the benefit of
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using fewer resources [2] than its exact counterpart, typically
some of the least significant bits (LSBs) can be allowed to be
erroneous, as this introduces a limited level of approximation.
If y such LSBs are approximate, for example, then, the higher
the value of y, the greater are the power savings due to the
imprecise hardware, although the error is also higher. The
corresponding error, e, can potentially range from −(2y − 1)
to (2y − 1), and its exact value depends on the inputs.
Typically inputs are assumed to be random variables following
a known distribution (e.g., uniform or normal). Hence, e, being
a function of these inputs, is also a random variable, as is the
output of this node (irrespective of whether or not this node is
approximate). To obtain the error PMF at the primary outputs
of the DAG, we also need the PMFs of the actual outputs at
each internal node since they are the inputs to the successive
nodes within the DAG. Hence, our approach characterizes both
the PMF of the output, and the error in the output of a DAG
whose nodes are candidates for approximation.

III. OUTPUT DISTRIBUTION OF FULL ADDERS

In principle, the output distribution of any combinational
structure can be characterized through its truth table and the
statistics of the inputs. However, the size of the truth table
increases exponentially with the size of the input space, and
such a direct characterization is impractical for a multi-bit
adder or a multiplier. Hence, we work with a fundamental
unit that can reasonably be characterized – in this case, an
FA – and develop the error PMF for a multi-bit adder and
multiplier hierarchically. Specifically, for an adder, the error
PMF of a single FA is used to obtain the error PMF of the
output, and for a multiplier, the error PMF of a single FA is
used to obtain the error PMF of each row of FAs that sums the
partial products, and finally the error distribution of the entire
approximate multiplier. This section explains how we use the
input distribution and Boolean function of an FA to obtain its
output, and output error distribution.

Let us explain our approach with the example of an approx-
imate FA, appx1, from [17], shown in Fig. 2. The single-bit
inputs are α, β, and γ, and the outputs are cout and s, which
are combined as the two-bit output, Sum. The error injected
by the adder is denoted by ∆Sum which combines the error in
both cout and s. Since we will be analyzing signed operations,
for the FA in the MSB position, we also observe the error, ∆s,
injected in the sign bit, which corresponds to the sum bit of
this FA. Hence, the truth table in Fig. 2 lists the outputs, s,
cout, and the combined Sum, along with the exact outputs, st
and Sumt. The inputs are modeled as random variables with a
known distribution. Since the inputs are binary, we represent
their probability of being 1 as pα, pβ , and pγ , respectively,
also known as the signal probability of those inputs. Similarly,
p′x = 1− px, x ∈ {α, β, γ}, are the probabilities of α, β, and
γ, respectively, to be 0. The PMF of the adder output, Sum,
combining both the output bits (s and cout), and the PMF of
the error, ∆Sum, in the result, are defined by fSum(n) and
f∆Sum(n), respectively, where n ∈ [0, 3] for Sum since it
denotes the two-bit output, 2cout + s, and n ∈ [−3, 3] for
∆Sum, as the error within the two output bits may be any

of −1, 0 or 1. Since we also need to compute the PMF of
the error, ∆s, in the sum bit, s, if the FA is at the MSB in
an adder or a multiplier array, we denote its PMF by f∆s(n),
where n ∈ [−1, 1] for ∆s. However, it is to be noted that for
the appx1 adder shown in Fig. 2, n ∈ [−1, 0] and n ∈ [−1, 1]
for ∆s and ∆Sum, respectively.

FA

scout

Sum=2cout + s

𝛼
𝛽
𝛾

Sum= Sumt+ ∆Sum

𝛼 𝛽 𝛾 cout s st ∆s Sum Sumt ∆Sum
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 0
0 1 0 1 0 1 -1 2 1 1
0 1 1 1 0 0 0 2 2 0
1 0 0 0 0 1 -1 0 1 -1
1 0 1 1 0 0 0 2 2 0
1 1 0 1 0 0 0 2 2 0
1 1 1 1 1 1 0 3 3 0

s= st + ∆s

Fig. 2. Full adder (FA) with the associated truth table (appx1 from [17]).
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Fig. 3. Output signal and error distribution for the appx1 adder from [17].

If the inputs are independent, and represented by an iden-
tical uniform distribution (pα=pβ=pγ=0.5), then f∆s(n),
f∆Sum(n), and fSum(n) can be obtained from the truth table,
and are depicted in Figs. 3(a)–(c). For example, the PMF of
∆Sum can be computed by observing that it takes the value
0 in six of eight entries in the truth table, and the values, −1
and 1, in the remaining two, leading to the PMF shown in
Fig. 3(b). The three PMFs can equivalently be represented as
a weighted sum of discrete Kronecker delta functions as:

f∆s(n)=
6

8
δ(n)+

2

8
δ(n+ 1) (1)

f∆Sum(n)=
6

8
δ(n)+

1

8
δ(n− 1)+

1

8
δ(n+ 1) (2)

fSum(n)=
2

8
δ(n)+

1

8
δ(n− 1)+

4

8
δ(n− 2)+

1

8
δ(n− 3) (3)

where the coefficients of the delta functions are the length of
the corresponding stems in Fig. 3.

However, when the inputs to the approximate FA are not
uniformly distributed, each coefficient of δ(n− v) in Eqs. (1)
to (3) represents the probability of the corresponding random
variable to be v, where v ∈ [−1, 1], v ∈ [−3, 3], and v ∈ [0, 3],
for ∆s, ∆Sum, and Sum, respectively. The coefficients of the
delta functions can be expressed as functions of pα, pβ , and
pγ as shown in Table I. For example, from the truth table of
the appx1 FA as depicted in Fig. 2, we observe that error, ∆s,
in the sum bit is −1 when the input bitset, (α, β, γ) is either
(0, 1, 0), or (1, 0, 0). Hence, the first entry of the first column,
x−1, in Table I, which is the probability of ∆s to be −1 is
formulated as p′αpβp

′
γ + pαp

′
βp
′
γ . Similarly, the other entries

are populated in this table by observing the input bitsets when
∆s, ∆Sum, and Sum, take the value, v.
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TABLE I
PMFS ASSOCIATED WITH THE APPX1 FA OUTPUT (Sum) AND OUTPUT

ERRORS (∆s AND ∆Sum).

n f∆s(n) = xn f∆Sum(n) = en fSum(n) = pn

-1 p′αpβp
′
γ+pαp′βp

′
γ pαp′βp

′
γ −−

0 1 − p′αpβp
′
γ −

pαp′βp
′
γ

1 − pαp′βp
′
γ −

p′αpβp
′
γ

p′αp
′
βp

′
γ + pαp′βp

′
γ

1 0 p′αpβp
′
γ p′αp

′
βpγ

2 −− 0 p′αpβ+pαp′βpγ+

pαpβp
′
γ

3 −− 0 pαpβpγ

Hence, the PMF of ∆s, ∆Sum, and Sum can, in general,
be expressed as a sum of Kronecker delta functions as:

f∆s(n) =
∑1
v=−1 xvδ(n− v) (4)

f∆Sum(n) =
∑3
v=−3 evδ(n− v) (5)

fSum(n) =
∑3
v=0 pvδ(n− v) (6)

where xv , ev , and pv are, respectively, the probabilities of ∆s,
∆Sum, and Sum to be v, and expressed as functions of pα,
pβ , and pγ similar to the terms in Table I. The probabilities,
pα, pβ , and pγ , can be computed from the knowledge of the
input distribution, to obtain the PMFs in Eqs. (4) to (6).

IV. DISTRIBUTION OF GENERATED ERROR IN DAG NODES

Let us consider an approximate node in a DAG, with two N -
bit operands, A(aN−1aN−2 · · · a0) and B(bN−1bN−2 · · · b0),
producing an output, C(cN−1cN−2 · · · c0). We assume the
inputs to be error-free, where At and Bt are the true values
of inputs, and C comprises of only the error generated at this
node, denoted by ∆R. The true output, Ct, would have been
the output if this node was exact. In this section we explain
the methodology to obtain the PMF of the errors generated at
the individual nodes of a DAG, i.e., the PMF of ∆R.

There are quite a few applications (image compression and
classification, audio filtering, matrix multiplication, etc.) that
are amenable to approximation, which can be implemented
using add/subtract/multiply operations. Hence, in our work, we
consider these three operations as candidates for approximate
nodes within a DAG. We consider two’s complement signed
operations, and for the adder (or subtractor) we assume the
sum bit output of the MSB FA to be the sign bit as shown
in Fig. 4. For multipliers, we assume the lower triangle of
the Modified Baugh-Wooley two’s-complement multiplication
array structure [24] as shown in Fig. 5, so that N LSBs
correspond to the actual result of the N -bit×N -bit multiplier,
that goes into the subsequent stages. The sum bit output of the
FA in the penultimate row and the MSB column of the array
is the sign bit as highlighted in Fig. 5.

Before proceeding further, let us comment on the input data
distribution, and our assumptions regarding the correlation
between the random variables associated with the outputs and
errors of each FA in the adder or the multiplier array. Although
we assume the inputs, A and B, to be independent random
variables, their distribution is a user-specified input (and can be
any arbitrary distribution) from which the signal probability,
pai and pbi , of each input bit, ai and bi, respectively, can

FA2 FA1FAN-1FAN

a0

N-bit final result, C, sum of A and B (signed addition) 

…

b0

a1
b1

aN-2
bN-2

aN-1
bN-1

sN …Sign	bit

Fig. 4. A signed adder where some of the LSB FAs can be approximated to
introduce approximation in the circuit.
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FA2,N-2
FA2,1
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s1(N-1) Sum11

FAN-2, 2 FAN-2,1

aN-3bN-2

FAN-1,1

a0bN-2

a0bN-1

N-bit final result, C, product of A and B (signed multiplication) 

s(N-1)1

Sum21

S1

SN-2

SN-1

S2

…

Sign	bit

s(N-2)2

s2(N-2)

…

…
Sum1(N-2)

…

Sum(N-2)1

Fig. 5. A signed array multiplier where some of the LSB FAs can be
approximated to introduce approximation in the circuit.

be inferred, i ∈ {0, · · · , N − 1}. The assumption of input
independence is necessary since the transforms we use to
render our approach very easy to implement, are applicable
for the addition and multiplication of only independent random
variables. However, as illustrated in our experimental results,
this assumption produces good enough error estimate for up
to 50% approximate LSBs, which is the typical maximum
approximation range for acceptable output quality [3], [17].

Additionally, we consider the correlation between the sum
and carry out bits of any FA and the error introduced in
them, by combining them into a two-bit output, Sum, and the
corresponding error, ∆Sum, both expressed in decimal, with
their PMFs characterized by similar methods as Table I. This
technique captures the interdependence of the two most highly
correlated output bits of any FA. If a DAG has reconvergence
that involves a larger logical depth comprising of such FAs,
then there are more inputs that are involved in generating
the corresponding output, and these other signals dilute the
correlation. This concept of correlation dilution with logical
depth has been used in power estimation too [25], where signal
probabilities can be correlated due to reconvergent fanout,
but if a reconvergent node has a larger transitive fanin, the
role of correlations is significantly weakened. Hence, even if
we assume independence of different FAs within the adder
or multiplier array, it does not affect the quality of our
results since correlations due to reconvergent fanout tend to
be diluted as the logic depth of the reconvergent fanout paths
increases. However, we ignore the specific case of immediate
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reconvergent paths, for example, when two inputs of a node
are additive or multiplicative inverse of each other. This is a
limitation of our approach and the topic of ongoing research.

A. PMF of Generated Errors in Approximate Adders
For an adder, the FAs in the array are each indexed as FAi,

where i corresponds to the position of the FA in the adder,
starting from the LSB side, so that i ranges from 1 to N for
an N -bit signed adder as shown in Fig. 4. The two single bit
outputs, si and cout,i, from the ith adder, FAi, are combined to
a two-bit output, Sumi, and modeled as the random variable,
Sumi = Sumi,t + ∆Sumi, where Sumi,t is the true sum
(corresponding to the output of an exact FA), and ∆Sumi is
the error due to the approximate addition, combining the error
in both the output bits, similar to the example of the FA in
Fig. 2. Although the structure shown in the figure corresponds
to a Ripple Carry Adder, this concept can be extended to
any adder architecture. Finding the error PMF for the adder
involves two steps:
• Step 1: determining the signal probabilities for all inputs of

each individual FAi in the adder, and using the approach in
Section III to compute the PMF of ∆Sumi, i ∈ [1, N − 1],
along with the PMF of ∆sN , and

• Step 2: finding the error PMF of the entire adder, i.e., the
PMF of the weighted sum of the ∆Sumi variables along
with that of ∆sN which is the error in the sum bit of the
MSB (N th) FA and is also the sign bit in the output.

Let us now explain each step in further detail:
Step 1: The first step involves probability propagation within
a Boolean network, and we use established techniques for this
purpose [26]. For example, if the two inputs, α and β, to a
two-input AND gate have signal probabilities of pα and pβ ,
respectively, then the probability of the output of the AND gate
to be 1 is pαpβ . Similarly, we can compute the probability of
each signal within the adder array in Fig. 4 to be 1 or 0, using
the Boolean function of each FA. Based on this, we obtain the
PMF of ∆Sumi, denoted by f∆Sumi

(n), as a sum of delta
functions similar to Eq. (5). We also obtain the PMF of ∆sN ,
which is the error in the sum bit of the MSB FA, and denote
it by f∆sN (n) similar to Eq. (4).
Step 2: The generated error in the adder output, C (depicted in
Fig. 4), is represented by ∆R, and is the weighted sum of the
errors, ∆Sumi, over LSB N − 1 FAs, and the error, ∆sN ,
in the sum bit of the MSB FA. Since we implement two’s
complement operation, ∆sN actually represents the error in
the sign bit, and hence, has a negative weight associated with
itself inside ∆R. A simple analysis yields:

∆R =

(
N−1∑
i=1

2i−1∆Sumi

)
− 2N−1∆sN (7)

Since we consider the ∆Sumi, i = 1, · · · , N−1, and ∆sN to
be independent random variables, we utilize the fact that PMF
of sum of independent random variables equals the convolution
of the PMF of those variables. Hence, the PMF, f∆R(n), of
the generated error, ∆R, at the adder node is obtained as:

f∆R(n) =

(
N−1⊗
i=1

f2i−1∆Sumi
(n)

)⊗
f−2N−1∆sN (n) (8)

where
⊗

is the convolution operator. If the absolute value of
the largest output error of FAi is M , using Eqs. (4) and (5),
we obtain the constituent PMFs in Eq. (8) as:

f2i−1∆Sumi
(n) =

M∑
v=−M

e(i)
v δ(n− 2i−1v) (9)

f−2N−1∆sN (n) =

1∑
v=−1

x(N)
v δ(n+ 2N−1v) (10)

where e
(i)
v and x

(N)
v are the probabilities of ∆Sumi and

∆sN to be v, respectively, and the superscripts, (i) and (N),
indicate the position in the error-producing FAs in the adder
array. Since ∆Sumi (∆sN ) is shifted by 2i−1 (−2N−1) in
Eq. (9) (Eq. (10)), the locations of the impulses in the error
distributions are scaled by this factor as well, as shown inside
the Kronecker delta functions.

We implement the following techniques to solve the convo-
lution problem in Eq. (8) to obtain the PMF of ∆R:
1) Use the Z-transform [19] to convert the convolution into

a friendlier multiplication, yielding a polynomial in z.
This polynomial can have an exponential number of terms,
and special techniques are required to manage the cost of
working in the transform domain.

2) Use the inverse fast Fourier transform (IFFT) [19] to infer
the PMF of ∆R from the above polynomial.

Next, we explain each of these techniques in detail.
1) Representing the convolution using the Z-transform:

Since the Z-transform of a convolution of functions in the orig-
inal domain is equivalent to the product of the Z-transforms
of those functions in the transform domain, we can represent
the Z-transform of f∆R(n) in Eq. (8), by F∆R(z) as:

F∆R(z) =

(
N−1∏
i=1

F2i−1∆Sumi
(z)

)
F−2N−1∆sN (z) (11)

whereF2i−1∆Sumi
(z) andF−2N−1∆sN(z), are the Z-transform

of the PMFs, f2i−1∆Sumi
(n) and f−2N−1∆sN (n), from

Eqs. (9) and (10), respectively. Applying the Z-transform to
both sides of Eqs. (9) and (10), we obtain:

F2i−1∆Sumi
(z) =

M∑
v=−M

e(i)
v z−2i−1v (12)

F−2N−1∆sN (z) =

1∑
v=−1

x(N)
v z2N−1v (13)

SubstitutingF2i−1∆Sumi
(z)andF−2N−1∆sN (z) from Eqs. (12)

and (13), respectively, in Eq. (11), we can rewrite F∆R(z) as:

F∆R(z) =

N−1∏
i=1

(
M∑

v=−M
e(i)
v z−2i−1v

)(
1∑

v=−1

x(N)
v z2N−1v

)
(14)

= z−E
2E∑
i=0

aiz
i (15)

= z−EΦ(z) (16)

where ∆R ranges from −E to E , with E = 2N−1(M+1)−M ,
and the ais are the coefficients of the polynomial in z, denoted
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by Φ(z) in Eq. (16). The derivation of E has been deferred
to Appendix A for better readability. Performing the inverse
Z-transform of Eq. (14), we obtain,

f∆R(n) =

2E∑
i=0

aiδ(n+ i− E) (17)

Hence, ai is the probability of the generated error, ∆R, in the
adder output to be −(i − E). Thus finding the PMF of the
error reduces to the problem of finding the coefficients, ai,
in Φ(z)

(
=
∑2E
i=0 aiz

i
)

, which is a polynomial of degree 2E
with non-negative coefficients.

While the above equations present a clear picture of our
computation scheme, the cost of a direct implementation of
this idea is prohibitive. The most expensive step is the deter-
mination of the coefficients, ai, i ∈ [0, 2E ], by multiplying the
terms in Eq. (14). Therefore, we develop an efficient scheme
for finding the coefficients, ai as explained next.

2) Using the IFFT to infer f∆R(n) from Φ(z) and F∆R(z):
So far we have worked in the Z-transform domain to for-
mulate the error PMF, F∆R(z). Let us now consider discrete
Fourier domain to determine the coefficients, ai, in Φ(z) from
Eq. (16), by using inverse fast Fourier transform (IFFT). The
interchange of domains is possible since, by definition, the Z-
transform is equivalent to the discrete time Fourier transform
(DTFT) when the magnitude of |z| = 1 [19].

We begin by observing that the DTFT of the sequence,
{a0, a1, · · · , a2E}, is given by the Fourier coefficients,

Ak =

2E∑
i=0

ai exp

(
−j 2πik

2E + 1

)
=

2E∑
i=0

aiz
i
k (18)

where zk = exp
(
−j 2πk

2E+1

)
, j =

√
−1, and k ∈ [0, 2E ]. It is

interesting to note that the values of zk are the reciprocal of the
(2E + 1)th complex roots of unity. Therefore, if we evaluate
Φ(z) in Eq. (16) by substituting z = zk for each k ∈ [0, 2E ],
we obtain the Fourier coefficient, Ak. In other words,

Ak = Φ(zk) = zEkF∆R(zk)

= zEk

N−1∏
i=1

(
M∑

v=−M
e(i)
v z−2i−1v

k

)(
1∑

v=−1

x(N)
v z2N−1v

k

)
(19)

This provides us with the discrete Fourier coefficients of
the sequence of ais, which can then obtained by performing
inverse discrete time Fourier transform (IDFT) of the Aks:

ai =
1

2E + 1

2E∑
k=0

Ak exp

(
j

2πik

2E + 1

)
(20)

To compute the IDFT in Eq. (20) efficiently, we use the IFFT
to obtain the values of the ais. As observed in Eq. (17),
obtaining the ais directly provides the PMF of the generated
error, ∆R, in the adder output.

We summarize the steps to obtain the PMF of an approxi-
mate adder (or subtractor) node in Algorithm 1.

Algorithm 1 Pseudo-code to obtain the error PMF of an
approximate adder (or subtractor) node within a DAG.

Input: Adder architecture; truth tables of the FAs.

Input: Signal probabilities of each input bit of the adder.
Output: Error PMF, f∆R(n), of the adder output.
1: Compute the internal signal probabilities, e(i)

v1 , for i ∈
[1, N − 1], v1 ∈ [−M,M ], and x(N)

v2 , v2 ∈ [−1, 1], from
the bitwise input signal probabilities, similar to Table I

2: for each i from 1 to N − 1 do
3: Compute f2i−1∆Sumi

(n) from Eq. (9)
4: end for
5: Compute f−2N−1∆sN (n) from Eq. (10)
6: Formulate f∆R(n) as a convolution problem in Eq. (8)
7: To solve the convolution, perform Z-transform on f∆R(n)

to formulate F∆R(z) = z−EΦ(z) as Eq. (16), where E is
derived in Appendix A

8: for each k from 0 to 2E do
9: Compute zk = exp

(
−j 2πk

2E+1

)
, j =

√
−1

10: Evaluate Ak = Φ(zk) as shown in Eq. (19)
11: end for
12: IFFT: Using the Aks, obtain ai, i∈[0, 2E ] from Eq. (20)
13: Obtain f∆R(n) =

∑2E
i=0 aiδ(n+ i− E) as Eq. (17)

B. PMF of Generated Errors in Approximate Multipliers

For a multiplier, the FAs are each indexed as FAij in the
array, where i corresponds to the row number, starting from
the top (i ∈ {1, · · · , N − 1}), and j corresponds to the
position of an FA in a particular row, starting from the LSB
(j ∈ {1, · · · , N − i}), as shown in Fig. 5. The output of
FAij is modeled as the random variable, Sumij = Sumij,t +
∆Sumij , where Sumij,t is the true sum (corresponding to
the output of an exact FA), and ∆Sumij is the error due to
the approximate addition, similar to the example in Fig. 2.

Similar to the error PMF of an adder, finding the error PMF
for the multiplier array involves three steps, while the extra
step is due to the two-dimensional structure of the multiplier
as opposed to the one-dimensional one for the adder:

• Step 1: determining the signal probabilities for all inputs of
each individual FAij , and using the approach in Section III
to compute the PMF of ∆Sumij and ∆si(N−i), the latter
being the error in the sign bit in the ith row,

• Step 2: finding the PMF of the error, ∆Si, introduced by
the ith row of the multiplier array, and

• Step 3: finding the PMF of the entire multiplier, i.e., the
PMF of the sum of the ∆Si variables over all rows, i.

Let us now explain each step in further detail:
Step 1: The first step is similar to that of the generated
error PMF computation of adder as explained in the previous
subsection, to obtain the PMF of ∆Sumij and ∆si(N−i)
denoted by f∆Sumij (n) and f∆si(N−i)

(n), respectively.
Step 2: Next, we determine the error in the partial product
accumulation, ∆Si, in the ith row, which is the total error
resulting from an array of N − i FAs, as depicted in Fig. 5
for any general N , and i ∈ {1, · · · , N − 1}. For each row,
i ∈ {1, · · · , N − 1}, a simple analysis yields:

∆Si=

N−i−1∑
j=1

2i+j−1∆Sumij − 2N−1∆si(N−i) (21)
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where the negative weight, −2N−1, is associated with the sum
bit, si(N−i), in the ith row, which actually corresponds to the
the sign bit in the multiplier result.

Since we consider the ∆Sumij and ∆si(N−i) random
variables to be independent, we can utilize the fact that the
PMF of sum of independent random variables equals the
convolution of the PMF of those random variables. Hence,
the PMF of ∆Si can be expressed as:

f∆Si
(n)=

N−i−1⊗
j=1

f2i+j−1∆Sumij
(n)
⊗

f−2N−1∆si(N−i)
(n) (22)

where f2i+j−1∆Sumij
(n) and f−2N−1∆si(N−i)

(n) are
the PMFs of the random variable, 2i+j−1∆Sumij and
−2N−1∆si(N−i), respectively.

If the absolute value of the largest output error of FAij is M ,
then using Eqs. (4) and (5), we obtain the constituent PMFs
in Eq. (22) similar to Eqs. (9) and (10) as:

f2i+j−1∆Sumij
(n) =

M∑
v=−M

e(ij)
v δ(n− 2i+j−1v) (23)

f−2N−1∆si(N−i)
(n) =

1∑
v=−1

x(i(N−i))
v δ(n+ 2N−1v) (24)

where e(ij)
v and x(i(N−i))

v are the probabilities of ∆Sumij and
∆si(N−i) to be v, respectively, and the superscripts, (ij) and
(i(N − i)), indicate the position in the error-producing FAs in
the multiplier array.
Step 3: The generated error, ∆R, in the multiplier output is
simply the sum of the errors, ∆Si, over all N − 1 rows.
Assuming the ∆Si random variables to be independent, we
obtain the error PMF, f∆R(n), by convolving the f∆Si

(n)
PMFs from Eq. (22) as:

f∆R(n) =

N−1⊗
i=1

N−i−1⊗
j=1

f2i+j−1∆Sumij
(n)

⊗f−2N−1∆si(N−i)
(n)

(25)

The techniques to solve the convolution problem in Eq. (25)
are similar to those for Eq. (8) for adders as explained in
Sections IV-A1 and IV-A2. Hence, we first represent F∆R(z),
the Z-transform of f∆R(n) in Eq. (25), as:

F∆R(z) =

N−1∏
i=1

N−i−1∏
j=1

F2i+j−1∆Sumij
(z)

F−2N−1∆si(N−i)
(z)

(26)

where F2i+j−1∆Sumij
(z) and F−2N−1∆si(N−i)

(z) are
the Z-transforms of the PMFs, f2i+j−1∆Sumij

(n) and
f−2N−1∆si(N−i)

(n), respectively, outlined in Eqs. (23) and
(24). These two Z-transforms can be obtained similar to

Eqs. (12) and (13), respectively, and can be substituted in
Eq. (26), to rewrite Eq. (26) as:

F∆R(z) =

N−1∏
i=1

N−i−1∏
j=1

(
M∑

v=−M
e(ij)
v z−2i+j−1v

)(
1∑

v=−1

x(i(N−i))
v z2N−1v

)
(27)

= z−F
2F∑
i=0

miz
i = z−FΘ(z) (28)

where ∆R ranges from −F to F , with F = 2N−1(MN −
3M + N − 1) + 2M , and the mis are the coefficients of the
polynomial in z, denoted by Θ(z) in Eq. (28). The derivation
of F has been deferred to Appendix B for better readability.
Performing the inverse Z-transform of Eq. (27),

f∆R(n) =

2F∑
i=0

miδ(n+ i−F) (29)

Hence, mi is the probability of the generated error, ∆R, in
the multiplier output to be −(i − F), and can be computed
using the ideas presented in Section IV-A2.

C. Complexity of PMF Computation of Generated Errors

For Na approximate bits in an N -bit adder, the computa-
tional complexity is O

(
Na2Na

)
, and for an N -bit multiplier,

it is O
(
N2
a2Na

)
. Both the derivations are deferred to Ap-

pendix D for better readability.

V. DISTRIBUTION OF OUTPUT ERROR IN A DAG

The previous section summarized the computation of the
error PMFs for individual adder (or subtractor) and multiplier
nodes of a DAG. In this section, we propose techniques
to compute the error PMF for an entire DAG in general,
comprising these nodes. In other words, in this section, we
compose the block PMFs, as computed in Section IV, to
determine the PMF for a DAG consisting of these blocks.

The error in the output, C, of any approximate node within
a DAG comprises (a) the error generated at this node, and
(b) the error propagated through the operands, A and B as
illustrated in Fig. 6 for approximate adders and multipliers.
We have already discussed the computation of the PMF of
generated error in DAG nodes in Section IV. Here we present
a methodology to obtain the PMF of the error, ∆C, at the
output of a node combining the errors propagated through its
inputs, A and B, and the errors, ∆R, generated at this node,
as shown in Fig. 6.

To obtain the PMF of the total error, ∆C, propagated to the
output of a node in a DAG, we need the PMF of the true value
of the inputs, At and Bt, and the input errors, ∆A and ∆B.
These are discrete random variables, and hence, their PMFs
can be modeled as the sum of delta functions as:

fAt
(n)=

E∑
−E

pAk δ(n− k); fBt
(n)=

E∑
−E

pBk δ(n− k) (30)

f∆A(n)=

F∑
−F

p∆A
k δ(n− k); f∆B(n)=

F∑
−F

p∆B
k δ(n− k) (31)
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A=At + ΔA B=Bt + ΔB

C=Ct + ΔC

A=At + ΔA B=Bt + ΔB

C=Ct + ΔC

∆𝐶 = 𝐴𝑡∆𝐵 + 𝐵𝑡∆𝐴 + ∆𝐴∆𝐵 + ∆𝑅∆𝐶 = ∆𝐴+ ∆𝐵 + ∆𝑅

(b)(a)

Fig. 6. (a) Approximate adder, and (b) multiplier with inputs, A and B, both
of which can be erroneous, producing approximate output, C.

where the inputs (input errors) range from −E to E (−F to
F ), and pXk represents the probability of the variable, X , to
be k, where X ∈ {At, Bt,∆A,∆B}. It is to be noted that we
drop the subscript, t, from pAt

k and pBt

k in Eq. (30) and simply
use pAk and pBk , instead, for simpler notation, and ∆C is shown
in Figs. 6(a) and (b) for both adder and multiplier, whose PMF
can be obtained using the PMFs listed in Eqs. (30) and (31),
and the methods explained in the next two subsections.

A. Error Propagation through Adders

The total error, ∆C, at the output of an approximate adder is
represented by ∆A+∆B+∆R as illustrated in Fig. 6(a). The
generated error, ∆R, and both the input errors, ∆A and ∆B,
can be assumed to be independent random variables. Hence,
the PMF of ∆C can be formulated as:

f∆C(n) = f∆A(n)
⊗

f∆B(n)
⊗

f∆R(n) (32)

where f∆A(n) and f∆B(n) are defined in Eq. (31), and
f∆R(n) is obtained from Eq. (17) in Section IV-A. This
convolution problem can be solved by using the concepts
explained in Section IV-A, specifically, by first applying Z-
transform on both sides of Eq. (32), followed by evaluating the
resulting polynomial at the reciprocal of (2EC + 1)th roots of
unity, where EC is the maximum value of ∆C from Eq. (32),
and then performing an IFFT on those evaluations.

Similarly, PMF of Ct can be obtained by convolving the
PMFs of At and Bt defined in Eq. (30). This is the PMF
of the output of the adder node if it had implemented an
exact operation, and may be used to characterize error PMFs
in successive stages within the DAG.

B. Error Propagation through Multipliers

While ∆C for an adder is given by a simple sum of three
random variables, ∆C for a multiplier involves the sum of
product of random variables (At∆B, Bt∆A, and ∆A∆B).
We will employ the Mellin transform [20] to first compute
the PMF of the product of random variables followed by
established techniques using the Fourier transform to compute
the PMF of their sum. Hence, let us first provide a few key
concepts of the Mellin transform that we will use to compute
the PMF of the product of random variables.

Definition. The Mellin transform is an integral transform that
may be regarded as the multiplicative version of the Fourier
transform [20]. It is applicable only for functions defined on

the positive real axis. For two positive random variables, X
and Y , with PMFs, fX(n) and fY (n), respectively, the fol-
lowing statements hold true regarding their Mellin transforms:

(i) The Mellin transform of fX(n) and fY (n), are repre-
sented by FX(s) and FY (s), respectively, as:

FX(s) =M [fX(n); s] =

∫ ∞
0

ns−1fX(n)dn

FY (s) =M [fY (n); s] =

∫ ∞
0

ns−1fY (n)dn

where s is a complex variable that corresponds to the
transformed domain.

(ii) Product Rule: If X and Y are independent random
variables in addition to being positive, then

FXY (s) =M [fXY (n); s] =M [fX(n); s]M [fY (n); s]

= FX(s)FY (s) (33)

(iii) If fX(n) is represented by a sum of delta functions,∑N
k=1 xkδ(n− k), its Mellin transform is obtained as:

M

[
N∑
k=1

xkδ(n− k); s

]
=

N∑
k=1

xkk
s−1 (34)

Now, in the total error, ∆C, propagated from the inputs of
an approximate multiplier to its output (illustrated in Fig. 6(b)),
we can ignore ∆A∆B, since it is negligible compared to the
other terms, so that ∆C can be reformulated as:

∆C ≈ At∆B +Bt∆A+ ∆R (35)

If At, ∆B, Bt, and ∆A are all independent random variables,
the PMF of ∆C can be formulated as:

f∆C(n) = fAt∆B(n)
⊗

fBt∆A(n)
⊗

f∆R(n) (36)

where f∆R(n) is obtained from Eq. (29) in Section IV-B. To
solve the convolution in Eq. (36), we need the PMFs of At∆B
and Bt∆A. This can achieved by using the Product Rule of the
Mellin transform of PMFs, as explained above. However, the
Mellin transform is only valid for positive random variables,
while both At and ∆B (or Bt and ∆A) can be either positive
or non-positive (negative or zero) since we implement signed
operations. Hence, we use the positive and non-positive parts
of X , X ∈ {At, Bt,∆A,∆B}, and apply the Mellin transform
separately to handle the non-positive cases.

For example, to find the PMF of C1 = At∆B, we compute
four different PMFs for C1, when (a) At≥ 0, ∆B≥ 0, (b)
At≥0, ∆B<0, (c) At<0, ∆B≥0, and (d) At<0, ∆B<0, as
sum of delta functions (impulse train), illustrated in Figs. 7(a)-
(d). Clearly, the PMF of C1 = At∆B is the sum of all four
impulse trains, and is depicted by fC1(n) in Fig. 7(e). Similar
logic is used to obtain the PMF of Bt∆A. Detailed derivation
of these PMFs is deferred to Appendix C for better readability.

Since the PMF, f∆R(n), of the generated error, ∆R, from
Eq. (29) can also be represented by an impulse train, we
can use the concepts explained in Section IV-A, to solve the
convolution problem in Eq. (36). Specifically, we can apply Z-
transform on both sides of Eq. (36), followed by evaluating the
resulting polynomial at the reciprocal of (2FC + 1)th roots of
unity, where FC is the maximum value of ∆C from Eq. (36),
and then performing an IFFT on those evaluations.
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𝑓"#,%&'(,∆*'(	(𝑛) 𝑓"#,%&'(,∆*/(	(𝑛)

𝑓"#,%&/(,∆*'(	(𝑛) 𝑓"#,%&/(,∆*/(	(𝑛)

0 𝑛 0 𝑛

0 𝑛 0 𝑛

(a) (b)

(c) (d)

0 𝑛

	𝑓"# 𝑛 = (a) + (b) + (c) + (d)(e)

Fig. 7. PMF of the product, C1, as a sum of four PMFs depending on the
sign of the two operands, At and ∆B.

C. Error PMF at Output Nodes of a DAG

We follow a multi-level approach to obtain the error PMF
at the output node of an approximate DAG, where we first
analyze adders and multipliers, as explained in the previous
subsections, and then use the results to analyze the entire
DAG. Hence, each node of an approximate DAG with V
nodes can be traversed topologically while performing the
unit operations of error generation and propagation through
that node. The inputs connected to the primary input nodes
of the DAG are error-free. The total error accumulates during
the topological traversal, and appears as error at the primary
output of the DAG. The computational complexity to obtain
the error PMF when Na bits are approximate in each of
the N -bit wide nodes, is O

(
V Na2N+Na

)
. The derivation is

presented in Appendix D, and includes both the complexity
of characterizing adders/multipliers, and that of traversing the
DAG with V nodes.

VI. EXPERIMENTAL SETUP AND RESULTS

We implemented the ideas presented here in C++, and the
experiments were performed on a 64-bit Ubuntu server with
a 3 GHz Intel® Core™2 Duo CPU E8400 processor. We
use greyscale pixel value of the images from the LFW Face
Database [27], to generate the inputs for performing Monte
Carlo simulations against which we validate our proposed
algorithm. This ensures that correlation exists in the input data.
Mean subtraction is performed for each sample to visualize
results for signed numbers, since pixel values range from 0 to
255. Finally, we use the FFTW library [28] to perform the fast
Fourier transform related calculations in C++, for error PMF
calculation of multiplier nodes. The approximate adders that
constitute the adder and multiplier nodes within an approxi-
mate DAG are the various transistor level approximations of
the mirror adders from [17].

A. PMF of Generated Error in Approximate Nodes

We consider 16-bit Ripple Carry Adders and Modified
Baugh-Wooley Multipliers as the approximate nodes of a
DAG, with the inputs from pixel values of facial images as
explained earlier. The generated error distributions of 16-bit
adders and 16-bit×16-bit multipliers are computed assuming
four LSBs to be approximate by replacing the corresponding

FAs by either of the five versions of the approximate FAs
from [17]. We assume the bitwise input signal probabilities
to be 0.5, since the distribution of the inputs till the most
significant approximate bit is symmetric about zero. For
internal nodes, although the inputs are not guaranteed to
be symmetric, the propagated errors dominate the generated
errors, and the signal probability assumption does not affect
the results significantly.

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

Monte Carlo Our Algorithm

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

-50 0 50
0

0.5

1

Fig. 8. Distribution of error in an 16-bit signed adder (top row) and 16-
bit×16-bit signed multiplier (botom row) implemented with the appx1-appx5
versions of the FAs from [17].

We compare the cumulative distribution functions (CDFs) of
the error PMFs obtained by our approach with those obtained
by 6000 Monte Carlo simulations in Fig. 8 for adders (top
row) and multipliers (bottom row). Each column of Fig. 8
indicated by (a)-(e), corresponds to the error CDF for an adder
or a multiplier, when implemented using the approximate FAs
from [17]. Clearly, the estimated distributions show excellent
match with those obtained from Monte Carlo simulations.

To compare the statistics, we normalize the output errors
to the dynamic range of the output of the approximate adder
and multiplier since the same magnitude of error may have
different levels of severity depending on the magnitude of the
output. The normalization factor, R, is the total range (differ-
ence of maximum and minimum values) of the output when
implemented using different combinations of approximate and
accurate FAs. We compare the standard deviation of the error
PMFs obtained by our algorithm and Monte Carlo simulations,
using the absolute value of the normalized percentage error in
standard deviation, ∆σnorm, defined as:

∆σnorm = 100× |σest − σMC |
R

(37)

where σest and σMC are the standard deviations of the gen-
erated error PMF at adder/multiplier output, estimated by our
algorithm, and through Monte Carlo simulations, respectively,
and R is the normalizing factor defined earlier.

TABLE II
NORMALIZED PERCENTAGE ERRORS IN ESTIMATED STANDARD

DEVIATIONS (∆σnorm) FOR APPROXIMATE ADDERS AND MULTIPLIERS.

FA type →
appx1 appx2 appx3 appx4 appx5

DAG↓
Adder 0.19% 0.11% 0.09% 0.58% 0.89%

Multiplier 0.07% 0.02% 0.00% 0.07% 0.21%

Table II lists the ∆σnorm values of the 16-bit adders and
multipliers in second and third columns, respectively, when
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approximation is introduced by replacing four LSB FAs by
each approximate version of the FA from [17]. Clearly, the
error statistics obtained by our algorithm show an excellent
match with those obtained by Monte Carlo simulations, as
indicated by the negligible errors in Table II.

B. Output Distribution in DAGs

We consider three different DAGs for image processing
applications, namely, MPEG Decoder (MPEG), Matrix Mul-
tiplier (MM), and Horner-Bezier Filter (HB), from the Ex-
pressDFG Benchmark Suite [21], comprising of adder and
multiplier nodes, for demonstrating our algorithm. We observe
the error PMFs in the deepest output node of each DAG, the
details of which are outlined in Table III. A comprehensive
description of these DAGs can be found in [21].

TABLE III
DESCRIPTION OF THE LONGEST PATHS OF DAGS USED IN THE RESULTS.

DAG →
MPEG MM HB

Features↓
Depth of output 5 5 7

Number of multipliers 3 4 5

Number of adders 3 3 5

The number of approximate bits or the type of approximate
FAs within each node of a DAG is a user-specified input.
Here we assume all the nodes except those connected to
the primary inputs to be approximated by each type of FAs,
having the same number of approximate LSBs (25%), similar
to the approaches in [17], and each node is 16-bit wide. As
mentioned earlier, the inputs for each DAG are the mean-
subtracted pixel values of facial images. The error CDFs
corresponding to the DAGs are illustrated in Fig. 9, where
each column of subplots (a)-(e), corresponds to the type of FAs
from [17] used to implement the approximate nodes within the
respective DAG. Each row of the subplots corresponds to the
different DAGs under study.

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

Monte Carlo Our Algorithm

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

-100 0 100
0

0.5

1

Fig. 9. Distribution of error in the deepest output node of the DAGs consisting
of 16-bit adders and multipliers implemented with the appx1-appx5 versions
of the FAs from [17].

By performing the Monte Carlo simulations multiple times
with a very large sample size for one DAG, we obtain the
mean and standard deviation of the errors to be 2 and 39,
respectively. So to achieve 95% confidence such that the
statistics from Monte Carlo PMF using n samples will not
differ from their true values by more than 5%, we should

select n=
(
100×0.196×39

5×2

)2

=5843, based on [29]. Hence, we
round it off to 6000, and use the same number of samples for
all five DAGs. The error distribution obtained by 6000 Monte
Carlo simulations is assumed to be the reference. Clearly from
Fig. 9, the CDFs obtained by our algorithm show a very good
match with those obtained through Monte Carlo simulations.

To quantify the Monte-Carlo like accuracy of our algorithm,
we compute the Hellinger distance [30] between the estimated
and the Monte Carlo PMFs, and it is defined as:

Hellinger distance =
1√
2

√√√√∑
all n

(√
f̂(n)−

√
f(n)

)2

(38)

where f̂(n) and f(n) are the estimated and the Monte Carlo
PMFs, respectively. The factor,

√
2, ensures that this distance

ranges from 0 to 1. The threshold value to judge the closeness
of the two PMFs so that below this value, the two PMFs can be
practically assumed to be the same is chosen to be 0.26 [31].
We plot these distances between our estimated error PMFs
and the corresponding PMFs from Monte Carlo simulations in
Fig. 11(a), and for most cases, they are less than the threshold.

Next, to highlight the heterogeneity in errors with more
aggressive approximation, we plot the error CDFs in MPEG
as an example, implemented by the appx1 FA, for different
number of approximate bits, Na, in Fig. 10, with the same
inputs. Evidently from the figure, our method matches results
from Monte Carlo simulations very well even with high
degrees of approximation, and the Hellinger distance between
the two is less than the threshold value of 0.26.
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Fig. 10. Error CDFs for MPEG with appx1 version of the FA from [17], and
Na approximate bits, Na ∈ [2, 7] for 16-bit operands.
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Fig. 11. (a) Hellinger distance between PMFs obtained by our approach and
Gaussian approximation, as compared to the Monte Carlo PMFs. (b) Hellinger
distance between PMFs by our approach and Monte Carlo for MPEG for
different number of approximate bits implemented by appx1 FA.

Now, even for correlated inputs, if we decompose them into
their binary equivalent, and plot the values of the lower order
bits, we can observe them to be uniformly distributed without
any correlation. Intuitively, this corresponds to the notion that
the major information content is held by the higher order bits,
where the effects of correlation tend to show up. As a result,
the lower order bits can be assumed to practically independent.
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So our assumption of input independence, provides accurate
results when the lower order bits are approximated, and the
estimated error can track the actual error very well. If more bits
are approximated, then our assumptions can lead to pessimistic
estimates of error, which is reflected through the increasing
mismatch in the CDFs and the increasing Hellinger distances
in Figs. 10 and 11(b), respectively. However, the match is good
enough up until 50% of the bit length, which is the typical
approximation range [3], [17] to limit the total error.

For comparison purposes in Fig. 11(a), we also construct
Gaussian PMFs with the error mean and variances obtained
by simply computing the statistics at the output of each node
(instead of the entire PMF), and then plot the Hellinger dis-
tances between these PMFs and the Monte Carlo PMFs. This
exercise gives an indication that although the error statistics
may be the same for the artificially generated PMFs, the error
PMF is not completely Gaussian for many cases, as indicated
by the threshold violation in Fig. 11 for DAGs where our
method generates a more accurate error PMF.

TABLE IV
NORMALIZED PERCENTAGE ERRORS IN ESTIMATED STANDARD

DEVIATIONS (∆σnorm DEFINED IN EQ. (37)) AND PSNR VALUES.

DAG↓ FA type→ appx1 appx2 appx3 appx4 appx5

∆σnorm 0.01% 0.02% 0.03% 0.05% 0.12%
MPEG PSNRest 58.64 57.74 56.73 54.94 56.14

PSNRMC 55.92 56.61 54.23 56.28 57.37

∆σnorm 0.02% 0.01% 0.02% 0.04% 0.13%
MM PSNRest 59.33 57.35 56.66 55.15 56.04

PSNRMC 58.02 56.46 54.10 52.96 57.50

∆σnorm 0.00% 0.00% 0.00% 0.01% 0.01%
HB PSNRest 69.29 66.28 63.43 67.09 68.79

PSNRMC 68.24 66.91 64.48 67.34 69.82

Finally, we summarize ∆σnorm in Table IV, corresponding
to the error PMFs of the DAGs, for each FA from [17]. To
show the impact of the approximation error at the application
level, we also list the peak signal to noise ratios (PSNR)
of the output (in dB) in the table, using both the estimated
error PMF, and Monte Carlo simulations, denoted by PSNRest
and PSNRMC , respectively. Clearly, the ∆σnorm indicates an
excellent match between our approach and the simulations.
Additionally, the PSNRest values are very close to the corre-
sponding PSNRMC values, thus emphasizing the accuracy of
our method at the application level.

VII. CONCLUSION

We have proposed a novel technique in this paper to
analytically construct the PMF of errors generated due to
approximating various adder and multiplier nodes in a DAG,
using the concepts of transform calculus. We use the Fourier
transform to propagate the errors through the adder nodes,
while we implement a combination of the Fourier and the
Mellin transform, to propagate the errors through multiplier
nodes within a DAG. The novelty of employing Mellin
transform lies in its equivalence to the Fourier transform
to compute the PMF of the product of random variables.
Our technique generates the error PMF with the accuracy of

the traditional Monte Carlo simulations, as observed through
the Hellinger distance metric as well as the difference in
normalized standard deviations between our estimated and the
Monte Carlo simulations.

APPENDIX A
Derivation of E in Eq. (15): In the expansion of Eq. (14),
E is the magnitude of the exponent of z corresponding to the
term with the most negative exponent. Let this term be TE :

TE =

(
N−1∏
i=1

e
(i)
M z−2i−1M

)
xN−1z

−2N−1

=

(
xN−1

N−1∏
i=1

e
(i)
M

)
z−M(20+21+···+2N−2)z−2N−1

(39)

Hence, E is obtained by adding the exponents of z in TE , as:

E = M(2N−1 − 1) + 2N−1 = 2N−1(M + 1)−M (40)

APPENDIX B
Derivation of F in Eq. (28): In the expansion of Eq. (27),
F is the magnitude of the exponent of z corresponding to the
term with the most negative exponent. Let this term be TF :

TF =

N−1∏
i=1

N−i−1∏
j=1

e
(ij)
M z−2i+j−1M

(x(i(N−i))
−1 z−2N−1

)
(41)

Hence, F = M(21+· · ·+2N−2) +M(22+· · ·+2N−2)+· · ·
+M(2N−2) + (N − 1)2N−1 (42)

Simplifying, F is obtained as:

F = 2N−1(MN − 3M +N − 1) + 2M (43)

APPENDIX C
Derivation of PMF of At∆B and Bt∆A in Eq. (36): As
evident from Eqs. (30) and (31), the inputs (input errors) range
from −E to E (−F to F ). However, since by definition,
the Mellin transform is only applicable on positive random
variables, the domains of At, Bt, ∆A, and ∆B must be split
into positive and non-positive parts, and treated separately.
Hence, we rewrite the PMFs in Eqs. (30) and (31) as:

fAt
(n) =

−1∑
−E

pAk δ(n− k) +

E∑
1

pAk δ(n− k) + pA0 δ(n)

= fAneg
(n) + fApos

(n) + fAt
(0) (44)

fBt
(n) =

−1∑
−E

pBk δ(n− k) +

E∑
1

pBk δ(n− k) + pB0 δ(n)

= fBneg
(n) + fBpos

(n) + fBt
(0) (45)

f∆A(n) =

−1∑
−F

p∆A
k δ(n− k) +

F∑
1

p∆A
k δ(n− k) + p∆A

0 δ(n)

= f∆Aneg
(n) + f∆Apos

(n) + f∆A(0) (46)

f∆B(n) =

−1∑
−F

p∆B
k δ(n− k) +

F∑
1

p∆B
k δ(n− k) + p∆B

0 δ(n)

= f∆Bneg (n) + f∆Bpos(n) + f∆B(0) (47)
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where pXk represents the probability of the variable, X , to be k,
X ∈ {At, Bt,∆A,∆B}. The new variables, Xneg and Xpos,
correspond to the negative and positive parts of X , and will
be used to obtain the PMFs of At∆B (and Bt∆A).

To simplify our notations, let us define a new variable,
C1 =At∆B, whose PMF, fC1

(n), comprises the following
four functions, each representing the probability of C1 to be
n based on the positivity or negativity of At and ∆B.

â fC1,At≥0,∆B≥0(n) is the probability of C1 to be n when
both At and ∆B are positive.

â fC1,At≥0,∆B<0(n) is the probability of C1 to be n when
At (∆B) is positive (negative).

â fC1,At<0,∆B≥0(n) is the probability of C1 to be n when
At (∆B) is negative (positive).

â fC1,At<0,∆B<0(n) is the probability of C1 to be n when
both At and ∆B are negative.

If each of the above functions can be represented by the
impulse train as shown in Figs. 7(a)–(d), for example, then
fC1(n) is simply the summation of them, as depicted in
Fig. 7(e), and hence, given by:

fC1
(n) = fC1,At≥0,∆B≥0(n) + fC1,At≥0,∆B<0(n)

+ fC1,At<0,∆B≥0(n) + fC1,At<0,∆B<0(n) (48)

We had separated the negative and positive parts of At and
∆B in Eqs. (44) and (47), to define new random variables,
Xneg and Xpos where X = {At,∆B}, and since the Mellin
transform can only be applied when the random variables are
positive, we inverse the domain of the PMFs when either of
the multiplicands, At or ∆B, is negative. We also consider
the cases differently when either of them is zero. Hence, we
perform the following replacements to the terms in Eq. (48):

fC1,At≥0,∆B≥0(n) = fC1,At=Apos,∆B=∆Bpos(n)

+ fC1,At=0 or ∆B=0(n) (49)
fC1,At≥0,∆B<0(n) = I(fC1,At=Apos,∆B=−∆Bneg (n)

+ fC1,At=0,∆B=−∆Bneg (n)) (50)
fC1,At<0,∆B≥0(n) = I(fC1,At=−Aneg,∆B=∆Bpos(n)

+ fC1,At=−Aneg,∆B=0(n)) (51)
fC1,At<0,∆B<0(n) = fC1,At=−Aneg,∆B=−∆Bneg (n) (52)

where I(.) represents the operation of taking the mirror image
of the enclosed function about the n = 0 axis in Fig. 7. We
can use the Mellin transform to rewrite Eqs. (49) to (52) as:

fC1,At≥0,∆B≥0(n)

=M−1
(
M[fApos

(n); s]M[f∆Bpos
(n); s]

)
+ψ1 (53)

fC1,At≥0,∆B<0(n)

= I
(
M−1

(
M[fApos

(n); s]M[f−∆Bneg
(n); s]

)
+ψ2

)
(54)

fC1,At<0,∆B≥0(n)

= I
(
M−1

(
M[f−Aneg (n); s]M[f∆Bpos(n); s]

)
+ψ3

)
(55)

fC1,At<0,∆B<0(n)

=M−1
(
M[f−Aneg (n); s]M[f−∆Bneg (n); s]

)
(56)

where M−1(.) denotes the inverse Mellin transform, and ψi,
i = 1 · · · 3, covers the cases when At and ∆B are zeros in

Eqs. (49) to (51). Detailed solutions of Eqs. (53) to (56) using
Eqs. (44) and (47), are provided below:
fC1,At≥0,∆B≥0(n): The two terms in Eq. (53) are,

M−1
(
M[fApos

(n); s]M[f∆Bpos
(n); s]

)
=M−1

((
E∑
k=1

pAk k
s−1

)(
F∑
k=1

p∆B
k ks−1

))

=M−1

(
EF∑
k=1

cppk k
s−1

)
=

EF∑
k=1

cppk δ(n− k) (57)

and ψ1 = cpp0 δ(n) (58)

where cppk can be computed as:

cppk =

{
pA0
∑F
k=0 p

∆B
k + p∆B

0

∑E
k=0 p

A
k − pA0 p∆B

0 , k = 0∑
i factor of k p

A
i p

∆B
k/i, otherwise

Thus fC1,At≥0,∆B≥0(n) from Eq. (49) is obtained as:

fC1,At≥0,∆B≥0(n) =

EF∑
k=0

cppk δ(n− k) (59)

fC1,At≥0,∆B<0(n): The two terms inside I(.) in Eq. (54) are,

M−1
(
M[fApos

(n); s]M[f−∆Bneg
(n); s]

)
=M−1

((
E∑
k=1

pAk k
s−1

)(
F∑
k=1

p∆B
−k k

s−1

))

=M−1

(
EF∑
k=1

cpnk ks−1

)
=

EF∑
k=1

cpnk δ(n− k) (60)

and ψ2 = cpn0 δ(n) (61)

where cpnk can be computed as:

cpnk =

{
pA0
∑F
k=1 p

∆B
−k , k = 0∑

i factor of k p
A
i p

∆B
−k/i, otherwise

Thus fC1,At≥0,∆B<0(n) from Eq. (50) is obtained as:

fC1,At≥0,∆B<0(n)=I

(
EF∑
k=0

cpnk δ(n− k)

)
=

EF∑
k=0

cpnk δ(n+ k) (62)

fC1,At<0,∆B≥0(n): The two terms inside I(.) in Eq. (55) are,

M−1
(
M[f−Aneg (n); s]M[f∆Bpos(n); s]

)
=M−1

((
E∑
k=1

pA−kk
s−1

)(
F∑
k=1

p∆B
k ks−1

))

=M−1

(
EF∑
k=1

cnpk ks−1

)
=

EF∑
k=1

cnpk δ(n− k) (63)

and ψ3 = cnp0 δ(n) (64)

where cnpk can be computed as:

cpnk =

{
p∆B

0

∑E
k=1 p

A
−k, k = 0∑

i factor of k p
A
−ip

∆B
k/i, otherwise
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Thus fC1,At<0,∆B≥0(n) from Eq. (51) is obtained as:

fC1,At<0,∆B≥0(n)=I

(
EF∑
k=0

cnpk δ(n− k)

)
=

EF∑
k=0

cnpk δ(n+ k) (65)

fC1,At<0,∆B<0(n): Eq. (56) are,

M−1
(
M[f−Aneg

(n); s]M[f−∆Bneg
(n); s]

)
=M−1

((
E∑
k=1

pA−kk
s−1

)(
F∑
k=1

p∆B
−k k

s−1

))

=M−1

(
EF∑
k=1

cnnk ks−1

)
=

EF∑
k=1

cnnk δ(n− k) (66)

where cnnk can be computed as:

cnnk =
∑

i factor of k

pA−ip
∆B
−k/i

Since At and ∆B are strictly negative here, C1 is non-zero,
and fC1,At<0,∆B<0(n) from Eq. (51) is obtained as:

fC1,At<0,∆B<0(n) =

EF∑
k=1

cnnk δ(n− k) (67)

The impulse trains in Eqs. (59), (62), (65), and (67) are
schematically depicted in Figs. 7(a)–(d), and can be simply
added to obtain fC1

(n) = fAt∆B(n) as shown in Fig. 7(e).
Finally, by exchanging At and ∆B with Bt and ∆A,

respectively, in the above discussion, and using the definitions
of Xneg and Xpos, X ∈ {Bt,∆A} from Eqs. (45) and (46),
respectively, we can obtain the PMF, fBt∆A(n), of Bt∆A too.

APPENDIX D

Derivation of computational complexity of error PMFs:
The complexity of the algorithm arises from the PMF compu-
tation of both the generated and the propagated error within,
and through the adders or/and multipliers of the DAG. We use
the fact that the convolution of two vectors of length, n, takes
O(n log n) operations using FFT.

Generated errors in N -bit adders: If the error in a
stand-alone FA ranges from −M to M , then it ranges from
−2iM to 2iM if the FA is located at the ith bit in the FA
array of the adder, i ∈ [0,Na−1], where Na is the number
of approximate bits in the adder. Hence, the convolution of
error PMF at the output of the ith and (i+ 1)th FAs re-
quires O

((
2(i+1)M+1

)
log
(
2(i+1)M+1

))
operations, starting

with the second to LSB FA, i.e., i ≥ 1. We formulate the
number of computations to obtain the required PMF, by T (g)

A :

T
(g)
A ≈O

(
Na∑
i=2

2iM log
(
2iM
))

=O

(
M

(
Na∑
i=2

2i

)
logM+M

Na∑
i=2

i2i+log
(
2
∑Na

i=2iMNa−1
))

=O
(
Na2Na

)
(68)

Generated errors in N ×N -bit multipliers: Due to the
two-dimensional structure, convolutions are performed in each
row of the multiplier, and the LSB is error-free. Similar to the

adders, we can formulate the number of computations to obtain
the generated error PMF in multipliers, by T (g)

M :

T
(g)
M = O

Na−1∑
j=0

Na−1−j∑
i=2

(
2(i+j+1)M+1

)
log
(

2(i+j+1)M+1
)

≈ O

Na−1∑
j=0

Na−j∑
i=3

(
2(i+j)M

)
log
(
2(i+j)M

)
= O

(
(4M logM)

N−2∑
k=1

k2k + 4M

Na−2∑
k=1

k(k + 2)2k

)
(69)

To solve the Eq (69), we first derive the following key relations
using the concepts of mathematical progressions:
Na−2∑
k=1

k2k=(Na−3)2Na−1+2;

Na−2∑
k=1

k22k=(Na
2−6Na+3)2Na−1−6

Then, after simplification, we obtain T (g)
M ≈ O

(
N2
a2Na

)
.

Propagated error PMF through the entire DAG: For
VA adder nodes in a DAG, the propagated error PMF can be
obtained by convolving the generated error PMFs in each node.
These errors range from −E to E, where E=M(2Na−1− 1)+
2Na−1, as derived in Appendix A. For VA = 2, this requires
O(2E log 2E) operations, with the error ranging from −2E to
2E , and the corresponding PMF has 4E stems. However, this
range can be binned suitably so that the error PMF has 2E
stems, instead. Thus for any general VA, the error PMF can
be obtained in T (p)

A operations, which is simplified as:

T
(p)
A = O ((VA − 1)2E log 2E) ≈ O

(
VANa2Na

)
(70)

Next, let us consider a multiplier with two erroneous inputs,
At+∆A and Bt+∆B in the DAG, coming from preceding
multiplier nodes, which are directly connected to the error-
free primary inputs. Each input to this node can range from
−2N−1 to 2N−1, and the corresponding errors, from −F to F,
where F = 2Na−1(MNa − 3M + Na − 1) + 2M , as derived
in Appendix B. There are three steps for the propagated error
PMF computation, and at the end of each, we bin the domain
of the PMFs into 2F stems:
1) PMFs of At∆B, Bt∆A: This takes O

(
4F2N

)
operations

by the Mellin transform.
2) PMF of (At∆B+Bt∆A): Using the binned PMFs, this

takes O (2F log 2F) operations.
3) PMF of (At∆B+Bt∆A) plus the generated error: This

takes additional O (2F log 2F) operations.
Hence, for VM multiplier nodes with P primary inputs, the
propagated PMF can be obtained in T (p)

M operations, where

T
(p)
M =O

(
(VM−P)4F(2N+log 2F)

)
≈O
(
VMNa2N+Na

)
(71)

For the entire DAG, the error PMF can be obtained in T (g)
A +

T
(p)
A +T

(g)
M +T

(p)
M =O

(
(VA + VM )Na2N+Na

)
operations.
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