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The Impact of BTI Variations on Timing
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Abstract—A new framework for analyzing the impact of bias
temperature instability (BTI) variations on timing in large-scale
digital logic circuits is proposed in this paper. This approach
incorporates both the reaction-diffusion model and the charge
trapping model for BTI, and embeds these into a temporal
statistical static timing analysis (T-SSTA) framework capturing
process variations and path correlations. Experimental results
on 32nm, 22nm and 16nm technology models, verified through
Monte Carlo simulation, confirm that the proposed approach
is fast, accurate and scalable, and indicate that BTI variations
make a significant contribution to circuit-level timing variations.

Index Terms—Bias Temperature Instability, Circuit Reliability,
Process Variation, Timing Analysis

I. INTRODUCTION

Reliability issues in very large scale integrated (VLSI)
circuits have been a growing concern as technology trends
in semiconductor technologies show progressive downscaling
of feature sizes. One of the major reliability issues is bias
temperature instability (BTI), which causes the threshold volt-
age, Vth, of CMOS transistors to increase over time under
voltage stress, resulting in a temporally-dependent degradation
of digital logic circuit delay. Various optimizations have been
proposed to cope with this degradation, such as slowing the
operating frequency with time, adding delay guardbands, and
using adaptive methods to recover from delay degradation.

The reaction-diffusion (R-D) model [1]–[3], based on dis-
sociation of Si–H bonds at the Si/SiO2 interface, has been
the prevailing theory of BTI mechanism and has been widely
used in research on circuit optimization and design automation.
However, over the years, several limitations in the theory
have been exposed. For instance, in R-D theory, the rate of
recovery is determined by the diffusion of neutral hydrogen
atoms, which is not affected by the gate bias. However the
measured device recovery begins faster and lasts longer than
the prediction of R-D theory, and shows strong dependence on
the applied gate bias. An alternative mechanism for explaining
BTI effects is the charge trapping and detrapping model [4],
in which the defects in gate dielectrics can capture charged
carriers, resulting in Vth degradations. The major difference
between the two models is the nature of the diffusing species
and the medium that facilitates the diffusion. Based on pub-
lished works, both R-D and charge trapping mechanisms exist
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in current semiconductor technologies, and the superposition
of both models is shown to better match experimental device
data [3].

In nanometer-scale technologies, variations in the BTI effect
are gaining a great deal of attention under both R-D and
charge trapping frameworks, due to the random nature of
defect localization in smaller and smaller transistors; together,
these result in increased variations in the number of defects
in a transistor. While there has been a great deal of research
on timing variability due to process variations [5]–[7], and a
few previous works have combined random variation effects
from process variations with deterministic BTI degradations
[8]–[10], the problem of BTI variations has not received much
attention.

Most of the published circuit-level works incorporating
BTI variations are based on the variability model of ∆NIT
randomness within the R-D framework, introduced by [11].
This model was applied to analytically determine the effect
of BTI variations on SRAM and logic cells, and on circuit
and pipeline performance using Monte Carlo simulations in
[12], [13]. However, as explored in our paper, for digital logic
circuits, the ∆NIT variation in this R-D based model has a
relatively small impact on circuit timing variation, as compared
with variations under the charge trapping model and process
variations. Another model of the BTI-related variations was
considered in [9], as caused by process perturbations. Since
these small model perturbations lead to a relatively small
change in the BTI-driven delay shift, the impact on circuit
timing is a second-order perturbation that is relatively small.

On the other hand, the variations of device-level BTI degra-
dations under the charge trapping model has been discovered
to be a significant issue for nanoscale transistors. Charge
trapping and detrapping at each defect are random events that
are characterized by the capture and emission time constants.
This paradigm is intrinsically statistical and it captures not
only the variations in the number of defects, but also the
variations in ∆Vth induced by each defect [14]–[16]. Under
this statistical model, the variation of device lifetime increases
significantly, especially for devices with a smaller number of
defects N , as illustrated in Fig. 1.

However, the impact of BTI variations under the charge
trapping model on circuit performance has not received much
attention, with only limited works that explore this issue
beyond the device level. In [17], models and approaches
were proposed for analyzing the impact of BTI variations
on circuit performance; however the proposed SPICE-based
atomistic approaches are time-consuming and not scalable to
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Fig. 1. [17]: (a) Narrow distribution of lifetime in large devices where
randomness averages out; (b) Large variation of lifetime in small devices
where stochasticity predominates.

large-scale circuits. As we will show, the charge trapping
model is the dominant component of BTI intrinsic variations,
and makes significant contributions to circuit delay variation.
Furthermore its impact grows rapidly as devices scale down,
posing increasingly severe reliability issues to digital logic
circuits.

In this paper, we first introduce the notion of precharacter-
ized mean defect occupancy probability for the charge trapping
model to effectively reduce the complexity of circuit-level
analysis and to make it possible to handle large-scale circuits.
Then we incorporate variations under both the R-D model and
the charge trapping model into a novel temporal statistical
static timing analysis (T-SSTA) framework, capturing random-
ness from both process variations and temporal BTI degrada-
tions. We exercise this approach on large digital logic circuits
and show simulation results for the 32nm, 22nm, and 16nm
technology nodes. The correlation of process parameters due
to path reconvergence is considered efficiently in modeling and
analysis to guarantee both high accuracy and low complexity.
To the best of our knowledge, this is the first circuit-level work
that incorporates variations in BTI effects into SSTA under a
scalable and computationally efficient procedure.

Our experimental results are based on simulations, and show
that the proposed analysis approach has an accuracy that lies
within 2.2% of Monte Carlo simulation while speeding up the
calculation by 15×. Averaging over all benchmarks considered
in our work, the fraction of the variance attributable to process
variations, BTI R-D effects, and BTI charge trapping effects
is, respectively, 81%, 3%, and 16% at the 32nm node, 70%,
4%, and 26% at the 22nm node, and 66%, 5%, and 29% at the
16nm node. Thus, under these models, the relative role of BTI
charge trapping to circuit variability is projected to increase
significantly in the future, but is less than the contribution of
process variations.

II. MODELING VARIATIONS

This section introduces the models used to capture the
effects of variations that affect BTI-induced aging. We begin
by discussing BTI variations under both the R-D and charge
trapping models. Next, we overview models for process varia-
tions, including spatial correlation effects. As in [3], the total
threshold degradation ∆Vth of an MOS device is modeled by

superposition as

∆Vth = ∆Vth-RD +∆Vth-CT +∆Vth-RDF, (1)

in which the BTI terms ∆Vth-RD and ∆Vth-CT are independent
Gaussian random variables that will be given in (5) and (15),
and ∆Vth-RDF is the variation component due to random dopant
fluctuation (RDF) [18], [19], which also follows Gaussian, and
have no spatial correlations [20]. For each transistor, the sum,
∆Vth, of Gaussian variables is still a Gaussian, and this sum is
an independent random variable for different MOS transistors.

A. BTI Variability under the R-D Model

Under the R-D framework, the mechanism of BTI in a MOS
transistor is explained through the dissociation of Si–H bonds
at the Si/SiO2 interface and the diffusion of hydrogen into
dielectric and gate. The number of generated interface traps,
Si+, is denoted as ∆NIT, and absolute value of the induced
threshold voltage shift, ∆Vth, is

∆Vth =
q∆NIT

Cox
(2)

Under the R-D model, the long term threshold voltage shift
∆Vth under AC BTI stress is modeled in [12], [21] as

∆V (nom)
th = fAC(SP ) ·KDC · tn (3)

in which KDC is a technology dependent constant for DC BTI
degradation, and fAC(SP ) is the coefficient that captures the
AC degradation with signal probability SP (the probability of
effective BTI stress). The function fAC(SP ) can be precom-
puted numerically using method proposed in [2].

For deeply scaled technologies, the device size is small
enough that ∆NIT is a random variable, modeled as a Poisson
distribution [11]:

∆NIT ∼ Poisson(λ),
where λ = ∆N (nom)

IT = ∆V (nom)
th · Cox/q (4)

Our reliability analysis focuses on late lifetime behavior, when
the average numbers of interface traps λ in MOS transistors
have relatively large values. For instance, the value of λ
corresponding to ∆Vth = 0.1V for a device with W

L = 2
is about 49 for 32nm PTM [22] model, or 15 for 16nm PTM
model, and it increases proportionally with the device size.
It is well-known that for λ > 10, a Gaussian approximates
the Poisson distribution well [23]. Therefore, to simplify our
analysis without significant loss of accuracy, this Poisson
distribution is approximated as a Gaussian distribution with the
same mean and variance µ = σ2 = λ, hence ∆NIT ∼ N(λ, λ).
From (2), the threshold voltage degradation under R-D model
has the distribution

∆Vth-RD ∼ N

(
qλ

Cox
,
q2λ

C2
ox

)
(5)

As will be shown in Sec IV, this distribution approximation
does not induce significant errors to the circuit level results.
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B. BTI Variability under the Charge Trapping Model

Recent work [4] on the BTI effect of small-area devices
reveals that the degradation and recovery of ∆Vth proceed
in discrete steps, with variable heights, which could not be
explained by the R-D model, but are fully consistent with
charge trapping, which is also observed in random telegraph
noise (RTN) and 1/f2 noise.

Based on these observations, a newer charge-trapping model
was proposed for the BTI effect, in which each defect is char-
acterized by parameters of the capture time τc and emission
time τe, and each defect’s contribution to the device threshold
change, ∆Vt. These parameters are characterized using the
time-dependent defect spectroscopy (TDDS) method [4], [14],
as a distribution shown in the form of a density map as
Fig. 2, in which defects with similar time constants are binned
together, and the total ∆Vt is shown in each grid.
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Fig. 2. The distribution of defects according to their capture time constant
τc and emission time constant τe.

If this characterization is performed on a large enough
device, with the assumption that ∆Vt of all defects are
independent and identically distributed (i.i.d.), the density map
could be interpreted as the distribution of defects, in which
each grid’s value represents the probability of defects falling
into that grid. The generation of this distribution is part of
technology process characterization and independent of circuit
structure.

Charge trapping (capture) and detrapping (emission) is a
stochastic process. Following the models in [16], the capture
time, τc, and the emission time, τe, are strongly dependent on
bias voltage and temperature. In digital circuits there are only
two nontransient voltage stages, logic 1 and logic 0, hence
the bias condition can be simplified to two static modes of
stress and relaxation. We capture the temperature dependence
effect by the use of a standard corner-based approach where
the worst-case temperature corner is assumed. In this way each
defect can be described by four time constants, denoted by the
vector τ⃗ as

τ⃗ = (τc,Stress, τc,Relax, τe,Stress, τe,Relax). (6)

The defect occupancy probability (i.e., the probability of
charge trapping) of a single defect with time constants τ⃗ under
AC stress of duty factor DF and time span t is derived in [16]

to be:

Pc(DF, t, τ⃗) =
τ∗e

τ∗c + τ∗e

(
1− exp

(
−
(

1

τ∗c
+

1

τ∗e

)
t

))
, (7)

Here the duty factor DF of a device under AC stress is defined
as the probability of the transistor in accumulation mode that
is effective for BTI stress (in some papers, DF is also referred
to as the signal probability SP ). The parameters τ∗c and τ∗e are
defined as the effective capture and emission time constants
under AC stress, which account for the duty factor effect:

1

τ∗c
=

DF

τc,Stress
+

1−DF

τc,Relax
(8)

1

τ∗e
=

DF

τe,Stress
+

1−DF

τe,Relax
(9)

Fig. 3 shows an example plot of the occupancy probability
function, Pc(DF, t, τ⃗), of a single defect as defined in (7),
with the values of the time constants shown in the figure.
The plot indicates that the occupancy probability Pc increases
gradually with DF , but rises rapidly with time at the range
of 105 to 106 a.u..
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Fig. 3. An example plot of defect occupancy probability function
Pc(DF, t, τ⃗) of a single defect.

Since the defect precursors (Si−Si bond in the SiO2 dielec-
tric according to [24]) are created in the fabrication process
and uniformly distributed in the dielectric layer, the statistical
distribution of capture/emission time constants associated with
each defect is i.i.d. For each defect, the four components
of τ⃗ are correlated [4], and their joint distribution can be
characterized for a specific technology. In this paper, we follow
the assumptions in [17] to generate the distributions of time
constants. Fig. 2 shows an example 2-D histogram of the joint
distribution of τc,Stress and τe,Relax , which are the dominant
components of τ⃗ . The proposed approaches in this paper are
independent of the distribution of τ⃗ .

We introduce the concept of the mean defect occupancy
probability, P̄c(DF, t), which captures the expected value of
the probability of a defect charged with carriers (i.e., captured),
based on the single defect model of (7), and f(τ⃗), the joint
pdf of τ⃗ :

P̄c(DF, t) =

∫
Pc(DF, t, τ⃗)f(τ⃗)dτ⃗ (10)

Fig. 4 shows an example of P̄c(DF, t) function corresponding
to the assumed f(τ⃗) plotted in Fig. 2. This plot indicates that
the mean occupancy probability is a monotonically increasing
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function of both DF and time. Due to averaging effects over
large number of defects with different τ⃗ , P̄c(DF, t) changes
more gradually with time, compared with Pc of a single defect
in Fig. 3.
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Fig. 4. The plot of mean defect occupancy probability function P̄c(DF, t).

Since P̄c(DF, t) is only determined by the distribution f(τ⃗)
and is independent of the circuit structure, it can be pre-
characterized numerically using (10) and stored in a look-up
table (LUT) for use in the circuit analysis.

For small-geometry devices, the number of defects in a
MOS transistor is a relatively small number with relatively
large variation [14]. For a transistor of length L and width W ,
the total number of oxide defects n is empirically modeled as
a Poisson distribution [11]:

n ∼ Poisson(N),

where N = NotWL. (11)

Here Not is the density of defects in the dielectric, and N is
the total number of defects in the MOS transistor. Note that
the Poisson distribution in (11) has similar form as the R-D
model (4), but they are from different underlying mechanisms:
R-D is modeled with interface traps (Si−H bond), while T-
D is modeled with bulk oxide traps (missing oxygen atom
in Si−O−Si bond [24]). Both kinds of traps are modeled
as Poisson distributions due to the random location of the
traps in small devices, however these two distributions are not
correlated in nature.

Similarly, the number of occupied defects, nc, in a transistor
also has a Poisson distribution1, with its mean value Nc

calculated as follows.

nc ∼ Poisson(Nc),

where Nc = N · P̄c(DF, t) (12)

Observed in [15], the BTI-induced threshold degradation
corresponding to each single defect follows an exponential
distribution. Each defect k = 1, ..., n, contributes a threshold
degradation of:

∆V
(k)

th ∼ Exp(η),
where η = η0/(WL). (13)

1The number of occupied defects in a device follows a Poisson distribution
by definition because (a) each occupied defect has the same occurrence rate
Nc/(WL) within the device area of W by L, and (b) the occurrence of
all occupied defects are independent with each other. This is similar to the
number of all defects which follows n ∼ Poisson(N), and is verified by
experimental results in Sec IV.

Like Not, η0 is a technology-specific constant.
The total threshold voltage degradation, ∆Vth, of a transistor

is the sum of contributions ∆V
(k)

th from all occupied defects
k in the transistor, i.e.,

∆Vth =

nc∑
k=1

∆V
(k)

th . (14)

A closed form of this sum is derived in [15], and the PDF
of ∆Vth turns out be to a complex distribution with mean
µ = Ncη and variance σ2 = 2Ncη

2. The mean value
corresponds to the nominal case (i.e., each of Nc defects
results in a threshold degradation of η). In [15], the probit plot
of ∆Vth indicates that for an adequate number of defects (e.g.,
Nc ≥ 10), the transistor ∆Vth distribution can be approximated
as a Gaussian by matching the mean and variance, resulting
in the distribution:

∆Vth-CT ∼ N(Ncη, 2Ncη
2) (15)

When the number of occupied defects, Nc, is sufficiently
large, this Gaussian approximation is justified by central
limit theorem (CLT), using the fact that the total threshold
degradation is the sum of ∆Vth from each defect, which are
i.i.d. exponential. For smaller devices with lower values of
Nc, this Gaussian approximation is not necessarily accurate
for individual devices, but the circuit level timing analysis
results still have good accuracy compared with Monte Carlo
simulation, which can be justified by the central limit theorem
(CLT) because the circuit delay is the sum of the cell delays
along the critical paths and approaches a Gaussian distribution.
A more detailed discussion about this Gaussian approximation
model is available in Sec IV.

C. Process Variations and Spatial Correlation

Variations in the process parameters also contribute to BTI
variability. Process variations are typically classified as lot-to-
lot, die-to-die (D2D), and within-die (WID) variations, accord-
ing to their scope; they can also be categorized, based on their
causes and predictability, as systematic or random variations.
Some (but not all) WID variations exhibit spatial dependence
knows as spatial correlation, which must be considered for
accurate circuit analysis.

We employ a widely-used variational paradigm, where a
process parameter X is modeled as a random variable about
its mean, X0, as [25]:

X = X0 +∆X

∆X = Xg +Xs +Xr

σ2
X = σ2

Xg
+ σ2

Xs
+ σ2

Xr
(16)

Here, Xg , Xs, and Xr stand for, respectively, the global
component (from lot-to-lot or D2D variations), the spatially
correlated component (from WID variation), and the residual
random component of process variations. Under this model, all
devices on the same die have the same global part Xg. The
spatially correlated part is modeled using a widely-used grid-
based method [5] for the parameters that exhibit this property,
and is zero for those that are spatially uncorrelated. Under
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the spatial correlation model, the entire chip is divided into
grids. All devices within the same grid have the same spatially
correlated part Xs; the Xs parameters for devices in different
grids are correlated, with the correlation falling off with the
distance. The random part Xr is unique to each device in the
system.

In this paper we consider the variations in the transistor
width (W ), the channel length (L), the oxide thickness (Tox),
as well as shifts in the threshold voltage Vth due to random
dopant fluctuations (RDFs). In other words, for each device,
X represents elements of the set {W,L, Tox, Vth}. As in
the large body of work on SSTA, we assume Gaussian-
distributed parameters for each of these process parameters,
with W and L exhibiting spatial correlation, and Tox and Vth
being uncorrelated from one device to the next. The spatial
correlation structure is extracted as a correlation matrix [26],
and processed using principal components analysis (PCA)
to facilitate fast timing analysis [5]. The process parameter
value in each grid is expressed as a linear combination of the
independent principal components, with potentially reduced
dimension.

Notationally, we express each process parameter X as a
vector in a random space, with basis e = [eg, es, er, ϵ]

T, as

X = X0 +∆X = X0 + kT
Xe

= X0 + kT
Xgeg + kT

Xses + kT
r er + kϵϵ (17)

σ2
X = kT

XkX , cov(Xi, Xj) = kT
XikXj − kϵikϵj (18)

Here, eg = [eWg, eLg]
T is the basis for the global part

(Tox variation and RDF effect are purely random hence do
not have a global part), es = [e1, ..., et]

T is the basis of
principal components for the spatially correlated part, in which
t is the number of dimensions after the PCA processing of
correlated part, and er = [ϵ1, ..., ϵm]T is the basis of random
part. The dimension of random part, m, will depend on the
implementation of the SSTA algorithm, and can vary from
constant to linear (of circuit size), as will be shown later in
this paper. The random basis er and its coefficient vector kr

are implemented using a sparse data structure. The Gaussian
variable ϵ∼N(0, 1) is a separate independent random part for
use in circuit-level timing analysis.

D. Consideration of Process Variations and BTI Interaction

Process variations are created at manufacture time, while
BTI degradation occurs during the circuit operation. Therefore
the effect of process variations is independent from BTI, but
the BTI effect will be impacted by process variations, i.e., the
BTI degradation is dependent on the actual W , L and Tox
of a transistor. This paper assumes the process variations and
BTI effects (both R-D and charge trapping model including
variabilities) to be independent and uses a superposition model
to calculate the total effect on circuit-level degradations. This
is based on the following facts and considerations.

• The impact of process variations on BTI degradation is
a second order effect that is relatively small in nature.

• For W and L variations, [27] indicates the NBTI effect is
more pronounced in narrow and long transistors. However

the transistors on the critical paths are normally sized
larger (wider) for timing performance, hence less affected
by the W and L variations.

• For Tox variation, a smaller Tox causes elevated BTI
degradation speed, but also gives smaller initial Vth and
propagation delay. Therefore the interaction effect actu-
ally cancels out with each other to some degree, and
ignoring it yields pessimistic and safe approximations.

• The independent assumption simplifies the modeling and
analysis and helps achieve linear computational complex-
ity and good scalability (Section III-C).

III. TIMING ANALYSIS UNDER VARIATIONS

This section introduces the logic cell delay model under
BTI variations and process variations. Based on this model, a
scalable approach for statistical timing analysis of large digital
logic circuits is outlined.

A. Cell Timing Model and Characterization

We use a cell delay degradation model that is similar to [28].
The delay di of cell i is modeled using a first-order Taylor
approximation, as a linear function of process parameters Wj ,
Lj and Tox-j of each transistor j in cell i, and BTI degradation
∆V

(j)
th of each transistor j:

di = di0 +∆di = di0 +
∑

X∈Pi

∂di
∂X

∆X

Here Pi = {Wj , Lj , Tox-j , V
(j)

th }, j ∈ cell i is the set of
variational parameters. The nominal propagation delay di0 and
its sensitivity ∂di/∂X to parameter X ∈ Pi are computed
using standard techniques through SPICE simulations. This
part of the calculation is circuit-independent and performed
as part of library characterization.

Since all variational parameters X ∈ Pi are expressed as
vectors in the random variable space e in Section II-C, di,
which is a linear combination of these parameters, is also a
vector in space e:

di = di0 +

( ∑
X∈Pi

∂di
∂X

kX

)T

e

= di0 + kT
dg
eg + kT

ds
es + kT

dr
er (19)

Here the random part er = {ϵX}X∈Pi is extended to include
the random parts from all variational parameters X ∈ Pi in
cell i.

B. Circuit Level Timing Analysis

At the circuit level, timing analysis is performed using a
PERT-like traversal [5] at a fixed time point, where the con-
tributions of the temporal BTI variations can be characterized
using the models described in Sections II-A and II-B. The Vth
degradation due to these two models are uncorrelated, and are
found to substantially affect the circuit level delay.

In our initial implementation of algorithm, as in [7], the
random part kT

r er of arrival time is merged into the separate
independent term kϵϵ that is the product of scalars to reduce
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the computational complexity. The temporal statistical static
timing analysis (T-SSTA) result of this method is denoted as
T-SSTA1. Table I shows the mean and standard deviation of
circuit delay degradation on benchmark c3540 under a 16nm
technology model at t=2000 (a.u.), splitting the contribution
of the mean and variance into those attributable to BTI R-
D, BTI charge trapping (CT), process variations (PV), and
finally presenting the combined values (ALL). The results of
mean and standard deviation calculated by Monte Carlo (MC)
simulation are listed as reference, and the results indicate that
the mean value of delay degradation is mainly contributed by
BTI RD and BTI CT, while the standard deviation is mainly
contributed by BTI CT and PV effects. By comparing results
for “ALL” from T-SSTA1 method with MC, we can see T-
SSTA1 overestimates the mean value and underestimates the
standard deviation, where the errors are mainly coming from
the BTI CT part.

TABLE I
T-SSTA RESULTS UNDER VARIATIONS (TIME UNIT: PS)

c3540 16nm MC T-SSTA1 T-SSTA2 T-SSTA3
D0=582.3 µ∆D σ∆D µ∆D σ∆D µ∆D σ∆D µ∆D σ∆D

BTI RD 23.8 3.6 23.8 3.7 23.8 3.7 23.8 3.7
BTI CT 29.8 8.9 29.7 8.8 29.6 8.8 29.6 8.8

PV 0.5 14.8 4.2 14.1 0.3 14.6 1.3 14.6
ALL 53.9 17.2 57.1 17.0 54.0 17.5 54.8 17.4

F2

F1

Fig. 5. An example circuit showing path reconvergence.

Investigating this further, we find that the error between
conventional method (T-SSTA1) and Monte Carlo (MC) sim-
ulation can be attributed to the correlations that arise due
to path reconvergence, which are neglected in T-SSTA1. The
BTI CT part of Vth degradation contains a significant amount
of independent random component in the form (17), hence
generates large errors due to path reconvergence. We illustrate
the path reconvergence effect through Fig. 5, which shows
an example circuit where the arrival time AT of node N11,
denoted as ATN11, is calculated as follows

ATN11 = max (ATN8 + dF1, ATN9 + dF2) (20)

where ATN8 and ATN9 stand for the arrival times of node N8
and N9, while dF1 and dF2 stand for the delays from the first
and second input to the output of cell F . The arrival times
and cell delays are modeled as vectors in random variable
space e. Note that since cell C and D have a common fanin
of cell B, ATN8 and ATN9 are both dependent on the random
component of the parameters of cell B, corresponding to the
impact of Xr in Equation (16). As a result, the independent
components in the expression for ATN8 and ATN9 are not

independent of each other, but are correlated. However the
conventional SSTA method, using an separate independent
term kϵϵ to replace krer, does not capture this path corre-
lation and introduces errors. The same situation occurs when
calculating the total delay using the maximum of ATN10 and
ATN11, which are correlated because the paths from node N8
reconverge.

One natural way to resolve this problem is to preserve the
entire random part krer when calculating the arrival times, by
which the path correlation is captured. This method is denoted
as T-SSTA2 in Table I, and the results indicate this method is
much more accurate than T-SSTA1. However, the cost paid for
this accuracy is in the increased computation time associated
with the growing size of the random part (e.g., ATN11 in the
example contains components from cells B, C, D, and F ).
The computational complexity is discussed with more details
in Section III-C and the experimental runtime and storage
comparison will be given in Section IV.

We employ a third method, denoted as T-SSTA3 in Table I,
taken from [29], to provide a trade off between the accuracy
and complexity. This removes only the smaller elements in
the random vector kr using preset threshold and merges them
into the separate term kϵ. Results in Table I show that this
method achieves good accuracy (within 2% error compared
with T-SSTA2 and Monte Carlo) with low computation. We
will expand on this in Section IV.

C. Computational Complexity

To calculate the circuit delay, the SSTA algorithm does a
topological traversal through the digital circuit. For each node
(logic cell), the timing analysis performs k sum-of-two and
k−1 max-of-two operations, where k is the number of fan-in
of the cell. In random space e with dimension d, the numbers
of total sum and max operations for SSTA are

Nsum = n · k · d (21)
Nmax = n · (k − 1) · d (22)

Here d = dg + ds + dr, in which dg, ds and dr are the
dimension of global component eg, spatial component es
and random component er, respectively. The values of dg
and ds are well bounded by PCA algorithm therefore can
be regarded as constant. The values of dr depends on how
the random part is handled as discussed in Section III-B. For
methods T-SSTA1 and T-SSTA3 dr is bounded by a constant,
while for T-SSTA2 dr can grow significantly depending on
the circuit size and structure. For simplicity it can be roughly
approximated as dr ∝

√
n, which corresponds to the depth of

the circuit (number of cells on the critical paths). Therefore the
computational complexity is O(n) for T-SSTA1 and T-SSTA3,
and O(n1.5) for T-SSTA2. This result indicates the proposed
T-SSTA3 method has good scalability to handle large scale
circuits.

IV. RESULTS

Our approach for timing analysis under BTI variations
and process variations is applied to ISCAS85 and ITC99
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benchmarks. The benchmark circuits are mapped to a sub-
set of the Nangate cell library [30] using ABC [31], with
placement carried out using a simulated annealing algorithm.
The benchmark circuits are scaled down to 32nm, 22nm and
16nm for comparisons under different technology models.
The characterization of cell delay and of its sensitivities to
variational parameters is performed using HSPICE simulation
under PTM models [22]. Both the proposed analytical method
and the Monte Carlo method (for verification) are implemented
in C++ and run on a Linux PC (3GHz CPU, 2GB RAM).

The process variations in W , L, and Tox are set to 3σ = 4%
of their mean values [32]. The Vth variation due to RDF
is dependent on the device size [20]. It has a Gaussian
distribution with mean value µ = 0, and standard variation

σVth = σVth0

√
W0L0

WL
(23)

in which σVth0 is the RDF-induce threshold standard deviation
of a minimum-sized device (W0 by L0). The value of σVth0

is dependent on process parameters Tox and Na, as well
as the doping profile of the channel [20]. Here we assume
3σVth0 = 5% of the nominal Vth. The parameter variations
of W and L are split into 20% of global variation, 20% of
spatially correlated variation and 60% of random variation,
while the variations of Tox and Vth are fully random. The grid-
based spatial correlation matrix is generated using the distance
based method in [26], with the number of grids growing with
circuit size, as shown in the Table III.

The Monte Carlo simulation framework for verification of
the proposed approach is set up as follows: the simulation
program randomly generates 5000 circuit instances (we found
it a good trade-off of accuracy and runtime). For each circuit
instance, the ∆Vth of each MOS transistor is calculated as the
sum of the following three components:
(a) ∆Vth-RD, which is set by (5) and is randomly generated

based on the distribution of ∆NIT as specified in (4),
(b) ∆Vth-CT, which is set as the sum of ∆Vth of all defects

that are randomly generated using distributions (11) and
(13), and

(c) ∆Vth-RDF, which is due to RDF effects and set by (23).
The contributions of ∆Vth-RD and ∆Vth-CT vary with different
technologies [3]. In the experiments it is assumed that these
two have comparable mean values, so that their contributions
to circuit-level variations can be easily visualized. The process
parameters W , L, and Tox of each MOS transistor are also gen-
erated according to their distributions and correlation models.
Then the propagation delay of each cell is calculated using (19)
and pre-characterized cell delay and sensitivity data. Based
on these values and a PERT-like traversal, the total delay of
the circuit instances is evaluated using statistical static timing
analysis (SSTA).

For each benchmark circuit, the mean and standard devia-
tion of the circuit delay are calculated at time t=2000 (a.u.),
using the proposed analytical method and Monte Carlo (MC)
simulation. The three methods of handling random parts
discussed in Section III-B are implemented separately. As
before,

• T-SSTA1 merges the random part into one variable,

• T-SSTA2 preserves full random part, and
• T-SSTA3 partially lumps the random part.
Table II shows the nominal delay D0 of each benchmark

circuit, as well as the mean µ and standard deviation (SD),
σ, of the circuit delay using three analytical methods and the
MC simulation, at 32nm, 22nm, and 16nm. The last row shows
the relative error of µ∆D and σD of each analytical method,
compared with MC.

The mean and SD of the ∆Vth contributions (averaged
over all devices in the circuit) from the R-D model and
from the charge trapping model are also listed in Table II.
Note that the simulation is based on the assumption that
the ∆Vth contributions (mean value) from R-D model and
charge trapping model are comparable. This assumption is
made to give a general insight that the charge trapping model
predicts significantly larger BTI variability than R-D model.
The proposed approaches for circuit degradation analysis is
actually independent with this assumption and can handle
different cases of the BTI degradation model. In general cases
of application, both R-D and charge trapping model of BTI
effects can be characterized for given technology and used for
analyzing the circuit timing degradations.

It is also worth noting that under certain cases (especially
at 16nm, under the charge trapping model), the value of
3σ can be larger than µ, indicating Gaussian distribution
may not be an accurate approximation of ∆Vth since ∆Vth
from BTI effects should always be positive. However this
inaccuracy of the Gaussian approximation is averaged out by
the sum of delay along the critical path, and the circuit level
delay, calculated by sum and max operations in SSTA, and
approaches a Gaussian distribution according to the central
limit theorem (CLT), which does not require the transistor
∆Vth to be Gaussian. Therefore the proposed method appears
to be robust even under this model inaccuracy, as verified
by the good accuracy indicated in Table II, and the visually-
verified match between distribution functions plotted in Fig. 6,
which shows an example of the circuit delay distribution
for c3540 at 16nm at t=2000 (a.u.). The T-SSTA3 and MC
methods match well, verifying the validity of our assumptions;
T-SSTA1 is significantly different, due to the omission of path
correlations.
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Fig. 6. The delay PDF and CDF of c3540 with 16nm model.

Table III compares the runtime and storage complexity (in
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TABLE II
MEAN AND SD OF CIRCUIT DELAY USING DIFFERENT METHODS (TIME UNIT: PS, AVERAGE ERROR SHOWN FOR µ∆D AND σD )

Circuit & Initial T-SSTA1 T-SSTA2 T-SSTA3 MC Vth-RD(mV) Vth-CT(mV)
Technology D0 µD σD µD σD µD σD µD σD µ σ µ σ

c2670 734 802 13.3 795 14.6 796 14.4 794 14.7 17.8 3.3 16.9 6.1
c3540 812 910 15.6 903 16.7 904 16.7 903 16.5 17.7 3.1 16.6 5.7
c5315 666 736 12.9 735 13.1 735 13.1 735 12.9 18.1 3.2 17.5 6.0
c6288 1416 1580 23.5 1574 24.1 1576 24.0 1574 23.6 17.3 2.9 16.5 5.3

32 c7552 650 714 11.6 709 12.5 710 12.5 710 12.4 18.2 3.3 17.6 6.2
nm b15 1416 1580 24.2 1571 26.2 1574 25.7 1572 25.9 17.0 3.1 16.5 5.6

b17 1634 1770 27.0 1750 29.1 1757 28.5 1752 28.7 16.6 3.1 16.1 5.5
b20 1432 1566 24.1 1554 26.8 1555 26.7 1555 26.3 17.8 3.2 17.3 6.0
b21 1598 1765 27.0 1757 29.9 1758 29.7 1758 30.5 17.8 3.3 17.4 6.1
b22 1520 1655 23.4 1645 25.3 1646 25.1 1645 25.3 17.4 3.2 17.0 6.0

Avg Err % 7.24 6.19 0.46 1.36 1.22 1.36
c2670 617 669 12.6 663 13.8 664 13.6 663 13.9 18.1 4.6 17.4 9.0
c3540 671 760 15.1 754 16.5 755 16.4 754 16.7 17.6 4.3 16.7 8.1
c5315 557 625 11.9 624 12.2 624 12.1 624 12.3 17.7 4.4 17.0 8.4
c6288 1211 1366 22.8 1359 23.5 1362 23.3 1359 23.6 17.3 4.0 16.6 7.7

22 c7552 549 607 10.6 601 12.3 602 12.2 601 12.3 17.9 4.5 17.3 8.8
nm b15 1151 1287 23.9 1274 27.4 1275 27.0 1275 26.4 16.8 4.3 16.2 8.0

b17 1312 1444 23.7 1437 24.4 1443 23.4 1440 25.4 16.5 4.3 16.0 7.9
b20 1144 1293 23.4 1273 27.8 1274 27.6 1274 28.0 18.1 4.5 17.6 8.9
b21 1251 1392 25.0 1388 26.9 1388 26.8 1388 26.6 18.0 4.5 17.6 8.9
b22 1252 1379 23.0 1371 24.7 1372 24.6 1372 24.9 17.7 4.5 17.4 8.8

Avg Err % 7.48 8.45 0.75 1.50 1.30 2.16
c2670 537 592 13.9 582 15.7 584 15.4 582 15.9 18.5 6.2 17.9 12.7
c3540 582 657 17.5 652 18.1 653 18.0 652 18.9 17.0 5.4 16.1 10.7
c5315 489 570 14.2 567 14.6 568 14.5 568 15.1 18.2 5.8 17.7 12.0
c6288 1092 1253 26.2 1247 26.7 1251 26.5 1247 26.6 17.3 5.3 16.6 10.5

16 c7552 480 559 12.9 545 16.8 548 16.6 546 16.9 18.2 6.0 17.6 12.4
nm b15 986 1143 26.0 1121 31.9 1124 31.2 1125 33.1 16.8 5.6 16.3 11.0

b17 1100 1318 28.6 1293 33.2 1299 32.8 1293 33.6 16.7 5.6 16.2 11.0
b20 941 1083 23.6 1075 23.5 1080 23.0 1078 25.2 17.9 5.9 17.4 12.1
b21 1038 1158 26.7 1148 30.5 1149 29.8 1149 31.1 17.2 5.8 16.7 11.6
b22 1072 1219 25.8 1206 29.0 1207 28.7 1208 29.1 17.9 6.0 17.5 12.2

Avg Err % 9.97 11.95 0.97 2.39 1.53 3.64
Total Avg Err 8.23 8.86 0.73 1.75 1.35 2.39

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITIES, WHERE Texe=
RUNTIME, [CELLS] = AVERAGE NUMBER OF CORRELATED CELLS.

Circuit Size T-SSTA1 T-SSTA2 T-SSTA3 MC
Name #cells #grids Texe Texe [Cells] Texe [Cells] Texe

c2670 759 16 3.4s 5.8s 26.2 6.7s 3.0 108s
c3540 1033 16 5.7s 13.5s 109.0 12.8s 2.7 201s
c5315 1699 16 7.2s 14.1s 40.8 15.2s 2.9 261s
c6288 3560 64 17.1s 137.8s 473.6 38.9s 2.8 627s
c7552 2361 36 9.8s 21.1s 53.7 20.3s 3.2 352s
b15 6548 100 34.8s 352.4s 512.1 89.6s 3.0 1181s
b17 20407 361 109.3s 1513s 421.6 306.0s 3.5 3645s
b20 11033 169 55.2s 482.1s 362.3 139.0s 3.4 1926s
b21 10873 169 52.9s 439.1s 351.4 133.5s 2.8 1845s
b22 14794 225 72.4s 671.2s 304.9 188.1s 3.1 2507s

terms of the average number of correlated cells, denoted as
[Cells]) of the analytical methods and MC. Fig. 7 shows the
runtime vs. circuit size (number of logic cells) for the different
methods.

The results indicate that the runtime of partially lumping
random part (T-SSTA3) method grows linearly with circuit size
increasing, indicating good scalability. It has an overall error of
about 2% to MC, and is 15× faster on average. Furthermore, it
reduces runtime by 60% and storage by 98% on average com-
pared with T-SSTA2, with similar accuracy. The conventional
method (T-SSTA1) has the shortest runtime, but has nearly
9% errors with respect to MC. The results also verify that
the Gaussian approximations for ∆Vth in BTI R-D and charge
trapping models are valid; the method is accurate, efficient, and
scalable. Moreover, the standard deviation of circuit delay σD
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Fig. 7. Runtime vs. circuit size of different methods.

increases with technology downscaling, indicating that random
timing variation attributable to BTI is a growing issue.

Fig. 8 shows the variance of circuit delay that originates
from process variations, R-D BTI variations, and charge
trapping BTI variations separately, for different benchmarks
under the 32nm, 22nm, and 16nm technology models. For
better presentation of data, the variances are normalized to
the total variance of 32nm model for each benchmark. These
results indicate that the charge trapping model is the dominant
component of BTI variations, and makes a significant contri-
bution to circuit delay variation. In contrast, the BTI variations
under the R-D model only introduce a relatively small portion
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variation to circuit delay variation.

of delay variations. Unlike process variations which have
nearly constant influence on delay variation, the impact of BTI
variations grows with scaling, becoming increasingly severe in
future.

Further, according to the results in Table II and Fig. 8,
the circuit level delay variation that can be attributed to
BTI variations is not as significant as the single-device ∆Vth
variation due to BTI effect of a small transistor shown in
Fig. 1 (b). This is mainly due to the facts that (a) transistors
on the critical paths usually have larger than minimum sizes
to help with timing, and (b) the average out of randomness of
the transistor ∆Vth on the critical paths due the sum of delay.
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Fig. 9. Delay degradation vs. time of c5315

Fig. 9 presents the circuit delay degradation vs. time curves
of benchmark c5315 at 16nm. Three curves are shown for
the normalized delay of (1) nominal BTI degradation, without
any variation model; (2) µ + 3σ of process variation (PV)
and nominal BTI degradation; and (3) µ + 3σ of PV and
BTI with variabilities (under both R-D and charge trapping
models). The results indicate that BTI degradation and vari-
ability, which grow with time, make up the dominant part of
total delay degradation, especially at the later point of circuit
lifetime. Furthermore, BTI variations has a significant impact
on circuit reliability. In this case, the circuit lifetime will be
overestimated by over 2× if BTI variations is not considered
(lifetime defined as 25% increase of delay from time zero).

V. CONCLUSION

This paper incorporates both the R-D and charge trapping
models of BTI variations into a T-SSTA framework, capturing

process variations and path correlations. Experimental results
show that the proposed analysis method is fast and accurate.
Our results indicate that the charge trapping mechanism, which
has been neglected by the EDA field so far, is the dominant
source of BTI variations, with significant and growing contri-
butions to circuit timing variations.
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