
Utilizing the Retiming-Skew Equivalence in a Practical Algorithm

for Retiming Large Circuits

Sachin S. Sapatnekar and Rahul B. Deokar

Department of Electrical and Computer Engineering

201 Coover Hall

Iowa State University

Ames, IA 50011.

1 Introduction

The importance of the issue of optimizing the timing behavior of VLSI circuits probably needs no

introduction to any reader of this paper, and a great deal of e�ort has been invested into research in

this �eld. This paper considers the method of retiming [1], which proceeds by relocating ip-ops

within a network to achieve faster clocking speeds. A novel approach to retiming that utilizes the

solution of the clock skew optimization problem [2] forms the backbone of this work.

The introduction of clock skew at a ip-op has an e�ect that is similar to the movement

of the ip-op across combinational logic module boundaries. This was observed (but not proved)

in [2], which stated that clock skew and retiming are continuous and discrete optimizations with

the same e�ect. Although the designer can choose between the two transformations, these methods

can, in general, complement each other. The equivalence between retiming and skew has been

observed and used in earlier work, for example, in [3{5]. The contribution of this work is that it

exploits this equivalence and presents a method that �nds an optimal retiming e�ciently, with a

clock period that is guaranteed to be at most one gate delay larger than the optimal clock period.

The method views the circuit hierarchically, �rst solving the clock skew problem at one level above

the gate level, and then using local transformations at the gate level to perform retiming for the

1



optimal clock period. The algorithm has been named ASTRA (A Skew-To-Retiming Algorithm).1

The clock skew problem is �rst solved using e�cient graph-theoretic techniques in polynomial

time. The idea of using graph algorithms is to take advantage of the structure of the problem to

arrive at an e�cient solution. Like [2], our technique is illustrated on single-phase clocked circuits

containing edge-triggered ip-ops. The advantage of using this graph algorithm is that it not only

minimizes the clock period, but that unlike a simplex-based linear programming approach, it also

ensures that the di�erence between the maximum and minimum skews is minimized at the optimal

clock period.

The complexity of solving the retiming problem at the gate level using the technique in [1] is

O(jGj2 log jGj), where jGj is the number of gates in the circuit; this could be phenomenally large,

and a \verbatim" implementation, such as that in SIS [6] is incapable of handling large circuits.

However, a clever implementation, such as that proposed very recently in [7], can render the problem

of �nding a retiming of a circuit at the minimum clock period tractable. Another method proposed

in [8] provides an e�cient solution for the speci�c problem of circuits with unit-delay gates.

To place the our method in perspective with that in [7], it must be pointed out that the two

were research e�orts that were carried out independently and parallelly in time. While [7] performs

the important task of debunking the myth that the Leiserson-Saxe algorithm cannot be applied

to retime large gate-level circuits, our approach shows an alternative view to retiming, by way of

clock skew optimization. Apart from taking di�erent approaches to solving the retiming problem,

the two also di�er in that the work presented here also directly provides a solution to the problem

of jointly �nding an optimal retiming and optimal clock skews for a minimum period circuit. The

work in [7] also performs minimum area retiming; however, we have currently left that as a topic

for further research. The run-time of our approach and that in [7] are essentially the same for the

minimum period retiming problem.

In this paper, the circuit is assumed to be composed of gates with constant delays. We assume

the presence of an FF at each primary input and each primary output. The solution is divided

1\astra": (Sanskrit) a sophisticated weapon.

2



into two phases. In Phase A, the clock skew optimization problem is solved with the objective

of minimizing the clock period, while ensuring that the di�erence between the maximum and the

minimum skew is minimized. This di�erence provides a measure of how many gates have to be

traversed in the next phase, and therefore, it is important that it be a small number. In Phase

B, the skew solution is translated to retiming and some ip-ops are relocated across gates in an

attempt to set the values of all skews to be as close to zero as possible. The designer may choose to

achieve the optimal clock period by using a combination of clock skew and retiming; alternatively,

any skews that could not be set exactly to zero could now be forced to zero. This could cause the

clock period to increase; however, it is shown that this increase will be no greater than one gate

delay.

The paper is organized as follows: the equivalence between retiming and clock skew is �rst

shown in Sections 2 and 3. The algorithm for the clock skew optimization phase and a few related

theoretical results are described in Section 4. Next, in Section 5, the process of transforming the

solution of Phase A to a retiming solution is described, followed by a description of the properties

of this solution in Section 6. Finally, we present experimental results in Section 7 and conclude the

paper in Section 8.

2 Clock Skew Optimization and Retiming

In a sequential VLSI circuit, due to di�erences in interconnect delays on the clock distribution

network, clock signals do not arrive at all of the ip-ops at the same time. Thus, there is a

skew between the clock arrival times at di�erent ip-ops. In a single-phase clocked circuit, in

the case where there is no clock skew, the designer must ensure that each input-output path of a

combinational circuit block has a delay that is less than the clock period. In the presence of skew,

however, the relation grows more complex as one must compensate for this e�ect in designing the

combinational circuits blocks.

One approach that has been followed by several researchers [9{13] is to design the clock

3



distribution network so as to ensure zero clock skew. An alternative approach views clock skews

as a manageable resource rather than a liability. It manipulates clock skews to advantage by

intentionally introducing skews to improve the performance of the circuit. To illustrate how this

may be done, consider the following example. In Figure 1, assume the delays of the inverters to

be 1.0 unit each. The combinational circuit blocks CC1 and CC2 have delays of 3.0 and 1.0 units,

respectively, and therefore, the fastest allowable clock has a period of 3.0 units. However, if a skew

of +1.0 unit is applied to the clock line to ip-op B, the circuit can run with a clock period of

2.0 units. This approach was formalized in the work by Fishburn [2]. The clock skew optimization

problem was formulated as a linear program that may be solved to �nd the optimal clock period.

A second approach that is exploited here to improve the performance of the circuit is the

procedure of retiming [1]. Retiming involves the relocation of ip-ops across logic gates to allow

the circuit to be operated under a faster clock, without changing its functionality.

To illustrate how this may be done, consider the example in Figure 1, where it was seen that

the clock period can be minimized to 2.0 units by introducing a skew of +1.0 unit at the ip-op

B. In an alternative approach, the period can still be minimized to 2.0 units by moving the ip-op

B to the left across the inverter I3. This results in the combinational circuit blocks CC1 and CC2

having delays of 2.0 units each as seen in Figure 2. This approach is formalized in [1].

If one were to imagine the circuit as being drawn with its inputs to the left and outputs to the

right, then the conversion of a negative (positive) skew to zero skew would involve the relocation

of ip-ops to the right (left). In this paper, we will use the terms \right" and \left" to denote the

direction of signal propagation and the direction opposite to that of signal propagation, respectively.

3 Equivalence between clock skew and retiming

A more formal presentation of the equivalence between clock skew and retiming is presented here.

Consider a ip-op j in a circuit, as shown in Figure 3(a). For every combinational path from a

ip-op i to j with delay d(i; j), the following constraints must hold to prevent zero-clocking and

4



double-clocking, respectively.

xi + d(i; j)+ Tsetup � xj + P

xi + d(i; j) � xj + Thold (1)

where xi and xj are the skews at ip-ops i and j, respectively. Similar constraints can be written

for every combinational path from ip-op j to k with delay d(j; k).

Theorem 1 For a circuit that operates at a clock period P , satisfying the double-clocking and

zero-clocking delay constraints,

(a) retiming a ip-op by moving it to the left across a gate of delay d1 is equivalent to

decreasing its skew by d1.

(b) retiming a ip-op by moving it to the right across a gate of delay d2 is equivalent to

increasing its skew by d2.

Proof:

We will now prove statement (a) with the help of Figure 3(b); the proof to (b) is analogous,

and can be seen via Figure 3(c). Consider the case where ip-op j is moved to the left across gate

Gl that has delay d1. For a combinational path from a ip-op i to j, if xj and x0j are, respectively,

the skews at ip-op j before and after the relocation operation, then the following relationships

must be satis�ed:

xi + [d(i; j)� d1] + Tsetup � x0j + P

xi + [d(i; j)� d1] � x0j + Thold

From Equation (1), this implies that setting x0j = xj � d1 achieves the same e�ect. Similarly, for a

combinational path from j to a ip-op k, we have

x0j + [d(j; k) + d1] + Tsetup � xk + P

x0j + [d(j; k) + d1] � xk + Thold;

5



which implies that setting x0j = xj � d1 in the original circuit achieves the same e�ect. 2

Therefore, if one were to calculate the optimal clock skews, one could retime the circuit by

moving ip-ops with positive(negative) skews to the left(right) until the skews at the ip-ops

are nearly equal to zero. It must be noted that since gate delays take on discrete values, it is not

possible to guarantee that the skew at a ip-op can always be reduced to zero through retiming

operations.

An alternative view of the same procedure is as follows. Retiming may be thought of as a

sequence of movements of ip-ops across gates (Theorem 9.1 in [14]). We may start from the

�nal retimed circuit, where all of the skews are zero, and the zero-clocking constraints are met,

and perform the sequence of movements in reverse order. This procedure can be used to move all

ip-ops back to their initial locations, using Theorem 1 to keep track of the changed clock skews

at each ip-op. Therefore, the optimal retiming is equivalent to applying skews at the inputs of

ip-ops.

Note that the optimal clock period provided by the clock skew optimization procedure must,

by de�nition, be no greater than the clock period for the set of clock skews thus obtained. Any

di�erences arise due to the fact that clock skew optimization is a continuous optimization, while

retiming is a discrete optimization. The following corollary follows:

Corollary 2 : The clock period obtained by an optimal retiming can be achieved via clock skew

optimization. The clock period provided by the clock skew optimization procedure is less

than or equal to that provided by the method of retiming.

4 Phase A: Optimizing clock skews

Given a combinational circuit segment that lies between two ip-ops i and j, as shown in Figure 4,

if xi and xj are the skews at the two ip-ops, then the following inequations must be satis�ed:

xi + d(i; j) � xj + Thold;

xi + d(i; j)+ Tsetup � xj + P (2)

6



where d(i; j) (d(i; j)) is the minimum (maximum) delay of any combinational path between ip-

ops i and j. In [2], the clock skew problem for minimizing the clock period is solved by solving

the following linear program:

minimize P

subject to xi � xj � Thold � d(i; j)

xj � xi + P � Tsetup + d(i; j) (3)

for every pair, (i; j) of ip-ops such that there is at least one combinational path from ip-op i

to ip-op j.

In this work, we will consider single-sided constraints only, and will ignore the short path

constraints. We thus obtain the clock skews that correspond to the minimum clock period. Our

strategy is to transform the skew solution to a retiming solution to achieve the minimum clock

period. The rationale behind this approach is that, as will be shown in the next section, the clock

period obtained thus is smaller than that obtained with the inclusion of double-sided constraints.

This minimum clock period can be preserved while reconciling short path and logic signal separation

constraint violations [15] by using an algorithm for minimum padding, such as the one in [16].

4.1 Solution to the clock period optimization problem

4.1.1 Formation of the constraint graph

The linear program (3) without the short path constraints is rewritten as

minimize P

subject to xj � xi + P � Tsetup + d(i; j) (4)

Notice that for a constant value of P , the constraint matrix reduces to a system of di�erence

constraints which can be represented by a constraint graph [17]. A feasible solution to the linear

program exists if the corresponding constraint graph G1(P ) contains no positive cycles, and the

minimum clock period corresponds to the smallest value of P at which no positive cycle exists.

7



The skews at all primary inputs and primary outputs are assumed to be zero; this is repre-

sented by a host node in the constraint graph, similar in principle to the notion in [1].

Observe that the constraint set of the linear program (4) is a subset of the constraint set of

the linear program (3). Therefore, the optimal period for the LP above must be less than or equal

to that for the LP that handles double-sided constraints.

If d(i; j) is �nite, then a directed edge between xi and xj are constructed in G1(P ) in accor-

dance with the long path delay constraint.

4.2 Calculating the worst-case ip-op-to-ip-op delays

For any input i, the procedure [2] for computing d(i; j) for all j involves setting the arrival time at

input i to zero, and that at all other inputs to �1. The resulting signal arrival time at each output

j, found using PERT [18], is the value of d(i; j). However, if this procedure were to be performed

directly, it would lead to large computation times.

It was observed during the symbolic propagation of constraints in [19] that in most cases, a

ip-op at the input to a combinational block exercises only a small fraction of all of the paths

between the inputs of the combinational block to the outputs. Based on this observation, we

develop an e�cient procedure for calculating the values of d(i; j). It was found that the use of

this procedure gave run-time improvements of several orders of magnitudes over the direct multiple

applications of PERT described in the previous paragraph.

Since we will be dealing with combinational blocks only here, in this subsection only, we will

refer to the ip-ops at the inputs(outputs) of a combinational block as primary inputs(outputs).

The level number, level(k), of each gate k in the circuit is �rst computed by a single PERT

run; the level number is de�ned as the largest number of gates from a primary input to the gate,

inclusive of the gate. In other words, the level number of a gate is found by a topological ordering

algorithm. To �nd d(i; o), the largest delay from primary input i to all primary outputs o, we

conduct an event-driven PERT-like exercise starting at ip-op i, as described in the following

8



piece of pseudocode. During the process, we maintain a set of queues, known as level queues. The

level queue indexed by k contains all gates at level k that have had an input processed.

Initialize all level queues to be empty;
currentlevel = 0;
currentgate = ip-op i;
while (currentgate != nil) f

if (currentgate 6= i)
for (all fanins j of currentgate)

d(i,currentgate) = max(d(i; j)) + delay(currentgate);
else

d(i,i) = 0;
for (all fanouts k of currentgate)

Append gate k to the level queue indexed by level(k), if it
does not already lie on the queue;

if (all level queues are not empty) f
currentlevel = lowest level number whose level queue is nonempty;
currentgate = head of the level queue for currentlevel;
delete currentgate from its level queue;

g
else

currentgate = nil;
g

At each step, an element from the lowest unprocessed level is plucked from its level queue,

and the worst-case delay from ip-op i to its output is computed. All of its fanouts are then

placed on their corresponding level queues, unless they have already been placed on these queues.

Note that by construction, no gate is processed until the delay to all of its inputs that are a�ected

by ip-op i have been computed, since such inputs must necessarily have a lower level number.

4.3 Theoretical results on the optimal clock period

The following theoretical results are proved for the optimal clock period:

Lemma 3 : If P = P1 does not permit a feasible solution to the linear program (4), then nor does

P = P2 < P1.

Proof : If P = P1 is such that it does not permit a feasible solution to the linear program, then

the constraint graph G1(P1) has a positive cycle, C.

9



If the cycle C has r edges then

X
q2C

wq(P1) � 0

X
q2C

(Tsetup + dij � P1) � 0 (5)

where q = (i; j) is an edge in G1(P ).

If P2 < P1, then since the weight of the cycle C is

X
q2C

(Tsetup + di;j � P2) >
X
q2C

(Tsetup + di;j � P1) � 0; (6)

C will be a positive cycle in G1(P2) too. Hence, P2 does not permit a feasible solution to the

linear program (4). 2

Corollary 4 : If P = P1 permits a feasible solution to the linear program (4), then so does

P = P2 > P1.

Proof : Assume that P2 does not permit a feasible solution. Therefore, by Lemma 3, nor does P1,

which is a contradiction. 2

Lemma 5a : An upper bound, Phigh on the clock period, Popt, is given by

Popt � Phigh = max
q=(i;j)2G1(P )

(d(i; j)+ Tsetup) <1 (7)

where q = (i; j) is an edge in G1(P ).

Proof : Suppose all clock skews are set to 0. Then from the equation for zero-clocking constraints,

we have

P � (d(i; j) + Tsetup) 8(i; j) 2 G1(P ) (8)

Therefore,

P = max
q=(i;j)2G1(P )

(d(i; j) + Tsetup) <1 8(i; j) 2 G1(P ) (9)

is a valid solution, and is thus an upper bound on the optimal clock period. 2.

10



Lemma 5b : A lower bound, Plow on the optimal clock period, Popt, is given by

Popt � Plow = max

"
min

q=(i;j)2G1(P )
(d(i; j) + Tsetup); dloop

#
� 0 (10)

where q = (i; j) is an edge in G1(P ), and dloop is de�ned as the largest weight of any edge in

G1(P ) from any node (including the host node) to itself, if such a loop exists, and 0 otherwise.

Proof : The weight of any edge that starts and ends at the same node, d(i; i)+ Tsetup, is clearly a

lower bound on the clock period. If no such edge exists, then the lower bound is calculated

as follows.

Let C be the critical cycle at the optimal clock period, Popt, i.e., a cycle with weight zero.

(Clearly one such cycle must exist, or else Popt could be reduced further.) Let k be the number

of edges in C. Therefore

0 =
X

(i;j)2C

h
(d(i; j) + Tsetup � Popt)

i

i.e., Popt =
1

k
�
X

(i;j)2C

h
d(i; j)

i
+ Tsetup

i.e., Popt � min
(i;j)2C

d(i; j)+ Tsetup

i.e., Popt � min
(i;j)2G1(P )

d(i; j)+ Tsetup:

The nonnegativity of the right hand side is trivial. 2

Theorem 6 : A �nite solution to the clock period minimization problem exists.

Proof : From Lemma 5, the solution P to the clock period minimization problem is bounded by

0 � Plow � P � Phigh <1. 2

11



4.4 The clock skew optimization procedure

The skeletal pseudocode describing the algorithm for �nding the optimal clock period proceeds as

follows, using a binary search on the value of the clock period.

Construct the constraint graph;
Pmax = Phigh; ...(Lemma 5a)
Pmin = Plow; ...(Lemma 5b)
while (Pmax � Pmin) > � f

P = (Pmax + Pmin)=2;
if G1(P ) has a positive cycle
Pmin = P ;

else
Pmax = P ;

g

In the above algorithm, the presence of a positive cycle in G1(P ) may be tested using the

Bellman-Ford algorithm [17]. If the skews are initialized to 0, the Bellman-Ford solution achieves

the objective of minimizing jxi;max � xi;minj [17]. On a graph with V vertices and E edges, the

computational complexity of this algorithm is O(V �E). The number of iterations is (Phigh�Plow)=�.

The time required to form the constraint graph may be as large as jf j � jGj, where jf j is the

maximum number of inputs to any combinational stage, though in practice, it is seen that this

upper bound is seldom achieved.

Therefore, the iterative procedure above, when carried to convergence, provides the solution

to the linear program (4) with a worst-case time complexity of

O (F �E � log2 [(Phigh � Plow)=�] + jf j � jGj) (11)

where F is the number of ip-ops in the circuit, E is the number of pairs of ip-ops connected

by a combinational path, and Phigh and Plow are as de�ned in Lemma 5, and �, de�ned in the

pseudocode above, corresponds to the degree of accuracy required.

We point out that for real circuits, E = O(F ).

12



We caution the reader that the complexity shown above is not a genuine indication of the

complexity if the implementation is cleverly carried out, using back-pointers during the Bellman-

Ford process [20] and the procedure in Section 4.2 for d(i; j) calculations.

In the solution found above, all skews must necessarily be positive, since the weights of each

node in the Bellman-Ford algorithm was initialized to zero. Also, in general, the skew at the host

node (corresponding to primary inputs and outputs) could be nonzero. Our objective is to ensure

a zero skew at the primary input and output nodes since we do not have the exibility of retiming

these, and hence we modify this solution. Note that if [x1; � � �xn] is a solution to a system of

di�erence constraints in x, then so is x0 = [(x1+ k); (x2+ k); � � � ; (xn+ k)]. Therefore, by selecting

k to be the negative of the skew at the host node, a solution x0 with a zero skew at the host is

found.

5 Phase B: Skew minimization by retiming

5.1 Introduction

In Phase B, the magnitudes of the clock skews obtained from Phase A are reduced to zero by

applying retiming transformations. This employs relocation of the ip-ops across logic gates while

maintaining the optimal clock period previously found. After the skew magnitudes have been

reduced by as much as possible, the retimed circuit may be implemented by applying the requisite

skews at a ip-op (to get the minimum achievable clock period) or by setting all skews to zero (to

get a clock period that is, as will be shown in Section 6, no more than one gate delay above the

optimum).

Since any ip-op to be moved must have a nonzero skew, we divide the relocations into one

of the two following categories:

� Flip-ops with negative skews

� Flip-ops with positive skews

13



Before we proceed, we will state the following result, which is something of a generalization

of Theorem 1. The theorem pertains to Figure 5, where the ip-ops at the input are retimed

across a combinational block to its outputs.

Theorem 7:

(a) Retiming transformations may be used to move ip-ops from all of the inputs of any com-

binational block to all of its outputs. The equivalent skew of the relocated ip-op at output j,

considering long path constraints only, is given by

xj = max
1�i�n

(xi + d(i; j)) (12)

where the xi; 1 � i � n are the skews at the input ip-ops, and xj is the equivalent skew at output

j, and d(i; j) is the worst-case delay of any path from i to j.

(b) Similarly, ip-ops may be moved from all of the outputs of any combinational block to all of

its inputs, and the equivalent skew at input k, considering long path constraints only, is given by

xk = min
1�j�m

(xj � d(k; j)) (13)

where the xj ; 1 � j � m are the skews at the input ip-ops, and xk is the equivalent skew at input

k, and d(k; j) is the worst-case delay of any path from k to j.

The proof is omitted and proceeds along the lines of that for Theorem 1. We point out here

that in general, it is not possible to come up with an equivalent skew value that satis�es both

long and short path constraints. For example, when we consider short path constraints, moving

ip-ops from the input to the output requires that the new skew be

min
1�i�n

(xi + d(i; j))

(using the same notation as Theorem 7(a)), which is incompatible with the requirement stated

above except in the special case where all paths from i to j have the same delay. However, this is

not a serious problem for us here since we are only considering the long-path constraints here, as

stated in Section 4.

14



While the preceding paragraph may super�cially seem to contradict Theorem 1, which is

valid for both long path and short path constraints, we reassure the reader that this is not so.

Theorem 1 can be considered to be a special case where the combinational subcircuit consists of

only one gate, where clearly the longest and shortest path delays of the combinational subcircuit

are equal.

5.1.1 Case 1: Negative skew reduction

Consider the case of a ip-op j shown in the Figure 6(a) that has a negative skew at the conclusion

of Phase A.2 If we consider the gate p to which j fans out, we may �nd its transitive fanins and

identify the ip-ops at the input of the combinational subcircuit to which p belongs. Through

retiming operations, it is possible to transform the circuit in Figure 6(a) to the one in Figure 6(b);

the equivalent skews at each ip-op in Figure 6(b) are calculated. At this point, it need only be

noted that the equivalent skews for these ip-ops are found without physically moving them to

the gate inputs.

To see why the transformation from Figure 6(a) to Figure 6(b) is always possible, note that

the combinational block shown in the �gure can be replaced by a set of \input-output" delay

constraints. We may then apply the result of Theorem 7(a) to obtain the equivalent skews; the

complete procedure will be described later.

There now exists a set of n \virtual" ip-ops3 at the input to gate p, as shown in Figure 6(b).

Let x1; x2; � � � ; xn be the skews of these ip-ops. They must satisfy the constraints:

xk + delay � xi + P 8 1 � k � n (14)

where P is the clock period, xi the skew at an output ip-op, FFi (not shown), of the combinational

2We assume here that each ip-op fans out to exactly one gate. If the fanout of a ip-op is larger than one, then

it is replicated at each fanout branch. The replicated ip-ops have exactly one fanout gate, and each such ip-op

is considered in turn.
3We refer to these ip-ops as \virtual" ip-ops because we do not physically move them to the input of gate p

at this point.

15



block to which FF1 � � �FFn are input ip-ops, and delay is the largest combinational delay from

the input of gate p to FFi.

Obviously, from the above constraints:

max
1�k�n

(xk) + delay � xi + P (15)

Now, there can exist two scenarios:

(1) All of the n ip-ops at the inputs have negative skews. In this case, the maximum of all the

negative skew ip-ops is negative and hence the set of ip-ops may be moved across the

gate p, as shown in Figure 6(c). If the sign of the skew were to change after the relocation,

the relocation would not be carried out unless it reduced the magnitude of the skew, and

if not, it would be left in its current location with a skew of max1�i�n(xi). For example, a

ip-op with a skew of -0.75, to be moved across a gate with unit delay, would have a new

skew value of 0.25; such a relocation would be desirable since it reduces the magnitude of the

clock skew (this idea is better understood in the context of Lemma 8 and Theorem 9, to be

stated and proved later in this paper). However, it would be undesirable to move a ip-op

with skew -0.25 across a unit delay gate. Therefore, in either case, this e�ects a reduction in

the magnitudes of the skew values, as is desirable.

(2) One or more of the \virtual" ip-ops has a positive e�ective skew. In this case, the skew at

the ip-op j under consideration may be set to zero without violating any timing constraints,

since the maximum skew at the input to gate p would be unchanged by this operation. One

example where this may occur is when one of the inputs to the combinational block is a

primary input of the sequential circuit; the equivalent skew of the corresponding virtual FF

at the gate input would be positive. Note that due to this, it is never necessary for a primary

input to be relocated, which is in conformance with our assumption that these are immovable.

16



5.1.2 Case 2: Positive skew reduction

In the case of a ip-op j that has a positive skew at the end of Phase A, as shown in Figure 7(a),4

the procedure parallels that described above. Through retiming operations, it is possible to trans-

form the circuit in Figure 7(a) to the one in Figure 7(b); the equivalent skews at each ip-op

in Figure 7(b) are calculated using Theorem 7(b); the precise procedure will be described later.

Therefore, at the output of the gate p, there now exists a set of n \virtual" ip-ops as shown

in Figure 7(b), with e�ective skews x1; x2 : : :xn. The skews at these ip-ops need to satisfy the

constraints:

xi + delay � xk + P 8 1 � k � n (16)

where xi the skew at an input ip-op, FFi (not shown), of the combinational block to which

FF1 � � �FFn are output ip-ops, and delay is the largest combinational delay from FFi to the

output of gate p.

The above constraints reduce to

xi + delay � min
1�k�n

(xk) + P (17)

As before, we may have one of two scenarios:

(1) If all of the n ip-ops in the array have positive skews, the minimum of all the positive

skew ip-ops is positive and hence the set of ip-ops may be moved across the gate p, as

illustrated in Figure 7(c). If the sign of the skew were to change after the relocation, the

relocation would not be carried out unless it reduced the magnitude of the skew. Therefore,

in either case, this e�ects a reduction in the positive skew values, as is desirable.

One may also take advantage of slacks in the combinational paths to reduce the skews at

ip-ops. If input r to gate p has a slack, slack(r) (i.e., the worst-case delay at input r could

4Each ip-op has exactly one fanin, and hence the problem of multiplicity described in a footnote for Case 1 is

irrelevant.

17



have been increased by slack(r) without changing the worst-case delay to the output of gate

p), then the skew may be further reduced by slack(r). If slack(r) > min(xi)� d, the skew is

set to zero; if not, it is set to min(xi)� d� slack(r).

(2) If one or more of the \virtual" ip-ops has a negative skew value, then the skew at the

ip-op j under consideration is set to zero. This violates no timing constraints, since it

leaves the minimum skew at an output of gate p unchanged.

5.2 Minimization procedure for case 1

The steps involved in minimizing the skew magnitudes for ip-ops with negative skews are outlined

below:

Step 1 All ip-ops in the circuit with negative skews are placed on a queue, Q. For each ip-

op, we consider one fanout at a time; in other words, the situation shown in Figure 8(a) is

transformed to the form in Figure 8(b).

Step 2 Let j be the ip-op that is currently at the head of the queue, and p the gate that it fans

out to. We will assume for now that p is a gate; the case where it is the input of a ip-op

will be dealt with separately. The equivalent skew at every other fanin node of p is found.

We do not physically move ip-ops to the inputs of gate p at this time, and are hence we

imagine that the inputs to gate p are a set of \virtual" ip-ops.

The equivalent skews are found as follows. Consider a ip-op j with negative skew, as shown

in Figure 9. The gate p to which it fans out to is added to the tail of a queue R.5 A reverse

PERT is employed to backtrace along the fanin cone of gate p. When a gate is encountered,

it is added to the queue. In Figure 9, gate z is �rst added to R, and in the next step, gate y is

added. The backtrace continues until a ip-op is encountered. In the example in Figure 9,

the backtrace terminates when ip-op x is encountered. During this process, we keep track

of the worst-case delay, d, to gate p. As a consequence of Theorem 3, if the skew (calculated

5Note that the queue R is distinct from the queue Q.

18



in Phase A) at ip-op x is t units, then its equivalent skew at the input to gate p is t + d

units.

Step 3 If any equivalent skew at a \virtual" ip-op is positive, then the skew at j is set to zero

and it is not relocated; if not, the skew after retiming is found using the criteria described

earlier. If the magnitude of this skew is smaller than the current skew at j, then j and all of

the \virtual" ip-ops at the input to p are retimed across p. (Notice that if the skew changes

sign after retiming, then the magnitude of the retimed skew could become larger. Only those

sign-changing moves that reduce the skew magnitude are permitted.) Note that the motion of

the \virtual" ip-ops to their new location may entail replicating these ip-ops, as shown

in Figure 8. For example, if ip-op j were to be moved across gate p, a new ip-op would

have to be created at y2 with an equivalent skew corresponding to the skew of ip-op x,

retimed to position y2. The new skews are found as explained in the previous section. Any

such ip-ops that have a negative skew (as will happen most of the time, unless relocation

changed the sign of the skew) are now placed at the tail of the queue, Q, and are processed

later.

Step 4 If the retimed ip-op has a negative skew, it is placed at the tail of Q.

Step 5 If Q is not empty, go to Step 1; if not, the magnitudes of all negative skew values have

been minimized.

In Step 2 above, if the ip-op j fans out to another ip-op, which we shall call k, then

since there is no combinational delay between the ip-ops, and retiming preserves the zero-clocking

constraints, it must be true that

xj + Tsetup � xk + P

i.e., xj � xk + P � Tsetup

If the right hand side is positive, then xj can be set to zero without violating any constraints. If

not, then xk � Tsetup � P < 0, which implies that k is a ip-op that will eventually move to the

19



right, thereby allowing ip-op j the leeway to move as well. Therefore, if this is the case, the skew

of ip-op j is set to

xj = xk + P � Tsetup < 0 (18)

and the ip-op j is reprocessed after ip-op k has been processed (i.e., its skew is set to the

value calculated above, and it is placed at the tail of Q). It will be shown in Lemma 8 that all such

ip-ops will eventually be processed, and their skews set to nearly zero. It is interesting to note

that the latter case was almost never seen to happen in the examples presented in this paper.

Note that in spite of Theorem 7, it is still necessary to go through the reverse PERT procedure

to ensure that ip-ops are created at fanout points like y2.

5.3 Minimization procedure for case 2

The steps involved in minimizing the skews at ip-ops with positive skews are analogous to those

described in Section 5.2, and are outlined below:

Step 1 All ip-ops in the circuit with positive skews are placed on a queue, Q. Note that each

ip-op has precisely one fanin.

Step 2 Let j be the ip-op that is currently at the head of the queue, and p the gate that fans

into it. As in case 1, we will postpone the discussion of the case where j fans out to a ip-op.

The equivalent skew of the \virtual" ip-ops at every other fanout node of p is found.

The procedure for �nding the equivalent skews is as follows. Consider a ip-op j with

positive skew, as shown in Figure 9. The gate p that fans into it to is added to the tail of a

queue R.6 Analogously to the procedure for Case 1, a forward PERT is employed to trace

the fanout cone of gate p. When a gate is encountered, it is added to the queue. The trace

continues until a ip-op is encountered. During the process, we keep track of the worst-case

delay, d, from gate p. As a consequence of Theorem 1, if the optimal skew at a ip-op is t

units, then its equivalent skew at the output of gate p is t� d units.

6As before, note that R is distinct from the queue Q.

20



Step 3 If any equivalent skew at a \virtual" ip-op is negative, then the skew at j is set to zero

and it is not relocated; if not, the skew after retiming is found using the criteria described

earlier. If the magnitude of this skew is smaller than the current skew at j, then j and all

of the \virtual" ip-ops at the input to p are retimed across p. The new skews are found

as explained in the previous section. Any such ip-ops that have a positive skew (as will

happen most of the time, unless relocation changed the sign of the skew) are now placed at

the tail of the queue, Q, and are processed later.

Step 4 If the retimed ip-op has a positive skew, it is placed at the tail of Q.

Step 5 If Q is not empty, go to Step 1.

In Step 2 above, if the ip-op j fans into another ip-op, which we shall call k, then since

there is no combinational delay between the ip-ops, and retiming preserves the zero-clocking

constraints, it must be true that

xk + Tsetup � xj + P

i.e., xj � xk � P + Tsetup

If the right hand side is negative, then xj can be set to zero without violating any constraints. If

not, then we have xk � P �Tsetup > 0, which implies that k is a ip-op that will eventually move

to the left, thereby allowing ip-op j the leeway to move as well. Therefore, if this is the case, the

skew of ip-op j is set to

xj = xk � P + Tsetup > 0 (19)

and the ip-op j is reprocessed after ip-op k has been processed. It will be shown in Lemma

8 that all such ip-ops will eventually be processed. As in the analogous situation in case 1

described in the previous section, it was observed that the latter was almost never seen to happen

in the ISCAS89 examples.

21



6 Properties of the Retiming Procedure

Lemma 8 At the end of the retiming procedure in Phase B, the skew at each ip-op is no more

than half a gate delay.

Proof:

Assume, for purposes of contradiction, that the minimum skew after Phase B at a ip-op is larger

than half a gate delay. Assume also that each ip-op has a single fanout; in case of multiple

fanouts, the ip-op can be replicated as shown in Figure 8. Then one of two possibilities exist:

(a) If the ip-op fans out (fans in) to a gate G when the skew is negative (positive), then using

the procedure described above, the skew magnitude can be reduced, either to zero, keeping

the ip-op in its current location, or by moving the ip-op across gate G. This contradicts

the fact that Phase B is complete.

(b) If the ip-op, i, fans out to another ip-op, j (a primary output is also considered to be a

ip-op), then the skew of ip-op i is either set to zero (if possible) or to a magnitude that

is smaller than that of xj . This can be seen from Equations (18), (19) and from Lemma 5b

(which a�rms that Popt > Tsetup).

Now, consider the case of negative skew ip-ops; the situation for positive skew ip-ops

is analogous. Assume that we have a situation where ip-ops j1; j2; � � � ; jn are connected

directly to each other in a chain and their skews remain negative at the end of Phase B. The

ip-ops must necessarily be connected in a cycle; if not, there would be a �rst (leftmost)

ip-op in the chain that is connected either to a gate or to a ip-op with zero skew, which

implies that their skew magnitudes can be reduced, and contradicts the assumption that

Phase B is complete.

Now when each ip-op in the cycle is processed, the magnitude of its skew is reduced, as

shown above. Hence, if the procedure described in Section 5.2 is applied, then each skew

magnitude must eventually be reduced to zero, which contradicts the assumption that Phase

22



B is over. Therefore we cannot have a negative skew ip-op connected directly to a negative

skew ip-op at the end of Phase B. 2

Theorem 9 If, at the end of the retiming procedure, all skews are set to zero, then the optimal

clock period for this circuit is no more than Popt + dmax, where Popt is the optimal clock

period found in Phase A, and dmax is the maximum delay of any gate in the circuit.

Proof: By Lemma 8, the skew at each ip-op after Phase B is no more than half a gate delay.

Hence, to ensure that the double-clocking constraint is satis�ed, it is easy to see that one

may modify the period to

max(P + xj � xi) (20)

where xj ; xi are the skews of any pair of ip-ops that are connected by a combinational path.

Clearly, since jxkj < dmax=2 8 k, the clock period required to ensure that all double-clocking

constraints are satis�ed is no more than P + dmax. Note also that since any period achievable by

retiming is also achievable using skews, and �nal period can be no better than P , which is the

optimal period using skew optimization. 2

7 Experimental Results

The algorithm was implemented as a C program, ASTRA. Experimental results running from

ASTRA on all circuits in the ISCAS89 benchmark suite (including the Addendum93 circuits) are

presented in Table 1. For each circuit, the table provides data that describes its size in terms of the

number of combinational gates, jGj, and ip-ops jF jinit. All gates are assumed to have unit delays

(although the algorithm is certainly not restricted to unit delay circuits), and the setup and hold

times are arbitrarily set to 0. Pmax is the upper bound on the clock period provided by Lemma 5a.

Note that Pmax corresponds to the clock period in the original circuit.

The next column shows the optimal value, Popt, calculated at the end of Phase A of ASTRA,

using clock skew optimization. At the end of retiming in Phase B of ASTRA, any skews that could

23



not be set exactly to zero are now forced to zero and the new period Pret is shown, along with the

corresponding percentage improvement over the initial period, Pmax. This period corresponds to

the maximum delay of any combinational segment in the retimed circuit. As expected, it is seen

that in each case, Pret is within one gate delay of Popt.

The CPU times for running ASTRA on an HP 735 workstation for each of the two phases,

and the total CPU time are shown for all these circuits. Note that the time for Phase A includes

the time for calculating the values of d(i; j), the maximum delay from ip-op i to ip-op j, as

well as the time for the Bellman-Ford iterations. The last column shows the number of ip-ops in

the retimed circuit.

For example, for s15850.1, a circuit with 9772 gates and 534 ip-ops, the value of Pmax is

found to be 82.0 units. At the end of Phase A (skew optimization), ASTRA calculates the value

of Popt to be 63.0 units. The value of Pret at the end of Phase B of ASTRA is 63.0 units. The

improvement in the clock period after the two phases is calculated as

%change =
Pmax � Pret

Pret
� 100

and is found to be 30.2% for s15850.1. The number of ip-ops was increased in the process from

534 to 572.

It can be seen from the Table that in 36 out of 44 circuits, ASTRA caused the clock period

to improve, with the improvement being as much as 220.7% in the case of s6669. Although it is

theoretically possible for retiming to reduce the number of ip-ops in the circuit, this was never

seen to happen. It should be stressed here that use of the techniques presented here performs the

relocation of ip-ops across the minimal number of levels of gates. However, it does not minimize

the number of ip-ops, and this is a topic for further research.

It is worth noting that the CPU times for ASTRA are rather small; even the largest circuit

could be retimed in just over a minute.

The runtimes for the ASTRA algorithm versus the circuit size, jGj, is shown in Figure 10.

It is very di�cult to infer a general relationship between the circuit size and the execution time.

24



However, it may be inferred from these graphs and from Table 1 that for large circuits where large

improvements the clock period are possible, the algorithm is likely to have relatively larger run-

times. A second point that can be inferred is that very often, when the clock period is reduced

tremendously, the run-time increases because the amount of work required of Phase B increases.

8 Conclusion

An approach that takes advantage of the equivalence between retiming and clock skew is presented,

and is used for gate-level retiming. Results on all of the circuits in the ISCAS89 benchmark suite

have been presented and can easily be handled by this algorithm.

The chief reason for the improvement is that ASTRA takes a global view of retiming by

�rst solving the clock skew problem in a smaller number of variables. In the second phase, local

transformations are used to perform the retiming. The logic behind this approach is that a circuit

would have to be very poorly designed indeed to require enormous computation time for the local

transformations, and hence in most practical cases, the latter phase takes only a small amount of

computation; this is borne out by our experimental results.

It must be pointed out that the algorithm performs retiming only for timing optimization

and does not take into account the fact that retiming may cause initial states to change. Therefore,

in its current avatar, it is more applicable to the timing optimization of pipelined circuits, rather

than for optimization of control unit circuitry, unless such circuits are designed using the techniques

in [21].

The ASTRA algorithm may easily be adapted to perform retiming to satisfy a given clock

period, Pspec. Phase A consists of a single pass through the graph G1(Pspec). If Pspec is infeasible,

this will be reported immediately, and if not, the skew solution at the end of Phase A may be

translated to a retiming solution using the methods of Phase B.

The algorithm directly provides a result to the combined clock skew optimization and retiming

problem. The use of this algorithm to minimize the number of ip-ops using retiming only is a

25



topic for further research. Another possible extension is the use of deliberate skews with retiming

to minimize the number of ip-ops.

Acknowledgments

The authors would like to thank Dr. Jack Fishburn of AT&T Bell Laboratories and Prof. Liang-

Fang Chao of Iowa State University for some helpful discussions. They also thank the anonymous

reviewers for their helpful comments.

References

[1] C. E. Leiserson and J. B. Saxe, \Retiming synchronous circuitry," Algorithmica, vol. 6, pp. 5{

35, 1991.

[2] J. P. Fishburn, \Clock skew optimization," IEEE Transactions on Computers, vol. 39, pp. 945{

951, July 1990.

[3] H.-G. Martin, \Retiming by combination of relocation and clock delay adjustment," in Pro-

ceedings of the European Design Automation Conference, pp. 384{389, 1993.

[4] B. Lockyear and C. Ebeling, \Minimizing the e�ect of clock skew via circuit retiming," Tech.

Rep. UW-CSE-93-05-04, Department of Computer Science and Engineering, University of

Washington, Seattle, 1993.

[5] L.-F. Chao and E. H.-M. Sha, \Retiming and clock skew for synchronous systems," in Proceed-

ings of the IEEE International Symposium on Circuits and Systems, pp. 1.283{1.286, 1994.

[6] E. M. Sentovich et al., \SIS: A system for sequential circuit synthesis," Tech. Rep. UCB/ERL

M92/41, Electronics Research Laboratory, University of California at Berkeley, May 1992.

[7] N. Shenoy and R. Rudell, \E�cient implementation of retiming," in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp. 226{233, 1994.

26



[8] S. Chakradhar, \A fast optimal retiming algorithm for sequential circuits," Tech. Rep. 93-

C019-4-5506-5, CCRL, NEC USA, Inc, Princeton, NJ, 1993.

[9] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, \Clock routing for high-performance IC's,"

in Proceedings of the ACM/IEEE Design Automation Conference, pp. 573{579, 1990.

[10] A. Kahng, J. Cong, and G. Robins, \High-performance clock routing based on recursive geo-

metric matching," in Proceedings of the ACM/IEEE Design Automation Conference, pp. 322{

327, 1991.

[11] R.-S. Tsay, \Exact zero skew," in Proceedings of the IEEE International Conference on

Computer-Aided Design, pp. 336{339, 1991.

[12] S. Pullela, N. Menezes, and L. T. Pillage, \Reliable nonzero clock skew trees using wire width

optimization," in Proceedings of the ACM/IEEE Design Automation Conference, pp. 165{170,

1993.

[13] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage, \Skew and delay optimization for reliable

bu�ered clock trees," in Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pp. 556{562, 1993.

[14] L.-F. Chao, Scheduling and Behavioral Transformations for Parallel Systems. PhD thesis,

Department of Computer Science, Princeton University, 1993.

[15] D. Joy and M. Ciesielski, \Clock period minimization with wave pipelining," IEEE Transac-

tions on Computer-Aided Design, vol. 12, pp. 461{472, Apr. 1993.

[16] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, \Minimum padding to sat-

isfy short path constraints," in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pp. 156{161, 1993.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. New York, New

York: McGraw-Hill Book Company, 1990.

27



[18] S. Even, Graph Algorithms. Potomac, MD: Computer Science Press, 1979.

[19] W. Chuang, S. S. Sapatnekar, and I. N. Hajj, \Timing and area optimization for standard cell

VLSI circuit design," IEEE Transactions on Computer-Aided Design, pp. 308{320, Mar. 1995.

[20] T. G. Szymanski, \Computing optimal clock schedules," in Proceedings of the ACM/IEEE

Design Automation Conference, pp. 399{404, 1992.

[21] H. J. Touati and R. K. Brayton, \Computing the initial states of retimed circuits," IEEE

Transactions on Computer-Aided Design, vol. 12, pp. 157{162, Jan. 1993.

28



I1         I2      I3                                               I4

Ck Ck Ck

CC CC1 2

FF
A

FF
B

FF
C

Figure 1: The advantages of nonzero clock skew.

Ck Ck

CC CC1 2

FF
A

FF
C

Ck

B
FF

I1          I2                                        I3            I4

Figure 2: Retiming for clock period optimization.

Gl Gr

Gl

Gl

Gr

Gr

xj

d(j,k) 2- d

d(j,k) 1+ d

2+ dd(i,j)

- d 1d(i,j)

(a)

(b)

(c)

FF i FF j

FF i FF j

FF i FF j

d(j,k)d(i,j)

FF k

FF k

FF k

- dx

+ dx

1j

2j

Figure 3: Equivalence between retiming and skew.

29



Combinational

Subnetwork
FF i

x i

Ck

FF j

x j

Ck

Figure 4: The clock skew optimization problem.

Combinational BlockIn1

In2

In3

In4

Out1

Out2

Out3

Figure 5: Retiming across a combinational block.

30



Table 1: Results of Clock Skew Optimization

Circuit jGj jF jinit Pmax Popt Pret % CPU CPU CPU jF jfinal
change Time Time Time

Ph. A Ph. B Total

s27 13 3 6.0 6.0 6.0 0.0% 0.00s 0.00s 0.00s 3
s208.1 112 8 11.0 10.0 10.0 10.0% 0.00s 0.00s 0.00s 27

s298 133 14 9.0 5.3 6.0 50.0% 0.01s 0.01s 0.02s 31
s344 175 15 20.0 14.0 14.0 42.8% 0.01s 0.01s 0.02s 22
s349 176 15 20.0 14.0 14.0 42.8% 0.01s 0.01s 0.02s 22

s382 179 21 9.0 6.3 7.0 28.6% 0.02s 0.01s 0.03s 32
s386 165 6 9.0 6.3 7.0 28.6% 0.01s 0.01s 0.02s 6
s400 175 21 9.0 6.3 7.0 28.6% 0.01s 0.01s 0.02s 32

s420.1 234 16 13.0 12.0 12.0 8.3% 0.02s 0.01s 0.03s 57
s444 202 21 11.0 6.6 7.0 57.1% 0.01s 0.01s 0.02s 56
s499 152 22 12.0 12.0 12.0 0.0% 0.02s 0.01s 0.03s 22

s510 217 6 12.0 11.0 11.0 9.1% 0.01s 0.01s 0.02s 8
s526 214 21 9.0 5.5 6.0 50.0% 0.01s 0.01s 0.02s 40
s526n 215 21 9.0 6.0 6.0 50.0% 0.01s 0.00s 0.01s 36

s635 286 32 127.0 66.0 66.0 92.4% 0.04s 0.02s 0.09s 51
s641 398 19 74.0 74.0 74.0 0.0% 0.04s 0.00s 0.04s 19
s713 412 19 74.0 74.0 74.0 0.0% 0.03s 0.00s 0.03s 19
s820 294 5 10.0 10.0 10.0 0.0% 0.02s 0.00s 0.02s 5

s832 292 5 10.0 10.0 10.0 0.0% 0.02s 0.00s 0.03s 5
s838.1 478 32 17.0 16.0 16.0 6.3% 0.06s 0.03s 0.09s 117
s938 446 32 17.0 16.0 16.0 6.3% 0.06s 0.04s 0.10s 117

s953 424 29 16.0 13.0 13.0 23.1% 0.03s 0.02s 0.06s 41
s967 394 29 14.0 13.0 13.0 7.7% 0.02s 0.01s 0.03s 35
s991 519 19 59.0 57.0 57.0 3.5% 0.06s 0.01s 0.07s 28

s1196 547 18 24.0 24.0 24.0 0.0% 0.03s 0.00s 0.03s 18
s1238 526 18 22.0 22.0 22.0 0.0% 0.04s 0.00s 0.04s 18
s1269 569 37 35.0 18.7 19.0 84.2% 0.07s 0.07s 0.14s 112

s1423 731 74 59.0 53.0 53.0 11.3% 0.13s 0.01s 0.15s 80
s1488 656 6 17.0 16.0 16.0 6.3% 0.04s 0.07s 0.11s 17
s1494 653 6 17.0 16.0 16.0 6.3% 0.04s 0.08s 0.13s 20

s1512 780 57 30.0 24.0 24.0 25.0% 0.05s 0.01s 0.07s 67
prolog 1601 136 26.0 12.5 13.0 100.0% 0.14s 2.63s 2.86s 340
s3271 1572 116 28.0 14.7 15.0 86.7% 0.12s 1.63s 1.88s 428

s3330 1789 132 29.0 14.0 14.0 107.4% 0.14s 2.44s 2.66s 330
s3384 1685 183 60.0 26.5 27.0 122.2% 0.12s 13.9s 15.5s 1697
s4863 2342 104 58.0 30.0 30.0 93.3% 0.24s 1.1s 1.46s 241

s5378 2779 179 25.0 21.0 21.0 19.0% 0.24s 8.0s 8.4s 553
s6669 3080 239 93.0 29.0 29.0 220.7% 0.32s 43.4s 49.3s 2585
s9234.1 5597 211 58.0 38.0 38.0 52.6% 0.8s 9.2s 10.4s 359

s13207.1 7951 638 59.0 51.0 51.0 15.7% 0.98s 0.12s 1.5s 640
s15850.1 9772 534 82.0 63.0 63.0 30.2% 3.31s 2.99s 6.9s 572
s35932 16065 1728 29.0 27.0 27.0 7.4% 3.11s 18.4s 23.1s 1729

s38417 22179 1636 47.0 31.5 32.0 46.9% 56.2s 19.2s 76.9s 1691
s38584.1 19253 1426 56.0 48.0 48.0 16.7% 3.8s 0.4s 5.4s 1428

31



skew=
max(s )+d i

j
1

2

nFF’s

FF

(a)

(c)(b)

s1

s2

Gate   p

   pGateGate   p

sn

Block

Comb.

Block

Comb.

skews FF’s

Negative  skew

j

Figure 6: Retiming for a negative skew ip-op.

32



Gate   p

sn

s2

skewsFF’s

(b)

s1

1

2

n

Comb.

Comb.
Block

Block

FF
j   pGate

FF’s

FF’s

Positive  skew

(a)

skew=

   pGate

imin(s

(c)

)-d-slack(r)

j

Figure 7: Retiming for a positive skew ip-op.

Skew = x

Skew = x

Skew = x

Skew = x

(b)(a)

Figure 8: Handling ip-ops with multiple fanouts.

33



w

-ve  skew

FF’s

Block

FF

FF
x

y

z

y2

Gatej

Combinational

p

Figure 9: Reproduction of ip-ops in backtrace.

0

20

40

60

80

100

0 5000 10000 15000 20000

C
P
U
 
t
i
m
e
 
(
s
e
c
)

Number of Gates

Figure 10: CPU time vs. circuit complexity.

34


