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Abstract—This paper presents an approach for analyzing stress
in 2D and 3D integrated circuits (ICs) due to post-manufacturing
thermal mismatch. For both 2D-ICs and 3D-ICs, shallow trench
isolation (STI) induces thermal residual stress in active silicon.
For 3D-ICs, through-silicon vias (TSVs) act as additional source
of stress. Together, the sources of stress cause changes in the
delay and power of the circuit. We develop an analytical model
based on inclusion theory in micromechanics to accurately
estimate the stresses and strains induced in the active region by
surrounding STI in a layout. The TSV-induced stress depends on
the location of the transistor with respect to the TSVs. Therefore,
these stresses result in placement-dependent variations in the
transistor mobilities and threshold voltages of the active devices,
and we propagate these effects to circuit-level performance. At
the transistor level, the stress state is translated into mobility
and threshold voltage variations using piezoresistivity and band
deformation potential models, respectively. At the gate level, the
computed changes in transistor electrical parameters are used
to predict gate-level delay and leakage power changes for single
and multi-fingered layout styles, which are subsequently used
to predict circuit-level delay and leakage power for a given
placement.

Key Terms : Shallow Trench Isolation, 3D-IC, Static Timing
Analysis, Finite Element Method

I. INTRODUCTION

Layout-dependent stress effects are an important considera-
tion in both two-dimensional (2D) and three-dimensional (3D)
integrated circuits (ICs). In planar 2D transistor technologies,
an SiO2 region, referred to as shallow trench isolation (STI),
is employed to electrically isolate active transistors in the
layout. In typical process technologies, a layer of STI is
grown on a much larger substrate after trench formation, near
the surface where transistors are manufactured. Figure 1(a)
shows the 2D view of STI in a representative layout. STI
is embedded in silicon at a high temperature of 1000◦C,
but post manufacturing, at circuit operating temperatures, a
residual thermal stress is incorporated into silicon due to the
coefficient of thermal expansion (CTE) mismatch between
SiO2 and silicon. As shown in [1], the PMOS (NMOS) delay
of a CMOS inverter varies by about 25%, depending on the
STI environment. In 3D ICs, where one or more die are stacked
vertically, STI-induced stress is experienced in each stacked
layer, but in addition, another source of stress is related to the
through-silicon vias (TSVs) used for vertical interconnects.
TSVs are made up of copper and are typically surrounded by
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a thin dielectric liner layer to improve mechanical reliability.
TSVs are manufactured at a temperature of 250◦C, and owing
to the relatively higher CTE mismatch between copper and
silicon, a residual thermal stress is developed in silicon at
the much lower operating temperatures. Tungsten can be used
as an alternate TSV material to copper due to similar CTE
with respect to silicon; this results in smaller magnitude of
stress and hence in silicon. However, tungsten suffers from
high resistivity compared to copper and can offset the 3D-
IC benefits [2]. Thus we focus our analysis on copper TSV-
induced stress.

The electrical effect of these unintentional thermal stresses
is based on their impact on two transistor electrical parameters,
namely the low-field mobility and the threshold voltage. The
changes in transistor electrical parameters affect gate-level
performance metrics such as gate delay and gate leakage
power, which perturb circuit-level performance metrics such
as critical path delay and circuit leakage power.

Both STI- and TSV-induced stress effects are highly layout-
dependent: shifts in transistor performance depend upon its
relative position with respect to the source of stress (e.g., TSV
locations and STI geometries) in the layout. For example, STI
abuts the transistors and can be in non-uniform shapes, as
shown in Figure 1(a). For example, in order to determine the
changes in delay due to STI on gate g6, it is necessary to
consider the STI contributions from within the gate and also
from surrounding gates – specifically, gates g2 through g7,
g9, and g10. Figure 1(b) shows a section of a 3D-IC layout
with four TSVs with transistors distributed between them. The
transistors are separated by STI (yellow regions). Beyond STI-
induced stress, each TSV contributes to stress-induced elec-
trical variations in the transistors, whose magnitude depends
upon the relative position of the transistor and the TSV.

(a) (b)
Fig. 1. (a) A segment of a circuit layout showing how the STI in adjacent
cells, or in gaps between cells, imply that the shape of an STI region depends
on the layout of neighboring cells. (b) A layout snippet with four TSVs (blue)
with transistors between them separated by STI (yellow). Each TSV spans 7
standard cell rows.



Layout-dependent stress effects can be captured by either
pre-characterization, finite element method (FEM) simulation,
using analytical modeling approaches, or through semiana-
lytical approaches where stress effects are simulated for pa-
rameterized layout conditions. For STI, finite element method
(FEM) based simulations can predict the stress in the layout
accurately, but are computationally prohibitive for realistic
layouts [1], [3]. Semi-analytical methods precharacterize a
large number of layouts and use a fitting function for stress.
However, these methods can be impractical due to the high
cost precharacterizing a sufficiently large number of layouts,
and of storing the characterized data. Analytical models can
enable fast analysis on large circuits, but in the past, it
has been challenging to build accurate models. However,
prior methods [4]–[7] are based on one-dimensional models
considering the STI contributions from adjacent standard cells
within the same row in row-based placements. Moreover, only
a single component of the stress tensor, which is longitudinal
to the transistor channel direction, is taken into account while
the entire stress tensor needs to be taken into consideration
while evaluating changes in circuit performance. The work
in [8] uses both longitudinal and transverse direction STI
contributions, but is based on an empirically fitted model
that is not scalable for non-rectangular shaped active/STI
regions. Our work considers both longitudinal and transverse
STI regions into account and also takes into the account
the entire stress tensor while analytically evaluating changes
in transistor performance. This papers delivers an analytical
modeling solution for STI-induced stress that is comparable
in accuracy with FEA-based modeling and comparable in
computational cost of the simpler 1D solution.

TSV-induced stress effects alone have also been analyzed
using FEM [9], [10], though neither work related the stress to
circuit performance. In [9] it was shown experimentally that
PMOS and NMOS transistor mobilities vary in opposite di-
rections depending upon their relative orientation with respect
to the TSVs. The work in [11] uses finite element method to
record stress and uses it to determine the performance impact
on small ring oscillator structures, where the performance
impact was small since NMOS and PMOS transistors were
closely placed, which resulted in the cancellation of their op-
posing stresses. The work in [12] and [13] presents analytical
methods to analyze circuit performance variations. While the
former work considered an inaccurate uniaxial based stress
model (only one stress tensor component), the latter presents
a detailed model that considers the biaxial nature of TSV-
induced stress along with other features such as the thin liner
material surrounding the TSV structure.

The effects of STI and TSV have been considered together
in the work in [14]. However, the STI model is based on an
empirically fitted one-dimensional stress model that considers
only one stress tensor component and takes into account STI
in the longitudinal direction alone. The TSV-stress model
captures the biaxial nature of the stress but is based on a
simplistic axisymmetric model that does not consider the liner
material, whose impact can be significant [13].

To evaluate the changes in circuit performance metrics due
to stress effects, we first need to evaluate the changes in gate

performance metrics which are a function changes in transistor
electrical parameters, which are in turn a function of the un-
derlying stress tensor components. It should be noted that non-
linear relationships hold between dependent and independent
parameters at every stage of translation from stress domain
to electrical parameter domain to gate/circuit performance
metric domain. Thus linear superposition is not valid in the
transistor electrical parameter domain or in the domain of
gate/circuit performance metrics. Linear superposition of stress
is a standard technique in the field of mechanics to obtain
the net stress due to multiple independent sources of stress.
It must be noted that stress is represented as a tensor and
consequently the individual tensor components from different
sources of stress must be added to evaluate the net stress
tensor during superposition. This net stress can be used to
compute circuit performance by the aforementioned sequence
of translations.

In this work, we present an analytical model to accurately
capture the effects of STI by considering its three-dimensional
structure, and we evaluate circuit performance variations con-
sidering both longitudinal and transverse STI contributions. In
addition, in 3D-ICs, we combine the STI-induced stress with
TSV-induced stress together in a single analysis and evaluate
the ensuing circuit performance variations. For TSV-induced
stresses, we use the model presented in [13]. In particular,
• we apply micromechanical inclusion based theory to

accurately evaluate STI-induced stress. For 3D-ICs using
planar transistor technologies, we combine the effects of
STI and TSV using linear superposition technique.

• we translate the STI-only and STI+TSV stress models
into corresponding transistor mobility and threshold volt-
age variations.

• we show the impact of STI on circuit critical path delay
and leakage power variations for planar ICs and stacked
3D-ICs; for the latter we consider the impact of TSV-
induced circuit performance variations together with STI
induced effects.

The paper is organized as follows. Section II describes a
stress modeling approach for STI and then combines the model
with TSV-induced stress for 3D-IC considerations using linear
superposition. In Section III, we present electrical models that
translate stress into mobility and threshold voltage variations
for planar ICs (STI-only) and for 3D-ICs (STI+TSV). In Sec-
tion IV, we see how all of this information is drawn together to
evaluate performance. The results of circuit benchmarks using
our methods are presented in Section V for planar and 3D-
IC layouts in 45nm, 32nm, and 22nm process technologies,
followed by concluding remarks in Section VI.

II. STRESS MODELING

Mismatches in the coefficients of thermal expansion (CTEs)
result in stresses in transistors that affect their performance.
In planar 2D transistor technologies, a significant source of
this stress is due to STI, the SiO2 region of shallow depth
embedded in silicon at a high temperature. In 3D-ICs, the
stress is induced both due to STI and due to CTE mismatch
between the copper TSV and its neighboring materials. TSVs
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made of copper are embedded in silicon at a high temperature.
In the Manhattan geometries employed in chip design, STI
shapes are rectilinear. On the other hand, TSVs are cylindrical
in shape, span the entire depth of the substrate, and are
often surrounded by a thin layer of dielectric material such
as SiO2 or Benzocyclobutene (BCB). Owing to the different
geometrical shapes and manufacturing conditions, STI and
TSV may require different paradigms for solving the basic
equations of elasticity to determine their respective stress states
in the transistor channels.

The magnitudes of the stress contributions from STI and
TSV depend upon the corresponding material parameters and
respective geometries of the stressors. This section presents
and develops models for these stresses. The material parame-
ters used in this work are shown in Table I. While STI regions
abut the transistor active regions in the layout, TSVs neces-
sitate a keep-out-zone (KOZ) around it where transistors are
not allowed in the layout for mechanical reliability concerns.

TABLE I
PHYSICAL CONSTANTS FOR STRESS COMPUTATION

E (GPa) CTE (ppm/oC) ν
Silicon 162.0 3.05 0.28
SiO2 71.7 0.51 0.16
BCB 3 40 0.34

Copper 111.5 17.7 0.343

The stress state of a mechanical system is defined by
three displacement components, six stress components, and six
strain components. We begin by presenting the fundamental
equations of elasticity and the relation between displace-
ment, stress, and strain. The stress and strain components
are obtained by solving the system of elasticity equations
with suitable boundary conditions considering the geometry
of thermally mismatched materials. Next, we present the STI-
induced stress model using a model based on inclusion theory,
and then briefly describe the TSV stress model elaborated
in [13]. The stress in planar ICs is due to STI alone, while
stress in 3D-ICs is obtained by superposition of STI-induced
and TSV-induced stress contributions.
Coordinate system: Most integrated circuits are manufactured
on wafers with their channels parallel or perpendicular to
[110] silicon crystal orientation, which also corresponds to the
wafer flat direction [15]. The axis perpendicular to the wafer
surface usually corresponds to (001) Si crystal orientation.
Thus a natural coordinate system would be along [110], [110]
and [001] [15], which corresponds to a 45◦ rotation of the
Cartesian coordinate system. We represent the crystallographic
coordinate system using primed notation and the axes are
denoted by (x′, y′, z′) in the rest of the paper.

A. Notations and Fundamental Equations of Elasticity

Before we develop the stress model, we describe the nota-
tion and the fundamental equations used in describing a stress
state. In this paper, all materials are assumed to be isotropic
and homogeneous. We employ the standard concise Einstein
notation, where repeated indices imply summation, and we
represent the three coordinate axes as (x1, x2, x3), respec-
tively. In general, to obtain the stress state of a mechanical
system, we need 15 components:

• six unique stress components σij (stress tensor),
• six unique strain components εij (strain tensor), and
• three displacements ui (displacement tensor)

where i, j ∈ {x1, x2, x3} for any orthogonal coordinate
system. The 15 unknowns are determined by solving the
following 15 equations:
• 6 stress-strain equations (Hooke’s Law):

σij = Cijkl(εkl − δklα∆T ) (1)

• 6 strain-displacement equations:

εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
+ δijα∆T (2)

• 3 force-balance equations:

∂σix1

∂x1
+
∂σix2

∂x2
+
∂σix3

∂x3
+Bi = 0 (3)

Here, i, j, k, l ∈ {x1, x2, x3}, δij is Kronecker’s delta function,
α denotes the coefficient of thermal expansion, ∆T refers to
the change in temperature, and Bi is the external body force.
The values of the physical constants used in this work are
given in Table I.

The Cijkl elements here represent the components of the
stiffness tensor and is a function of Young’s modulus E and
Poisson’s ratio ν of the material. The nonzero components are
given below:

C1111 = C2222 = C3333 =
E(1− ν)

(1 + ν)(1− 2ν)

C1122 = C2233 = C1133 =
Eν

(1 + ν)(1− 2ν)

C2211 = C3322 = C3311 =
Eν

(1 + ν)(1− 2ν)

C1212 = C3131 = C2323 =
E

2(1 + ν)
(4)

The solution of Equations (2) and (3) depends upon the
geometry and boundary conditions of the mechanical system.
The Equation (1) purely depends upon the material under
consideration.

When the body forces Bi, i ∈ {x1, x2, x3} are zero, it can
be shown that the displacements or stresses can be represented
in terms of a function Φ that satisfies the relation:

∇4Φ = 0 (5)

The solution to the system of elasticity equations can be
found in terms of a biharmonic function, Φ, that satisfies the
specified boundary conditions of the system. A biharmonic
[harmonic] function is a function whose fourth [second] order
partial derivative is zero.

B. STI Stress Model

As stated earlier, STI is embedded in silicon at a high
temperature of 1000◦C and thus contributes to a residual
thermal stress in silicon post manufacturing at room tem-
perature. Owing to the very high initial temperature, the
temperature differential remains fairly constant in the range
of circuit operating temperatures. STI abuts the transistor

3



active regions and can be considered as the negative image
of the rectangular active regions in the layout. STI can be
in arbitrary rectilinear shapes, but STI can be divided into
non-intersecting cuboidal shapes whose stress contributions
are linearly superposed. Therefore, the fundamental problem
relates to obtaining the stress distribution in silicon due to
a cuboidal-shaped STI. This can be achieved by solving
the fundamental equations of elasticity in three dimensions
while applying suitable boundary conditions. Although closed-
form solutions have been obtained for basic two-dimensional
geometries using simplifications, it is unwieldily to directly
solve the system of elasticity equations for a three-dimensional
structures such as the STI. Alternatively, we can make use
of the fact that in the absence of external body forces, the
system of equations reduce to a biharmonic form as shown
in Equation (5). This useful property has been employed in
micromechanical stress modeling to deduce the stress state
for complex geometries. In a displacement formulation [stress
formulation] the displacement [stress] is equated to the second
partial derivative of a biharmonic function that satisfies the
boundary conditions [16]. Once the displacement [stress] is
known, the other unknowns of the stress state can be deter-
mined from Equations (1), (2), and (3). The Galerkin vector
function satisfies the biharmonic criteria and is used in the
displacement formulation paradigm to evaluate the stress state.
The Galerkin vector function is a combination of primitive
potential functions accounting for volume and shape changes
of the mechanical system.

1) The Inclusion Problem in Micromechanics: In this work,
we work directly with three-dimensional cuboidal shapes by
employing inclusion theory from micromechanics [17] to esti-
mate the stresses and strains in the active silicon arising due to
thermal mismatches with cuboidal STI shapes that have finite
sizes in three dimensions. In micromechanics, an inclusion is
a subdomain with an initial strain embedded in a larger do-
main, either having similar or dissimilar mechanical properties.
However, general STI geometries may have arbitrary three-
dimensional rectilinear shapes, as observed in Figure 1(a).
It is a common practice [18] in micromechanics to divide
an arbitrary shaped inclusion into smaller substructures and
use linear superposition to find the total stress. Accordingly,
a general STI geometry will be represented as a union of
smaller cuboidal shapes, and the stress and strain contributions
from these shapes can be superposed. In elasticity, a nucleus
of strain is a singular point in an elastic medium, where an
applied force results in displacements and stress in the rest of
the medium. By knowing the solutions of such nuclei of strain,
we can construct the overall stress solution due to an arbitrary
shaped inclusion; the inclusion is treated as a collection of
continuous nuclei of strain. This is analogous to finding the
electric field due to an arbitrary charge distribution based on
the point charge solution.

In continuum mechanics, inelastic strains are those that
occur even in the absence of external body forces and thus
can never be removed. Residual strains such as thermal mis-
match strains, initial strains, and misfit strains (due to crystal
defects) are examples of inelastic strains. In micromechanics
such strains as termed as eigenstrains [17]. The six possible

eigenstrains in any coordinate system (x1, x2, x3) are denoted
by eij for i, j ∈ {x1, x2, x3}.

Furthermore, any subdomain Ω having an initial nonzero
eignenstrain, embedded in a domain D with zero initial
eigenstrains, and either having similar or dissimilar mechanical
properties, is known as a mechanical inclusion. Figure 2(a)
shows an example of a cuboidal inclusion embedded in a semi-
infinite space. A homogeneous (inhomogeneous) inclusion
is one with domain D and subdomain Ω having similar
(dissimilar) mechanical properties. The domain has typically
much larger dimensions as compared to the subdomain. The
inclusion problem in micromechanics finds the stress state of
such a system. There has been a rich body of work on this class
of problems in micromechanics and several useful solutions
have been proposed [18]–[21].

(a) (b)
Fig. 2. (a) A general inclusion in half-space. (b) STI as a cuboidal inclusion.

Shallow trench isolation (STI) is made up of SiO2 and is
embedded in silicon at a high temperature of 1000◦C. The
thickness of STI is of the order of few hundreds of nanometers,
while the thickness of silicon substrate is typically of the order
of several tens or hundreds of micrometers. Figure 2(b) shows
three STI inclusions in silicon.

After manufacturing, owing to the CTE mismatch, seen in
Table I, between Si and SiO2, there is a residual thermal
stress induced in active silicon. Compared to when it was
manufactured, STI is comparatively smaller in volume to the
silicon substrate and causes inelastic thermal strains, and it
can be considered as an inhomogeneous inclusion within Si. In
general, an STI structure is in the form of an arbitrary rectilin-
ear shape, and we decompose this shape STI into elementary
cuboidal shapes and superpose known solutions for cuboidal
inclusion problems. Thus, we can treat STI as a cuboidal
inclusion and obtain the effective eigenstrains in silicon by
following a series of fictitious mechanical operations, as is
the case with most inhomogeneous inclusion problems [17].

The procedure for analyzing an STI inclusion within silicon
is summarized below:

1) We first conceptually “remove” the STI from substrate
at T = 1000◦C and allow both STI and the silicon
substrate to undergo thermal contraction to room tem-
perature, i.e., 25◦C. This implies that ∆T = 975◦C can
be used in the stress formulation. The thermal strains
in STI and silicon are ε

T (SiO2)
ij = δijα

SiO2∆T and
ε
T (Si)
ij = δijα

Si∆T , respectively. Since the inclusion
(STI) as well as the domain (silicon) undergo free
thermal contractions, the stresses in both materials are
zero.

2) Next, we apply a fictitious tensile force of FSiO2
ij =

CSiO2

ijkl ε
T (SiO2)
ij on the STI inclusion and a fictitious
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compressive force of −FSiij = −CSiijklε
T (Si)
ij on silicon

to bring them to original shapes.
3) The SiO2 is now considered to be welded back into

the silicon and the fictitious forces are removed and are
replaced by an effective force applied on the insides of
the silicon domain of ∆Fij = FSiij − F

SiO2
ij . ∆Fij is

the equivalent force applied by a homogeneous inclusion
with a initial strain.

4) The equivalent eigenstrain due to this equivalent force
in silicon is given by eSiij = CSiijkl

−1
∆Fij .

The strain thus obtained is used to compute the overall stress
using the fundamental solutions for different types of nuclei
of strain.

2) Solution due to nuclei of strain: The inclusion in a do-
main is treated as a collection of nuclei of strain. In the thermal
stress problem due to STI, silicon undergoes shape changes
and volume changes. The nuclei of strain corresponding to
the resultant displacements in the domain (silicon) can be
enumerated as:

• Unit double force without moment: Two equal and op-
posite forces acting at a point along a coordinate axis
direction results in stretching or shrinking of the elastic
medium about the point along the axis direction.

• Unit double force with moment: Two equal and opposite
forces orthogonal to each other acting at a point in the
inclusion along mutually perpendicular coordinate axes
directions, results in twisting of the elastic medium about
the point.

• Center of dilation: Three mutually perpendicular unit
double forces acting at a point results in expansion or
contraction (changes in volume) of the elastic medium
about the point without shape changes.

In micromechanics, there are known solutions to the three
fundamental nuclei of strain accounting for shape and volume
changes. The individual solutions due to the nuclei of strain
are obtained from the Galerkin vector potential function which
satisfies the biharmonic property. It can be recalled that, in
the absence of body forces, the system of elasticity equa-
tions are reduced to a biharmonic equation as described in
Section II-A Using displacement formulation in displacement
potential theory, The displacement [stress] can be expressed
as a second [third] partial derivative of the Galerkin vector
potential function. The volumetric integral of the fundamental
solutions about the inclusion geometry results in the final stress
solution in the elastic medium. The strain components can then
be obtained by applying Hooke’s Law in Equation 1.

In a general coordinate system, any point can be represented
by a tuple (x1, x2, x3) and the corresponding position vector
is denoted by x. The points in an inclusion are known as
source points and the points in the domain are known as
observation points. We are interested in computing the stress
state at the observation points. Let (x̂1, x̂2, x̂3) denote a point
in the source subdomain; the corresponding position vector
is denoted by x̂. The elastic displacements ui and stress
components σij due to eigenstrains eij , i, j ∈ {x1, x2, x3} in

terms of a Galerkin vector function Φ(x) are given by [18]:

2µui(x) = 2(1− ν)Φi,jj − Φk,ki

σij(x) = νΦk,kmmδij − Φk,kij

+(1− ν)(Φi,kkj + Φj,kkj),x /∈ Ω

σij(x) = νΦk,kmmδij − Φk,kij

+(1− ν)(Φi,kkj + Φj,kkj)

−2µeij − λekkδij ,x ∈ Ω (6)

Here, µ and λ are the elastic Lamé constants given in Table II.
The Galerkin vector function Φ(x) is biharmonic and satisfies
∇4Φ(x) = 0, and is a function of elementary Galerkin vectors
composed of biharmonic and harmonic potential functions. It
is chosen so that it satisfies two primary boundary conditions
of the inclusion problem:
• all components of stress should vanish at infinite distance

from the inclusion, σDij (∞) = 0 for i, j ∈ {x1, x2, x3}.
• there should be a displacement continuity across the

inclusion and domain boundary. uΩ
i = uDi for every

i ∈ {x1, x2, x3}.
TABLE II

STRESS AND STRAIN TENSOR COMPONENTS
Stress components used in mobility computations

σx′x′ = C
σ

[
(2 + 4ν

Si
)φ1 + (6− 4ν

Si − 8(ν
Si

)
2
)φ̄1

+ 2ν
Si
φ2 + 2ν

Si
φ3 − 2ν

Si
φ̄2 − 2ν

Si
φ̄3

]x′−a1,y′−b1,z′±c1
x′−a2,y′−b2,z′±c2

σy′y′ = C
σ

[
(2 + 4ν

Si
)φ2 + (6− 4ν

Si − 8(ν
Si

)
2
)φ̄2

+ 2ν
Si
φ1 + 2ν

Si
φ3 − 2ν

Si
φ̄1 − 2ν

Si
φ̄3

]x′−a1,y′−b1,z′±c1
x′−a2,y′−b2,z′±c2

σx′y′ = C
σ

[
(2 + 2ν

Si
)χ+ (6− 2ν

Si − 8(ν
Si

)
2
)χ̄− ψ

− (3− 4ν
Si

)ψ̄ + 4(1− 2ν
Si

)(1− νSi)η̄
]x′−a1,y′−b1,z′±c1
x′−a2,y′−b2,z′±c2

Strain components used in threshold voltage computations

εxx =
1

2ESi
[(1− νSi)(σx′x′ + σy′y′ ) + (1 + ν

Si
)(σx′y′ ]

εyy =
1

2ESi
[(1− νSi)(σx′x′ + σy′y′ )− (1 + ν

Si
)(σx′y′ ]

εxy =
(1 + νSi)

2ESi
[σy′y′ − σx′x′ ]; εzz = εzx = εzy = 0.

Elementary functions and constants

φ1 = tan
−1

(
ξ2ξ3

ξ1r

)
;φ2 = tan

−1

(
ξ1ξ3

ξ1r

)
;φ3 = tan

−1

(
ξ1ξ2

ξ3r

)
φ̄1 = tan

−1

(
ξ2ξ̄3

ξ1r̄

)
; φ̄2 = tan

−1

(
ξ1ξ̄3

ξ1r̄

)
; φ̄3 = tan

−1

(
ξ1ξ2

ξ̄3r̄

)
χ = log(r + ξ3); χ̄ = log(r̄ + ξ̄3);

ψ =
ξ21 + ξ22
r(r + ξ3)

+
ξ3

r
; ψ̄ =

ξ21 + ξ22
r̄(r̄ + ξ̄3)

+
ξ̄3

r̄
; η̄ =

ξ21 + ξ22
2(r̄ + ξ̄3)2

+
ξ̄3

r̄ + ξ̄3

r =
√
ξ21 + ξ22 + ξ23 ; r̄ =

√
ξ21 + ξ22 + ξ̄23 ;

ξ1 = x
′ − x̂′; ξ2 = y

′ − ŷ′; ξ3 = z
′ − ẑ′; ξ̄3 = z

′
+ ẑ
′

C
σ

=
µeSi

8π(1− νSi)

e
Si

=
1− 2νSi

ESi

(ESiαSi∆T
1− 2νSi

−
ESiO2αSiO2∆T

1− 2νSiO2

)
µ
M

=
EM

2(1 + νM )
;λ
M

=
EMνM

(1 + νM )(1− 2νM )
, forM ∈ {Si, SiO2}

A general solution for a cuboidal inclusion in a half-space
has been presented in [18]. The work presents a detailed math-
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ematical framework based on Galerkin vector formulation. The
half-space (semi-infinite) solutions are usually a combination
of two sub-problems: a physical inclusion in an infinite space
with a prescribed eigenstrain, and a fictitious “image” inclu-
sion in the infinite space whose eigenstrain is chosen to recover
the half-space condition. In [18], the Galerkin vector potential
function is represented as a volumetric integral of elementary
potential functions, integrated over the dimensions of the
physical and the “image” inclusions. The general solution
in [18] can predict the stress state at every point in the half-
space domain for an any given eigenstrain tensor. For the
STI-induced thermal stress problem, further simplifications are
possible based on two observations:
• For a thermal stress problem, only the normal components

of the eigenstrain tensor are present, eSiij 6= 0 for i = j;
zero otherwise.

• Since STI is near the surface of silicon and electrical
current flows near the device surface, z1 = 0 for the
observation points.

Making use of these ensuing simplifications, we obtain
closed-form expressions for the major stress and strain com-
ponents used in computing electrical variations as seen in
Section III. As pointed out in Section III-A, since integrated
circuits are manufactured in the primed coordinate system,
(x1, x2, x3) can be replaced by (x′, y′, z′) to represent the
stress and strain tensor components in this primed system.
The strain components in Cartesian coordinate system can
be obtained by Hooke’s Law and by appropriate coordinate
transformations. For a cuboidal inclusion whose coordinates
are described by the closed intervals, x̂′ ∈ [a1, a2], ŷ′ ∈
[b1, b2], and ẑ′ ∈ [c1, c2], the final closed-form expressions
are given in Table II in terms of elementary functions and
constants. Since the Galerkin vector potential is a volumetric
integral, the final expressions for the stress components σx′x′ ,
σy′y′ , and σx′y′ are of the form [σ]pq = σ(p) − σ(q), where
the superscript p [subscript q] corresponds to the upper-
limit [lower-limit] of the volumetric integral. The positive
sign in the limits of integration for z′ correspond to set
of functions f ∈ {φ1, φ2, φ3, χ, ψ} and correspond to the
physical inclusion, while negative sign is used for the set
of functions f̄ ∈ {φ̄1, φ̄2, φ̄3, χ̄, ψ̄, η̄} and correspond to the
image inclusion.

To obtain the overall STI impact, we divide the STI in the
transverse and longitudinal directions around an active region
into non-intersecting cuboidal shapes and use the solution
presented in Table II. The STI along [perpendicular to] the
transistor current carrying direction is treated as longitudinal
[transverse] component. We apply linear superposition and add
all contributions from the adjoining STI to find the total stress
and strains:

σSTIij =
∑
STI

σSiij ; εSTIij =
∑
STI

εSiij (7)

3) Comparison with the Finite Element Method: To verify
the accuracy of the analytical stress model and the validity
of linear superposition we perform finite element (FE) sim-
ulations using ABAQUS [22] on representative active silicon
regions surrounded by STI (SiO2) on all sides. To demonstrate

the effectiveness of the superposition we use an irregular
shaped active region as shown in Figure 3(a). We consider
four diffusion connected transistors T1, T2, T3, and T4.
This structure can be the pull-up network of a 4-input NOR
gate with progressive sizing whose schematic is shown in
Figure 3(b). In Figure 3(a), each active region (green) is about
250 nm wide. The electrical widths or the physical heights
of the transistors are: W(T1) = 100nm, W(T2) = 200nm,
W(T3) = 300nm, and W(T4) = 400nm. The channel length
is 50nm. The boundary of the STI is 1600nm × 1200nm.
We decompose these STI regions into ten smaller cuboids as
shown in Figure 3(a). The stress is probed under the channel
region below the poly (red) along the electrical width direction
(dotted white line). We then apply our model described in
Section II-B2 and use linear superposition to add contributions
from each STI cuboid. Figures 4(a) and 4(b) show the resultant
stress components σx′x′ and σy′y′ , respectively, from FEM
(dotted curves) and the analytical model (solid curves). From
the two sub figures, the minimum, maximum, and average
errors in stress between analytical model and FEM are found to
be 0.01MPa, 32MPa, and 10MPa, respectively. Since the STI-
induced stress is eventually translated into changes in delay,
it is instructive to observe the error in estimating the delay
instead. We consider the layout in Figure 3(a) to represent
the layout of a 4-input NOR-gate shown in Figure 3(b). The
magnitude of error in evaluating rise-time delay of each of the
PMOS transistors, in 45nm technology with a supply voltage
of 1V, is shown in Table III. The NOR-gate has a fan-out-of-
four load. In Table III, Dnom corresponds to the nominal delay
without stress effects, ∆Dfem corresponds to the change in
delay using stress from FEM, and ∆Emodel corresponds to the
error in evaluating delay using stress from the analytical stress
model compared to using stress from FEM. We can observe
that the error in evaluating delay using the stress from the
analytical model is well below 1%. This demonstrates that the
analytical model provides very good accuracy while evaluating
circuit performance. In addition, the time taken to evaluate
the analytical stress for each transistor equals 0.46ms, which
translates to 1.5ms for the structure shown in Figure 3(a). The
corresponding FEM analysis for this representative structure
takes about 80 minutes on a single 64-bit Intel R© Xeon R© CPU
X5675 running at 3GHz. Thus, evaluating the analytical model
is several orders faster than using FEM. Thus, our analytical
model provides a good match even for non-rectangular active
or STI regions and lends to faster analysis for large layouts.
We have shown a comparison with FEM for a relatively small
structure where FEM computations can be completed in a
reasonable time (for large structures such as the 27K gate
layout in Section V, it is impractical to evaluate the run-time).

TABLE III
ERROR IN DELAY ESTIMATION OF 4-INPUT NOR GATE
Transistor T1 T2 T3 T4
Dnom (ps) 58.2 62.62 65.57 66.94

∆DFEM (%) 20.4% 19.1% 19.2% 18.7%
∆Emodel (%) -0.2% -0.3% -0.3% -0.2%

C. TSV-induced stress modeling

A TSV is typically made up of copper owing to its low
resistivity, and is cylindrical in shape [23]. Often, the TSV

6



(a) (b)
Fig. 3. (a) An irregular shaped active region in STI. The STI is fragmented
into smaller cuboids (rectangles in 2D) around the active regions. (b) Repre-
sentative schematic of a 4-input NOR gate.
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Fig. 4. Solid [dashed] lines showing our [FEM] model. (a) σx′x′ (b) σy′y′

is surrounded by a thin liner made up of SiO2 or BCB
(Benzocyclobutene). The cylindrical TSV structure along with
the liner are embedded in silicon at a high temperature of
250◦C. Post manufacturing, at room temperature, owing to
the CTE mismatch between copper TSV, liner, and silicon a
residual thermal stress exists in silicon.

In principle, the TSV can also be considered as a cylindrical
inclusion and similar principles can be applied to evaluate the
stress in silicon. However, the modeling approach requires
complex numerical evaluations using elliptical integrals. On
the other hand, we use a straightforward application of basic
equations of elasticity using a 2D-axisymmetric assumption.
Here, the TSV is modeled as a long concentric lined cop-
per cylinder surrounded by silicon. The stress state can be
evaluated across any 2D cross-section and thus is known as
2D-axisymmetric model. The 2D-axisymmetric assumption is
reasonable since the height of a TSV is considerably larger
than the diameter of the TSV the stress distributions is to be
evaluated near the surface of the silicon alone where transistors
channels reside. The finite size of the structure and the free
surface condition of substrate are recovered by superposing
a Boussinessq-solution which deals which stress in a semi-
infinite space (half-space) when forces are applied on its
surface.

In [13], a complete stress model is presented considering
the interactions between various materials. First, the stress

distributions are obtained in cylindrical coordinates using 2D-
axisymmetric assumption and superposed with Boussinesq-
type solution to make the surface of the silicon traction-
free (σzz = 0). The stresses in cylindrical coordinates are
then translated to crystallographic axes i.e., primed coordinate
system. Let (x′, y′) denote the center of a TSV near the surface
(z′ = 0) in the primed coordinate system. Similarly, let (x′,y′)
be a point of interest in silicon. The stress distributions in
silicon in the primed coordinate system are given as [13]:

σTSVx′x′ = −σy′y′ = K
x̃2 − ỹ2

(x̃2 + ỹ2)2

σTSVx′y′ = K
2x̃ỹ

(x̃2 + ỹ2)2

σTSVz′z′ = σTSVz′x′ = σTSVy′z′ = 0 (8)

where x̃ = x′ − x′ and ỹ = y′ − y′. The parameter K
captures the dimensions of the TSV+liner and the material
property differences between TSV, liner, and silicon. This
parameter contains terms that arise from summing the 2D-
axisymmetric and Boussinesq solutions; a complete descrip-
tion of this parameter is given in [13]. This model is applicable
to any cylindrical-shaped TSV technology. The corresponding
strain distributions can be obtained by applying stress-strain
relationships given in Equation (1). It can be noted that stress
due to TSV in transistor channels depends upon the relative
positions of transistors and the TSVs in the layout. Thus, TSV-
induced stress is also placement dependent.

D. Stress in 2D and 3D integrated circuits

The individual stress contributions due to STI and TSV
have been discussed so far. In planar 2D-ICs, STI is the
primary contributor of placement dependent stress, while in
3D-ICs, both STI-induced and TSV-induced stresses contribute
to stress in transistor channels. Thus, the stress and strain
components in 2D-ICs σ2D

ij and ε2Dij are given by:

σ2D
ij = σSTIij

ε2Dij = εSTIij (9)

where (i, j) ∈ {x′, y′, z′}. The terms σSTIij and εSTIij corre-
spond to the STI induced stress alone given in Equation (7).
Similarly, the stress distributions in 3D-ICs σ3D

ij and ε3Dij are
obtained by linear superposition of STI and TSV contributions
as:

σ3D
ij = σSTIij + σTSVij

ε3Dij = εSTIij + εTSVij (10)

Here σTSVij and εTSVij are the stress and strain components
due to TSV, respectively, and are given in Equation (8).

III. ELECTRICAL EFFECTS OF STI-INDUCED STRESS

Applied mechanical stress causes changes in transistor elec-
trical properties, specifically in the mobility and the threshold
voltage. Mobility variations are caused by the piezoresistive
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behavior of silicon, while threshold voltage variations occur
due to changes in electronic band potentials due to applied
stress. The induced changes in the mobility and threshold
voltage can be expressed in terms of the stress and strain
tensor, which characterize the mechanical stress as described
in Section II. In planar/2D ICs, the electrical variations are
primarily due to STI-induced thermal mismatch stress. On the
other hand, in 3D-ICs, the combined effects of STI and TSV
contribute to overall electrical variations.

A. Variation of Mobility with Stress

According to piezoresistivity, an applied mechanical stress
causes changes in resistivity and hence the mobility of the
transistors. The piezoresistive behavior of silicon is highly
dependent upon the crystallographic orientation of silicon. A
complete mathematical model for piezoresistivity has been
presented and demonstrated in silicon in [15]. The relative
change in mobility for transistors oriented along [110] crys-
tallographic direction is given as:

∆µ′

µ′
= π′11σ

IC
x′x′ + π′12σ

IC
y′y′ (11)

Here, π′11 and π′12 are the piezoresistive coefficients in [110]−
[110] coordinate system. The values of the piezoresistive
coefficients are given in Table IV. The terms σICx′x′ and σICy′y′
are two primary stress components where IC ∈ {2D, 3D}.
The stress distributions in 2D-ICs and 3D-ICs are given in
Equation (9) and Equation (10), respectively.

TABLE IV
PIEZORESISTIVITY COEFFICIENTS (X10−12 Pa−1) IN [100] SI [10]

π11 π12 π44 π′11 π′12 π′44
NMOS 1022.0 −537.0 136.0 310.5 174.5 1559.0
PMOS −66.0 11.0 −1381.0 −717.5 662.5 −77.0

B. Variation of Threshold Voltage with Stress

According to deformation potential theory [24], [25], me-
chanical strain in the channel causes shifts and splits in
conduction and valence band potentials. This results in cor-
responding shifts in the threshold voltage of the transistors
and can be attributed to changes in silicon electron affinity,
band gap, and valence band density-of-states. The changes
in conduction and valence band potentials can be expressed
as [24]:

∆E
(i)
C (ε) = Ξd (εx′x′ + εy′y′ + εz′z′) + Ξuεii, i ∈ {x′, y′, z′}

∆E
(hh,lh)
V (ε) = a (ε1 + ε2 + ε3) (12)

±
√
b2

4
(εx′x′ + εy′y′ − 2εz′z′)2 +

3b2

4
(εx′x′ − εy′y′)2 + d2ε2x′y′

Here, ∆E
(i)
C is the change in the conduction band potential

energy in the carrier band number i. The term EhhV (ElhV )
denotes the heavy-hole (light-hole) valence band potential.
The positive (negative) sign is used for EhhV (ElhV ). The
terms Ξd and a are the hydrostatic deformation potential
constants and the terms Ξu, b, and d are the shear splitting
deformation potential constants whose values are given in
Table V. The terms εi, i ∈ {1, · · · , 6} correspond to the six

strain components in the Cartesian coordinate system, and
correspond to εx′x′ , εy′y′ , εz′z′ , 2εy′z′ , 2εz′x′ , and 2εx′y′ ,
respectively. The expressions for strain components in 2D-
ICs and 3D-ICs are given in Equation (9) and Equation (10),
respectively.

TABLE V
BAND EDGE DEFORMATION POTENTIAL CONSTANTS [24]

Ξd (eV) Ξu (eV) a (eV) b (eV) d (eV)
1.13 9.16 2.46 −2.35 −5.08

The threshold voltage is a function of band-gap potential
and thus can be expressed as a function of the changes in
conduction band and valence band potentials. In this work,
the changes in the electronic band potentials are dependent on
the STI-induced stains. Ignoring the changes in the densities
of states whose contributions are negligible [25], we have

q∆Vthp = m∆EV − (m− 1)∆EC

q∆Vthn = m∆EC − (m− 1)∆EV (13)

where ∆Vthp and ∆Vthn are the changes in PMOS and
NMOS threshold voltages, respectively, q = 1.6 × 10−19C
is the electron charge, and m is the body-effect coefficient
and takes values 1.3−1.4. ∆EC is the minimum of the
changes in conduction band potentials, ∆EiC and ∆EV de-
notes the maximum of the changes in valence band potentials,
∆EhhV and∆ElhV .

C. Application of STI-induced electrical variation models

The electrical variation models discussed above are now
applied to a minimum sized inverter in 22nm technology.
Figure 5 shows the layout of an inverter with STI around
it fragmented into non-intersecting cuboidal shapes. In the
figure, regions I, II, and V correspond to transverse STI;
regions III and IV represent longitudinal STI. For a given
standard cell layout, the STI in the middle of PMOS and
NMOS transistors (region V) remains the same size while the
lateral and vertical dimensions of longitudinal STI (regions
III and IV) and transverse STI (regions I and II) can vary
depending upon the placement of its neighboring standard
cells.

Fig. 5. Layout of an inverter with STI. The PMOS well is not shown here.
Here STI_T [STI_L] denotes transverse [longitudinal] STI. STI_M is a fixed
dimension STI in between NMOS and PMOS.

Figure 6 shows the range of mobility variations experienced
by PMOS and NMOS transistors in a typical 22nm inverter by
varying the sizes of longitudinal and transverse STI. Similarly,
Figure 7 shows the range of threshold voltage variations
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in PMOS and NMOS transistors of the 22nm inverter with
varying longitudinal and transverse STI conditions. Note that
the dimensions of the middle STI remains unchanged. An iso-
lated transistor [standard cell] with no immediate neighboring
transistors [standard cells] corresponds to the case with large
longitudinal and transverse STI. On the other hand, a transistor
[standard cell] in a closely-packed layout corresponds to the
case with minimal dimensions of surrounding longitudinal
and transverse STI components. In each of the sub-figures
of Figures 6 and 7, the bottom left corner corresponds to
a closely-packed layout scenario, while the top right corner
corresponds to an isolated layout scenario. In general, most of
the standard cells in a layout will have STI conditions between
the two extreme scenarios. The analytical models presented in
this work are applicable to an arbitrary layout condition. From
the figure, we can conclude the following:
• By observing the scales of the PMOS and NMOS mobil-

ity variations in Figure 6(a) and Figure 6(b), respectively,
we can observe STI-induced stress can result in mobility
improvements or degradations in PMOS transistors, while
NMOS transistors undergo mobility degradation alone.
From Figure 6(a), at minimum transverse STI conditions,
PMOS experiences only mobility improvements with
increasing longitudinal STI. With increasing transverse
STI, PMOS can experience mobility degradations (at
comparatively smaller longitudinal STI conditions) and
diminishing mobility improvements as longitudinal STI
contribution increases. For NMOS transistors, the mo-
bility degradation is a weak function of transverse STI,
while it is a strong function of longitudinal STI; the
greater the longitudinal STI, greater the NMOS mobility
degradation.

• By observing the signs of the threshold voltage variation
in Figure 7, we can conclude that both NMOS (negative
threshold voltage changes) and PMOS (positive threshold
voltage changes) transistors experience threshold voltage
improvements due to surrounding STI. Moreover, the
magnitudes of threshold voltage improvements in both
PMOS and NMOS transistors is proportional to the
amount of STI surrounding the transistors in the layout.
The improvements in threshold voltage indicate increase
in standard cell leakage power due to STI.
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Fig. 6. STI-induced (a) PMOS and (b) NMOS mobility variations.

IV. CIRCUIT PERFORMANCE EVALUATION

Using the methods described in Sections II and III, for a
given layout, the changes in the device mobility and threshold
voltage can be computed for each transistor. The electrical
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Fig. 7. STI-induced (a) PMOS and (b) NMOS threshold voltage variations.

variations in planar [3D] ICs is due to STI alone [STI+TSV].
We compute the average of the electrical variations in the
channel along the transistor width, and then evaluate the vari-
ations in circuit performance by conducting static timing anal-
ysis and leakage power analysis. A logic gate is composed of
several transistors. The STI-induced stress can cause unequal
magnitudes of electrical variations in each of the transistors
within a gate. However, owing to the large size of a TSV
(few microns) compared to a logic gate (several nanometers),
the magnitudes of electrical variations in individual transistors
of a logic gate remains identical. When both TSV and STI
effects are taken into account, the electrical variations could
be dissimilar in individual transistors.

For a gate with n transistors, the delay under variations
in the threshold voltage V strth,i and mobility µstri for the ith

transistor, 1 ≤ i ≤ n, can be computed using a first-order
Taylor expansion:

Dstr = D0 +

n∑
i=1

(
∂D

∂µi

∣∣∣∣
0

∆µstri +
∂D

∂Vth,i

∣∣∣∣
0

∆V str
th,i

)
(14)

where Dstr is the total gate delay due to STI-induced and/or
TSV-induced stress effects, D0 is the nominal delay of the gate
without any electrical variations, and the partial derivatives of
delay with µi and Vth,i denote the delay sensitivity of the gate
to the mobility and threshold voltage, respectively, of transistor
i, computed at the nominal point. For better accuracy, we
store the piece-wise sensitivity of delay for different ranges
of mobility shifts (from −50% to 50% with steps of 25%)
and threshold voltage shifts (for every 40mV up to 80mV).

The leakage power of a transistor exponentially increases
(decreases) with its decreasing (increasing) threshold voltage.
However, for small changes in threshold voltage of a transistor,
the gate-level leakage power varies almost linearly. As seen
in Figure 7, the range of threshold voltage for NMOS and
PMOS transistors in a minimum sized inverter can be upto few
millivolts. The combined STI+TSV-induced threshold voltage
variations in transistors are typically few tens of millivolts,
while the nominal threshold voltage of a transistor is about
400 mV in this work. Thus the leakage power of a gate under
unequal changes in threshold voltages of n transistors of a
gate can also be computed using a first order Taylor series
expansion as:

Lstr
gate = L0

gate +

n∑
i=1

∂Lgate

∂Vthi

∣∣∣∣
0

∆V str
thi (15)

where Lstrgate is the leakage power of a gate under STI-induced
and/or TSV-induced stress and L0

gate is the nominal leakage
power of the gate under no stress. The partial derivative of
Lgate with Vthi represents the sensitivity of the leakage current
of the gate to changes in the threshold voltage of transistor
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i, evaluated at the nominal point. For better accuracy, we
use piece-wise sensitivity for threshold voltage shifts between
different ranges (every 40mV) of threshold voltage shifts. Our
relative error in computing leakage power of standard cells in
this work is under 1%.

For a given placement, we use the analytical framework de-
veloped so far to compute the circuit performance as follows:
• From the layout information for a circuit, we recover the

STI configuration affecting the transistors within each
standard cell. We then compute the stress using the
models in Section II. In 3D-ICs, we linearly superpose the
contributions from different TSVs in the layout with the
STI contribution. In planar 2D-ICs, STI is the dominant
source of stress. The STI-induced stress and strain com-
ponents are computed using Equation (9). On the other
hand, in 3D-IC circuits, both STI and TSV act as stressors
and the resultant stress/strain components are evaluated
using Equation (10).

• Based on the stress computations, we then proceed to
compute the changes in mobility and threshold voltage
for every transistor using Equations (11) and (13), re-
spectively.

• Knowing the changes in electrical parameters of in-
dividual transistors in a logic gate, we compute the
delay and leakage power using Equations (14) and (15),
respectively.

• We then perform static timing analysis and leakage com-
putation to evaluate changes in path delays and circuit
leakage power, respectively.

V. RESULTS

Both STI-induced and TSV-induced stress contributions are
layout dependent and depend upon the relative placement of
the transistors with respect to the stressors. Note that we
model the exact layout conditions to compute the stress in the
transistor channels and do not rely upon the extreme scenarios.
The stress is translated into changes in transistor electrical
parameters which are in turn used to evaluate changes in
gate delay and leakage power. The STI-induced and TSV-
induced stress models are presented in Section II. The changes
in transistor electrical parameters are subsequently translated
into the changes in gate performance metrics as delineated
in Section III and Section IV, respectively. In this section,
we present circuit performance variations in planar 2D-ICs
[3D-ICs] due to STI-induced [STI+TSV-induced] stress. We
implemented the techniques in this work in C++, and the
circuit performance analysis is done on a 64-bit Red-Hat
Server with 3.4 GHz Intel R© CoreTMi7-3700 processor.

We apply our techniques on a set of IWLS benchmarks
in 45nm, 32nm, and 22nm technology nodes. We use 45nm
Nangate standard cell library as a reference and scale the
dimensions of the transistors and the layouts of the standard
cells using standard Dennard scaling rules for 32nm and 22nm.
We first present the impact of STI alone in planar circuits and
later add the effects of TSVs in 3D-ICs on 22nm circuits. The
attributes of the benchmark circuits are shown in Table VI. We
use Capo [26] to place the circuits. Note that the placement of
the standard cells is different between 45nm, 32nm, and 22nm

layouts. For the purpose of demonstrating the effects of TSV-
induced stress, we consider the entire circuit resides in a single
tier of a 3D-IC. We place the 22nm circuits about a regular grid
of TSVs. The TSV dimensions are chosen based on the work
in [23]. In general, the methods presented in this work are
applicable to multiple tier 3D-IC placements too. The average
time taken to evaluate the stress from both STI and TSV
using analytical models is about 3.4ms for each standard cell
logic gate within the inner loop of the static timing analysis
engine. Thus, using the analytical models, it would take about
92s to evaluate the stress in the entire layout for the largest
benchmark circuit ethernet with about 27K gates. In the rest
of the section, the terms Di and Li [∆Di and ∆Li] denote
the nominal [stress-induced changes in] path delay and circuit
leakage power, respectively, corresponding to the ith circuit-
level analysis.

TABLE VI
IWLS CIRCUIT BENCHMARKS

Circuit Index # Gates Height × Width
(µm×µm)

45nm 32nm 22nm
ac97_ctrl C1 9047 134×180 96×83 67×58
aes_core C2 11346 149×131 107×92 75×64

des C3 4443 93×110 67×58 47×40
ethernet C4 27060 230×201 165×141 115×98

i2c C5 1110 47×42 34×30 24×21
mem_ctrl C6 8860 132×117 95×82 66×57

pci_bridge32 C7 9988 139×156 100×86 70×60
spi C8 3216 79×88 57×50 40×34

systemcdes C9 2600 71×85 51×45 36×31
usb_funct C10 10667 145×127 104×89 73×62

A. Effects of STI-induced stress in planar circuits

Shallow trench isolation lies in the immediate vicinity of
the transistor and can affect the transistor delays of circuits
by modulating its electrical parameters. The effects of STI on
circuit critical path delay and leakage power in 45nm, 32nm,
and 22nm layouts are shown in Table VII. The columns of the
table are described below:
• 45nm layouts: The columns D1 and L1 correspond to

the nominal circuit critical path delay and circuit leak-
age power, respectively, when STI effects are not taken
into account. The columns denoted by ∆D1 and ∆L1
represent the changes in circuit critical path delay and
circuit leakage power, respectively due to STI-induced
stress effects. From the table, the changes in critical path
delay [circuit leakage power] attributed to STI effects in
45nm layouts can range from -3.3% to 5.0% [12.1% to
19.6%].

• 32nm layouts: The columns denoted by D2 and L2
correspond to the circuit critical path delay and circuit
leakage power, respectively, when STI effects are not
taken into account. The columns ∆D2 and ∆L2 represent
the changes in circuit critical path delay and circuit
leakage power, respectively due to STI-induced stress
effects. In 32nm circuits, the changes in critical path delay
[circuit leakage power] attributed to STI effects can range
from -3.1% to 5.6% [9.1% to 14.6%].

• 22nm layouts: The columns D3 and L3 represent circuit
critical path delay and circuit leakage power, respectively,
when STI effects are not taken into account. The columns
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denoted by ∆D3 and ∆L3 denote the changes in circuit
critical path delay and circuit leakage power, respectively
due to STI-induced stress effects in 22nm layouts. From
the table, the ranges of changes in critical path delay
[circuit leakage power] attributed to STI effects are:-1.4%
to 3.2% [16.8% to 20%].

From Table VII we can conclude that:
• The improvements [degradations] in critical path de-

lay changes can be attributed to comparatively greater
longitudinal STI [transverse STI] than transverse STI
[longitudinal STI] on the standard cells of the critical
path. Moreover, as evidenced in Section III-C, the mag-
nitudes of delay improvements are due to the PMOS
transistors on the critical path since PMOS transistors
alone experience STI-induced mobility improvements in
addition to threshold voltage improvements. Moreover,
the improvements in NMOS threshold voltage may offset
the STI-induced mobility degradations.

• The increase in circuit leakage power can be attributed
to the reduction in PMOS and NMOS threshold voltages
as seen in Section III-C.

To gain more insight into the delay variations due to STI-
induced stress, it is instructive to observe the maximum and
minimum changes in delay in the circuits. Table VIII shows
the maximum and minimum changes in the 45nm, 32nm,
and 22nm circuits. The description of the table and ranges
of magnitudes of maximum and minimum changes in path
delay can be summarized as follows:
• 45nm layouts: The column denoted by ∆D4 [∆D5]

represents the maximum [minimum] delay change on a
path due to STI effects, while the column denoted by D4
[D5] refers to the delay of the corresponding path when
no STI effects are taken into account. The maximum
[minimum] changes in path delay can range from 1.1%
to 15.7% [−5.0% to −11.5%].

• 32nm layouts: The columns denoted by ∆D6 [∆D7] and
D6 [D7] represent the maximum [minimum] change in
path delay due to STI-induced stress and path delay under
no STI effects, respectively. The maximum [minimum]
changes in path delay in 32nm circuits can range from
2.9% to 12.1% [−5.7% to −11.1%].

• 22nm layouts: The columns denoted by ∆D8 [∆D9] and
D8 [D9] represent the maximum [minimum] change in
path delay due to STI-induced stress and path delay under
no STI effects, respectively. The maximum [minimum]
changes in path delay in 22nm circuits can range from
2.5% to 11.7% [−6.0% to -28.6%].

By comparing the path delays in columns D4 and D5 of
45nm circuits in Table VIII with that of the critical path
delay D0 in Table VII, we can conclude that the maximum
or minimum changes in path delay can be significant and
can occur on paths other than the critical path. Thus, it is
imperative to take STI-induced stress effects into account
while evaluating circuit performance. Similar observations can
be made on 32nm and 22nm circuits.
Comparison with 1D STI models: To demonstrate the inac-
curacies in using 1D STI models presented in prior works, we

present the error in evaluating circuit critical path delay and
circuit leakage power by considering longitudinal STI alone
in Table IX. The columns ∆D10, ∆D11, and ∆D12 [∆L10,
∆L11, and ∆L12] denote the error in critical path delay
[circuit leakage power] by consider longitudinal STI alone
in 45nm, 32nm, and 22nm circuits, respectively, compared
to the actual STI model taking into account the STI from
both longitudinal and transverse directions. The circuit critical
path delay [circuit leakage power] with both longitudinal
and transverse STI taken into account in 45nm, 32nm, and
22nm layouts can be obtained from columns Dk(1 + ∆Dk)
[Lk(1 + ∆Lk)] for k ∈ {1, 2, 3}, respectively in Table VII.
The magnitude of error in 45nm, 32nm, and 22nm layouts in
evaluating critical path delay [circuit leakage power] using 1D
STI models can range from -2.5% to -5.5%, -2.1% to -4.6%,
and -0.1% to 5.4% [-4.9% to -12.9%, -4.7% to -7.6%, and
-4.5% to -8.4%] respectively.

The negative magnitude of error in evaluating in critical
path delay and circuit leakage power in Table VII, indicates
that 1D STI models overestimate the delay improvements and
underestimate the leakage power changes. This is because
when longitudinal STI effects alone are considered, PMOS
mobility improvements alone are taken into account as seen
from Figure 6(a) in Section III-C. Furthermore, it can be
seen from Figure 7 that threshold voltage improvements are
proportional to the STI surrounding the transistor in the layout.
Thus, smaller magnitudes of threshold voltage improvements
are predicted by the 1D STI model compared to the 3D STI
model leading to smaller magnitudes of circuit leakage power.

B. Effects of STI+TSV on 3D-IC circuits

In 3D-IC circuits employing TSVs, both STI-induced stress
and TSV-induced stress contribute to circuit performance vari-
ations. To demonstrate the combined effects of STI and TSV
on circuit performance, we consider the 22nm circuits with a
regular array of TSVs inserted in the layout. In addition, we
consider two different TSV technologies with a TSV diameter
of 5µm and a scaled diameter of 1µm. In both cases, the TSV
spacing is chosen such that no more than 15% of the layout
is occupied by TSVs. We apply our methods described in
this paper to two sets of layouts TSV_5µ_22 and TSV_1µ_22
whose attributes are:
• TSV_5µ_22 layout: The TSVs have a diameter of 5µm

and a liner thickness of 125nm. The TSV cells have a
dimension of 7µm×7µm and they are regularly spaced
apart by 7µm.

• TSV_1µ_22 layouts: The TSVs have a diameter of 1µm
with a liner thickness of 80nm. The TSV cells have
a dimension of 1.4µm×1.4µm and they are regularly
spaced apart by 2.8µm.

In both the TSV_5µ_22 and TSV_1µ_22 layouts, both STI
and TSVs act as stressors and the magnitude of stress in
transistor channels depends upon the relative placement of
the devices. The layout-dependent stress from both STI and
TSVs are computed using Equation (10) and we evaluate the
circuit performance outlined in Section IV. The circuit perfor-
mance variations for the TSV_5µ_22 layouts are presented in
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TABLE VII
EFFECTS OF STI ON PLANAR CIRCUITS

Circuit 45nm (vdd = 1.0 V) 32nm (vdd = 0.9 V) 22 (vdd = 0.8V)
D1 L1 ∆D1 ∆L1 D2 L2 ∆D2 ∆L2 D3 L3 ∆D3 ∆L3
(ps) (µW) (%) (%) (ps) (µW) (%) (%) (ps) (µW) (%) (%)

C1 428 298 −3.3% 13.0% 564 269 −2.7% 12.6% 355 584 0.0% 18.7%
C2 417 226 2.6% 12.1% 488 295 −2.3% 9.1% 293 440 0.3% 16.8%
C3 870 177 0.6% 15.0% 1036 149 1.3% 13.6% 650 355 3.2% 20.0%
C4 643 562 1.6% 12.5% 760 625 −2.5% 11.9% 505 1097 −1.2% 17.3%
C5 388 35 2.3% 13.2% 510 33 −2.5% 13.0% 303 69 −1.0% 19.5%
C6 842 251 −0.1% 13.1% 1007 227 0.6% 14.6% 691 487 −0.3% 19.4%
C7 635 325 −0.2% 12.7% 771 335 −3.1% 9.8% 506 639 1.6% 19.3%
C8 692 117 1.0% 14.0% 768 99 5.6% 14.2% 629 241 −1.4% 19.7%
C9 694 117 5.0% 19.6% 814 97 −2.6% 12.8% 492 233 0.4% 19.9%

C10 624 248 2.4% 12.4% 801 266 −2.5% 12.0% 484 482 1.0% 18.3%

TABLE VIII
DELAY CHANGES UNDER STI-INDUCED STRESS EFFECTS

Circuit 45nm (vdd = 1.0V) 32nm (vdd = 0.9V) 22nm (vdd = 0.8V)
D4 ∆D4 D5 ∆D5 D6 ∆D6 D7 ∆D7 D8 ∆D8 D9 ∆D9
(ps) (%) (ps) (%) (ps) (%) (ps) (%) (ps) (%) (ps) (%)

C1 108 15.7% 381 −8.7% 126 6.8% 90 −11.1% 271 11.1% 185 −28.6%
C2 173 2.9% 336 −9.5% 33 12.1% 129 −6.2% 168 8.9% 192 −15.6%
C3 354 2.0% 568 −8.1% 292 4.1% 265 −6.4% 492 6.5% 364 −17.9%
C4 434 1.6% 496 −8.9% 252 4.4% 189 −5.8% 252 9.1% 297 −17.5%
C5 192 10.4% 356 −9.0% 136 4.4% 123 −5.7% 249 6.8% 174 −6.9%
C6 473 1.3% 731 −8.1% 234 4.7% 162 −11.1% 230 11.7% 332 −14.8%
C7 350 1.1% 538 −11.5% 148 6.1% 186 −7.5% 252 8.3% 239 −18.4%
C8 476 2.7% 540 −8.1% 279 2.9% 218 −7.8% 448 2.5% 381 −6.0%
C9 458 2.6% 622 −5.0% 291 3.8% 215 −6.5% 305 4.6% 366 −9.8%
C10 289 1.7% 460 −8.3% 102 7.8% 172 −7.6% 377 5.6% 279 −20.1%

TABLE IX
ERROR IN USING 1D STI MODEL

Circuit 45nm (vdd = 1.0V) 32nm (vdd = 0.9 V) 22nm (vdd = 0.8V)
∆D10 ∆L10 ∆D11 ∆L11 ∆D12 ∆L12

(%) (%) (%) (%) (%) (%)
C1 -5.5% -7.4% -4.4% -6.8% -3.4% -7.4%
C2 -4.4% -4.9% -2.1% -4.7% -1.4% -4.7%
C3 -2.5% -9.1% -3.6% -7.5% -5.4% -8.3%
C4 -4.3% -4.9% -3.2% -4.9% -0.4% -4.5%
C5 -4.8% -7.2% -3.4% -6.8% -0.7% -7.8%
C6 -3.0% -6.7% -4.5% -6.8% -0.1% -7.2%
C7 -3.3% -7.0% -3.3% -5.8% -1.9% -7.5%
C8 -2.6% -8.1% -3.5% -7.6% -1.0% -7.8%
C9 -5.2% -12.9% -2.9% -7.6% -0.4% -8.4%

C10 -4.9% -5.5% -4.6% -5.8% -1.6% -5.8%

Table X. The nominal circuit critical path delay and leakage
power with no stress effects are shown in columns D3 and L3,
respectively, in Table VII. In Table X, the column denoted by
#TSV s represents the number of TSVs in the layout. The
columns ∆D13 and ∆L13 [∆D14 and ∆L14] correspond
to changes in circuit critical path delay and circuit leakage
power, respectively, under STI-induced [TSV-induced] stress
alone. The columns denoted by ∆D15 and ∆L15 represent
the changes in circuit critical path delay and leakage power,
respectively, when both STI-induced and TSV-induced stress
effects are taken into account. The column ∆D16 [∆D17]
corresponds to the maximum [minimum] change in path
delay under combined STI+TSV effects, while the column
D16 [D17] denotes the nominal path delay when no stress
effects are taken into account. It should be noted that stress
tensor contributions from different stressors i.e., STI and TSV,
must first be superposed before computing changes in circuit
performance as outlined in this paper. We refer to this as
the

∑
σ approach. However, if the resultant changes in gate

delay or gate leakage power due to different stressors are
separately computed and summed together, it may lead to

inaccurate estimation of circuit performance. We refer to the
latter approach as

∑
∆p method, indicating that the changes

in circuit performance ∆p from different sources of stress
are summed together while evaluating circuit performance. In
Table X, the column denoted by E∑∆d [E∑∆l] represents the
error in estimating circuit critical path delay [circuit leakage]
by adding the respective changes in gate delay [gate leakage]
due to STI and TSV, instead of stress superposition followed
by circuit evaluation. From the table, we observe that:

• The magnitudes of changes in circuit critical path delay
and leakage power under STI-only [TSV-only] stress
effects in the TSV_5µ_22 layouts can range from −3.0%
to 1.6% [−1.0% to 0.3%] and from 17.5% to 19.0%
[5.1% to 7.0%], respectively.

• The changes in critical path delay and leakage power
due to combined effects of STI-induced and TSV-induced
stress effects can range from −5.6% to 1.6% and from
34.8% to 43.5%, respectively. The maximum [minimum]
changes in path delay can range from 11.4% to 31.2%
[−10.7% to −36.4%].

• The magnitude of error in estimating circuit critical path
delay [circuit leakage power] under the

∑
∆p approach

compared to
∑
σ approach can range from -1.7% to 3.5%

[-8.2% to -12.8%]. The positive [negative] magnitude of
error indicates overestimation [underestimation] of circuit
performance metrics. Note that the critical paths can be
different between

∑
∆p and

∑
σ approaches.

From the above observations, we can conclude that:

• By comparing the magnitudes of changes in circuit crit-
ical path delay and leakage power under STI-induced,
TSV-induced, and STI+TSV-induced stress effects, it can
be seen that circuit performance changes due to the
combined STI+TSV effects is not a linear sum of STI-
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TABLE X
EFFECTS OF STI+TSV ON TSV_5µ_22 LAYOUTS

Circuit #TSVs STI effects TSV effects STI+TSV effects
σSTI σTSV

∑
σ = σSTI + σTSV

∑
∆p

∆D13 ∆L13 ∆D14 ∆L14 ∆D15 ∆L15 D16 ∆D16 D17 ∆D17 E∑∆d E∑∆l

(%) (%) (%) (%) (%) (%) (ps) (%) (ps) (%) (%) (%)
C1 50 -1.4% 18.2% -0.3% 5.4% -3.9% 35.7% 327 31.2% 154 -36.4% 1.5% -8.9%
C2 66 -2.7% 17.5% 0.3% 5.8% -2.0% 36.3% 296 17.9% 114 -34.2% -1.7% -9.5%
C3 21 -1.7% 18.7% -0.6% 5.7% -3.4% 38.0% 522 11.5% 356 -27.0% 1.3% -9.8%
C4 153 -0.6% 18.1% 0.2% 5.8% -3.2% 36.8% 374 27.3% 222 -26.1% 1.0% -9.5%
C5 6 -1.0% 18.2% -0.3% 7.0% -2.3% 43.5% 234 20.5% 201 -14.4% 1.0% -12.8%
C6 50 -3.0% 18.7% -0.1% 5.1% -5.2% 34.8% 465 15.1% 288 -26.7% 1.4% -8.2%
C7 60 1.6% 18.3% -0.2% 5.3% 1.6% 34.8% 327 28.1% 241 -24.5% -0.6% -8.3%
C8 18 -1.3% 18.7% -0.8% 5.4% -4.3% 36.2% 316 11.4% 372 -18.5% 1.3% -8.8%
C9 15 -0.2% 19.0% -0.6% 6.1% -1.8% 39.9% 339 12.7% 419 -10.7% 1.2% -10.6%
C10 66 -1.2% 17.9% -1.0% 5.7% -5.6% 36.2% 292 22.6% 271 -30.3% 3.5% -9.3%

only and TSV-only stress effects. Thus, when analyzing
layout-dependent stress in 3D-ICs, we must first super-
pose the STI-induced and TSV-induced stress and then
evaluate the circuit performance.

• By comparing the ranges of maximum and minimum
changes in path delay i.e., columns ∆D16 and ∆D17,
respectively, with that of the changes in critical path delay
we can conclude that paths other than the critical path can
undergo significant changes in path delay.

• In the
∑

∆p approach, the circuit path delay may be
overestimated or underestimated compared to the true∑
σ approach. Moreover, the leakage power of the circuit

is underestimated in the
∑

∆p approach. This is because,
the magnitude of change in transistor threshold voltage
by superposing stress from STI and TSV is larger than in-
dividual changes in threshold voltage due to STI-induced
and TSV-induced stress alone. Since leakage power is
an exponential function of transistor threshold voltage,
it can result in underestimation when individual leakage
contributions from STI-induced and TSV-induced stress
effects are summed together.

In the interest of space, rather than providing a full table,
we summarize the effects of STI-induced and TSV-induced
stress on TSV_1µ_22 layouts as follows:

• The corresponding number of TSVs in the TSV_1µ_22
layouts labelled C1 through C10 are: 525, 663, 240,
1560, 60, 510, 576, 168, 126, and 592. The TSV_1µ_22
layouts have a larger number of TSVs compared to that of
TSV_5µ_22 layouts, shown in column #TSVs of Table X,
due to the relatively smaller size of TSVs.

• The magnitudes of changes in circuit critical path delay
and leakage power under STI-induced [TSV-induced]
stress effects in the 22nm 3D-IC layouts can range from
−2.5% to 0%% [-0.8% to 0.8%] and from 16.9% to
19.1% [3.2% to 4.1%], respectively.

• The combined effects of STI-induced and TSV-induced
stress, using

∑
σ approach, in the TSV_1µ_22 layouts

on circuit critical path delay [circuit leakage power] can
range from -5.5% to 2.3% [27.8% to 31.6%]. The
maximum [minimum] changes in path delay can range
from 3.8% to 14.4% [-9.0% to -26.4%].

• The magnitude of error in estimating circuit critical
path delay [circuit leakage power] using

∑
∆p approach

compared to
∑
σ approach can range from -3.0% to 2.2%

[-4.8% to -7.3%]. Here negative [positive] magnitude of
error indicates underestimation [overestimation] of the
corresponding circuit performance metric.

Based on the observations in TSV_1µ_22 layouts, we can
conclude the following:
• Similar to TSV_5µ_22 layouts, the combined effects of

STI+TSV-induced stress effects on circuit performance
of TSV_1µ_22 layouts can be significant compared to
when STI-induced or TSV-induced stress effects alone
are taken into account.

• The TSVs of diameter 1µm induces a smaller magnitude
of stress compared to TSVs of 5µm diameter [13]. How-
ever, owing to smaller size of TSVs in the TSV_1µ_22
layouts, more number of TSVs can be packed into the
layout and can result in similar shifts in circuit perfor-
mance compared to TSV_5µ_22 layouts.

• Using
∑

∆p approach can lead to underestimation or
overestimation in circuit critical path delay; the leakage
power is underestimated. In addition, the critical path
under the erroneous

∑
∆p approach can be different than

the stress superposition approach.
Finally, to consider the importance of our combined analysis

over separate STI- or TSV-stress-based analysis, we ranked
the top 500 critical paths between STI-only, TSV-only and
STI+TSV analysis runs for each of the benchmark circuits in
the TSV_5µ_22 circuits. By comparing the critical paths and
their corresponding rank, we reach the following conclusions:
• For the TSV_5µ_22 circuits, the number of unique paths

that appear in the top 500 critical paths of the STI+TSV
analysis compared to STI-only [TSV-only] analysis can
range from 4.8% to 97.4% [9.4% to 37%]. The corre-
sponding numbers for the TSV_1µ_22 circuits were from
6.4% to 94.6% [6.8% to 58.0%].

• For the TSV_5µ_22 circuits, the number of paths with
identical ranks between STI+TSV and STI-only [TSV-
only] analysis can range from 0.2% to 5.8% [0% to
2.6%]. The corresponding numbers for the TSV_1µ_22
circuits were 0% to 4.6% [0% to 3.2%]

Thus, to accurately evaluate the circuit performance varia-
tions due to layout dependent STI-induced and TSV-induced
stress effects, the stress/strain tensor components from respec-
tive sources of stress must first be superposed.
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VI. CONCLUSION

We have presented an approach for analyzing the circuit-
level impact of unintentional stress, caused by differential
coefficients of thermal expansion between both STI and TSVs
and their surrounding materials. An accurate model for STI-
related stress is proposed. It is shown that STI-induced stress
in 2D circuits can cause significant shifts in performance, and
in 3D circuits, this stress in conjunction with TSV-induced
stress plays an important role. The electrical shifts cannot
be obtained by superposing the corresponding shifts due to
STI and TSV alone; instead, the stress components must be
superposed and translated to obtain the circuit-level shift.
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