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Beyond edge devices can operate outside the reach of the power grid and without batteries. Such devices
can be deployed in large numbers to regions which are difficult to access. Using machine learning, these
devices can solve complex problems and relay valuable information back to a host. Such devices have been
proposed for use as nano-satellites, where many devices are deployed into low earth orbit. Due to the harsh
and unpredictable environment, devices must be highly energy efficient, capable of operating intermittently,
and be tolerant of radiation. Here, we propose non-volatile processing-in-memory (PIM) architecture which is
capable of extreme energy efficiency, has low overhead checkpointing mechanisms, can operate at wide range
of temperatures, and has a natural resilience to radiation.
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1 INTRODUCTION

Beyond edge devices collect energy from the environment, allowing them to operate off the grid and
without a battery [11, 55]. This enables them to function in environments which would otherwise
be impossible, such as in the remote wilderness [82], within the human body [39], and out in
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space [73]. This capability opens up many new possible applications. Running machine-learning
algorithms on beyond edge devices is particularly attractive to due its versatility [37]. Utilizing
neural networks (NN) or support vector machines (SVM), such devices will be able to solve a wide
variety of problems.

However, engineering devices to operate beyond the edge is difficult. As they must collect energy
from their environment, the power source will be unreliable. The devices must frequently power off,
turning back on when energy is available. This is referred to as intermittent computing, which comes
with a performance and energy efficiency overhead. In order to prevent total loss of information
during intermittent operation, beyond edge devices must do additional work in 3 categories [32]:
1) Backup: Save data and the current architectural state (writes to non-volatile memory), 2) Dead:
Re-perform work which was not able to be saved on the last shutdown, and 3) Restore: Re-start
the device after a shutdown. Beyond the additional latency and energy overheads, intermittency
also makes it a challenge to guarantee correctness of a program. Power interuptions can introduce
memory inconsistencies which lead to incorrect operation [16, 73]. For conventional embedded
systems, sophisticated software strategies are required to ensure that an interruption at any point
does not induce corruption [37, 95].

Previous work has shown that non-volatile processing-in-memory (PIM) architectures are promis-
ing for use in beyond edge devices. MOUSE [93] is a PIM architecture which demonstrated high
performance, extreme energy efficiency, and low complexity checkpointing mechanisms. It has 3
advantages over traditional architectures.

(1) Inherently intermittent safe logic operations
(2) Automatic and instantaneous data backup
(3) Highly energy efficient and highly parallel operations

Advantage 1 enables MOUSE to simplify its checkpointing strategies. Operations performed in
the memory can be interrupted or performed multiple times without introducing corruption.
Hence, data remains consistent as long as operations are performed sequentially. Advantage 2
reduces overhead for checkpointing. Normally, a device will have to write volatile data back to
memory to save progress before shutdown. Since MOUSE does all its computation in non-volatile
memory, progress is saved automatically after every operation. Finally, Advantage 3 enables high
performance within low power budgets.

Recently, there has been much excitement about the use of beyond edge devices as nano-satellites
[74] deployed in low earth orbit (LEO). Such devices could provide valuable services such as
agricultural monitoring [114], security, and environmental and structural monitoring [74]. Nano-
satellites can be much more cost effective than traditional monolithic satellites. However, orbital
deployment for use as a satellite further increases the challenge of engineering such devices. One
difference is that the cost of communication is much greater than computation (even more so than
for terrestrial deployment) [37, 74]. This shifts emphasis towards performing more computation
and holding more data on the device, and away from frequent communication [26]. MOUSE is
well-suited for this challenge as it has a large memory capacity (due to consisting nearly entirely
of high density non-volatile memory), enabling it to potentially go long periods of time and store
more results before attempting transmitting.

An additional challenge for beyond edge devices deployed in LEO is that they must operate at
a wide range of temperatures. Satellites can get both very cold (-170C) and very hot (123C) [65].
Large scale satellites can be engineered to perform temperature modulation [8]. However, small,
cheap beyond edge devices may not be able to use such strategies. Fortunately, CMOS can perform
well across this wide temperature range, and the performance of CMOS circuit actually tends to
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increase with decreasing temperature [105, 122]. However, cold operation can have adverse impacts
on non-volatile memory, where the energy efficiency degrades [48, 62, 92, 121, 125].

Another complication of orbital deployment is radiation. Even in terrestrial deployment, radiation
can induce soft errors in CMOS circuits [9], potentially corrupting the architectural state. Without
the earth’s atmosphere to shield radiation from space, satellites will be exposed to increased levels
of radiation. Circuit level strategies should be used to mitigate this impact [102], however these
will come with power, latency, and area overheads.

In this work, we extend the design of MOUSE [93] to be suitable for orbital deployment. We
demonstrate that MOUSE can operate over a wide temperature range (despite non-ideal impacts
on non-volatile memory) and evaluate its performance at the extremes. MOUSE has an inherent
resilience to radiation due to ideal properties of the non-volatile memory it uses [35, 57], but still
requires CMOS circuitry to drive operations. We show that even after adding overhead to account
for the hardening of CMOS circuitry to radiation [130], MOUSE remains highly energy efficient
and performant. We also extend the MOUSE PIM instruction set [93] and add architectural support
for branch instructions, which increases the programmability of the device. Finally, we introduce
more hardware efficient column activation mechanisms for enabling logic in the memory. The
result is a programmable, high performance, and extremely energy efficient beyond edge device
which is suitable for deployment in space.

2 NON-VOLATILE PIM

Any non-volatile memory technology can be used as a PIM substrate, including RRAM [118] and
PC-RAM [64]. In this work, we focus on Magnetoresistive RAM (MRAM) [85, 116] which has both
high density and high endurance. Due to its highly ideal properties, it is even being considered as a
universal memory replacement [28] and a few commercial products are already available [1, 2].
Spin-Torque Transfer (STT) MRAM uses the magnetic tunnel junction (MT]) as its memory element
and each memory cell contains one MTJ and one access transistor.

STT-MRAM arrays were modified to enable PIM, creating Computational RAM (CRAM) [14]. It
has a unique advantage in that it does not require the use of sense amplifiers or any digital circuitry
in the array periphery. The structure of CRAM allows boolean logic operations to be performed
within the memory, simply by applying a voltage along the bitlines. The computation remains
entirely inside the array at all times. In this work, use two variants of CRAM, an optimized version
of the standard STT [94] and an extension which increases energy efficiency with a Spin-Hall Effect
(SHE) channel [128].

2.1 Magnetic Tunnel Junctions

Magnetic Tunnel Junctions (MT]Js) are the resistive memory elements used by STT-MRAM. MT]Js
consist of two magnetic layers (a fixed layer and a free layer) separated by a thin insulator. The
polarity of the free layer can change, but the fixed cannot. If the two magnetic layers are aligned
(referred to as the parallel (P) state), the MTJ has a low resistance - which is assigned the logic
value 0. When the layers are not aligned (the anti-parallel (AP) state), the MTJ has a high resistance
- which is assigned logic value 1. The MT] will change states if a (relatively) large amount of
current is passed through it. The state it transitions to is determined by the direction of the current.
If electrons flow from the free (fixed) layer to the fixed (free) layer, the MTJ will switch to the
AP (P) state. The current required to change the state is referred to as I,,;;ch. A current greater
than or equal to I;cp, Will induce switching and a current below I, Will leave the state as
is. The voltage required to induce switching can be referred to as Vsyizcp, and is determined by
Vswiteh = Lswiten X Rm1y, where Ry is the resistance of the MT]J. Hence, V;,,iscn Will also depend
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on the state (P or AP) of the MT]J. As will be discussed in Section 5.1, the operating temperature
will also significantly impact the voltage required.

To read the value of the MT]J, a voltage below V;,,;;ch (to avoid switching) is applied across it.
The amount of current which passes through it is a function of its resistance (state), allowing it
to be detected by a sense amplifier. To write the state of the MT]J, a voltage higher than V¢ is
applied across it. The voltage will induce a sufficient amount of current through the MTJ to change
its state.

2.2 Logic Operations with MT]Js

MT]s can be used to perform logic operations if they are connected together in a circuit. An example
of a circuit which can perform a 2-input logic operation is shown in Figure 1. Two input MT]Js are
connected in parallel, which are in series with an output MT]J. Before the logic gate, the two inputs
can be in any state, but the output MT] must be preset to a known value. After the logic gate is
performed, the state of the output MTJ should be a function of the two input MT]Js.

For example, a NAND gate requires the output to be preset to 0 (low resistance). A voltage is
then applied across the terminals V; and V3, such that electrons flow from the input MTJs to the
output MT]J. If both inputs are 1 (high resistance), the current will be held sufficiently low to prevent
switching of the output MT] - it will remain at 0. If either of the inputs is 0 (low resistance), there
will be enough current to induce switching on the output MTJ. As electrons are flowing from the
free layer to the fixed layer of the output MT]J, it will switch to 1.! Hence, the output MTJ is the
logical NAND of the two inputs; 0 if both are 1, and 1 if either is 0.

Different gates, such as NOT, AND, and N(OR) can be performed by changing the number of
inputs, direction of the current, and the preset of the output. Sequences of these gates can be used
to perform more complex operations. A full-add can be done with 9 NAND gates. Additions and
multiplications can be performed with sequences of full-adds. As the gate set is universal, any
computation can implemented.

Input MT]Js Output MT) wLO

]

e
Vl ? WL1

"
Fig. 1. MTJs connected to implement a 2-input v )|
logic gate. The preset value of the output MTJ and y
the polarity and magnitude of the voltage applied
between Vi and V, determines the type of logic
gate. The fixed layer is colored in grey and the

free layer in light blue.

ITE'“

ITE'“

BLEO BLOO LLO | BLEL BLO1 LL1
Fig. 2. 4 cells in 2 columns and 2 rows in TTIM
(one access transistor, one MTJ) STT configura-
tion.

2.3 STT Array Architecture

The optimized STT variant of CRAM is nearly identical to a standard STT-MRAM array [94]. Four
cells located in two adjacent rows and columns are shown in Figure 2. It has one MT] and one access
transistor in each cell. A standard STT-MRAM array contains two bitlines (typically referred to as
bitline and bitline bar). CRAM has three bitlines per column, bit line even (BLE), bit line odd (BLO),

Due to the direction of the current, the output MTJ can only be switched to 1, it cannot be switched back to 0.
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and the logic line (LL). BLE connects to even rows and BLO connects to odd rows. LL connects
to all rows through the access transistors. The existence of three bitlines is essential for enabling
computation, which is explained below. As with standard STT-MRAM, there is a wordline (WL) in
each row that controls the access transistor. We now describe how memory and logic operations
are performed in the array.

Read: To read from row n, activate WLn. Apply a voltage differential, V}.,q, across LL and the
BLE/BLO. Current can be sensed on the bitlines. V,.,q should be lower than Vg,,;sch.

Write: To write to rown n, activate WLn. Apply a voltage differential, V.,ize, across LL and the
BLE/BLO. To write 0 (1), the voltage on BLE/BLO should be higher (lower) than on LL. V., should
be larger than Vj,isch.

WL1

I
} Input MTjs  Output MT)
I I
‘ —
‘F T
I
I
v, V.
WL - ! >

sLeol | BLoo Lo
iV,

Fig. 3. Demonstration of how a (2-input) NAND gate is performed within the array.

Logic Operation: To perform a logic gate with two inputs in rows ny, n; and with the output
in row m, preset row m by performing a write operation.  n; and n; must have the same parity
(i.e., both even or both odd) and m the opposite. Activate WLn;, WLn; and WLm. Apply a voltage
differential, Viogic> across BLE and BLO. Due to the parity requirement, in Figure 1, if V; is connected
to BLE, V, must be connected to BLO, and vice versa. LL connects the free layers (in light blue) of
the input and the output MTJs. Current travels from one bit line (either BLO or BLE, depending on
the parity of the input cells), through the MTJs in rows n; and n,, through the LL, through the MT]
in row m, and back to the other bitline. Depending on the states of the MTJs in rows n; and ny,
the state of the MT]J in row m will either change or not. Figure 3 shows how a NAND gate can be
performed inside the array. Vjo4;c must be within a specified range for each type of logic operation
[94, 127].

Only one operation (read, write, or logic) can be performed in each column at a time. However,
operations can proceed in many columns simultaneously. The restriction is that (within a single
array) the same operation with the same inputs and outputs must be performed. For example, a
NAND gate can be performed in all columns with the inputs in rows n; and n, and the output in
row m.

It may be desirable to perform computation in all columns, or in just a subset of columns. The
peripheral circuitry determines which columns participate in every operation. The mechanism for
activating columns is covered in Section 3.3 and the instructions which control it in Section 3.4.

ZWrite operation need only be performed if it is not already known to be the correct preset value.
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Fig. 4. A magnetic tunnel junction (MTJ) inte-
grated with a Spin-Hall Effect (SHE) channel has W1
seperate read and write paths. BLeoT 18Loo ol BEl B0l e

Fig. 5. 4 cells in 2 columns and 2 rows in 2TTM
SHE configuration.

Effectively, each column acts as an independent thread which has access to the memory cells
within the column. This is highly analogous to the the SIMD lanes of a GPU architecture, where
each lane (column) performs the same operation on different data. The active columns act like the
bitmask in a GPU, where only active columns perform the operation. However, each column is
limited to boolean logic gates (whereas a GPU would have an ALU). Hence, computations in each
column are relatively slow, but performance is achieved with a high degree of parallelism.

2.4 SHE Array Architecture

The energy efficiency of MTJ write and logic can be significantly improved by utilizing a Spin
Hall Effect (SHE) channel [128]. SHE channels are compatible with both CMOS and MTJs and
prototypes have been successfully demonstrated [34]. Proposed memory technology based on this
same technology is called Spin-Orbit Torque (SOT) MRAM [34, 85].

The SHE channel provides a more efficient mechanism for switching the state of the MTJ. The
combined MTJ and SHE channel is shown in Figure 4. There are two current paths through the
device. For the write path, current passes only through the SHE channely. Despite not travelling
throught the MT]J body, this current can change the MT]J state. A lower current density is required
and the voltage V,,,ize can be lowered. This benefit extends to logic operations and Vj,g; as well.
The read path passes through the MT] body, just as with STT-MRAM, and read operations remain
the same.

Four augmented cells in two rows and two columns are shown in Figure 5. For the SHE design,
there are two word lines per row, word line for read (WLR) and word line for write (WLW). WLR
connects the cell to the read path, via t,.,g9. WLW connects the cell to the write path, via t,,iz.-
twrite connects the SHE channel directly to LL, allowing current to bypass the MT] body. t,rize
is activated when the memory cell is being written, or when it is the output of a logic operation.
treaq connects the end of the MTJ to LL, causing current to travel through the MTJ body. t,¢q44 is
activated when the memory cell is being read, or when it is an input to a logic operation.

The energy efficiency provided by the SHE channel is highly beneficial for beyond edge devices.
Reducing the amount of energy per operation can reduce to total execution time (if the device
is limited by the available energy), as will be shown in the evaluation. Beyond energy efficiency,
the SHE channel also enables more robust logic operations. When performing logic with STT, the
resistance of the output MT]J is in series with the input MTJs (Figure 1). With SHE, only the SHE
channel is in series with the input MT]Js. This makes it easier to distinguish the resistances of the
input MT]Js, reducing susceptibility to voltage fluctuations [128].
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Fig. 6. Overview of MOUSE. Each memory array contains an array of MTJs, a row and column decoder, and
a non-volatile register storing the column bitmask. Sense amplifiers are required for reads but are not used in
computation. The memory controller contains non-volatile registers to maintain the architectural state.

3 MOUSE DESIGN

In this section, we describe the architecture of MOUSE and show how it is uniquely well suited
for beyond edge deployment. MOUSE utilizes CRAM arrays and minimal support circuitry. The
computations performed in MOUSE are energy efficient, highly parallel, and have an inherent
robustness to intermittent operation. The basic architecture and operation semantics are the same as
our previous work [93]. However, we expand the instruction set, improve the method of activating
memory to perform computation, and add hardware support for branch instructions.

3.1 Hardware Organization

Figure 6 shows the architecture of MOUSE. It consists predominantly of CRAM arrays.>* MOUSE
can afford to have a large number of arrays (and hence more memory than is typical for a beyond
edge device) due to ideal properties of MRAM. The memory arrays are not energy costly as MRAM
has a near zero standby power. Hence, MOUSE does not have to worry about static power with
large memory capacity (as would be the case for SRAM/DRAM). Additionally, the area overhead
of MRAM is very small.* For example, NVSIM [29] reports the size of 64MB STT-MRAM array
(nearly twice the capacity required by our largest benchmark) as 15.12mm?. Commercial products
of 256MB and 1GB STT-MRAM memory manufactured by Everspin come in a packages that are
130mm? [1, 2]. For reference, MSP430FR5994 micro-controller, commonly used as a sub-component
of beyond edge devices [18, 37, 42—44, 99], consumes over 100mm?. Additionally, as computation
is performed within the memory arrays, there is no need for an external processor or area costly
volatile memory (such as SRAM). Nearly the entire area budget of MOUSE is available for memory
arrays. We use a size of 1024x1024 for each CRAM array. In addition to the CRAM arrays, MOUSE
requires the following minimal hardware to drive operations and maintain the architectural state

1) A memory controller that reads, decodes, and issues instructions;
2) A non-volatile register for the Program Counter (PC);

3) A 128B memory data register (DR) that facilitates reads and writes;
4) Two non-volatile registers, BR1 and BR2, for branch evaluation;

3Each array also contains a row decoder and column decoder.
4The SHE configuration consumes more area than STT due to the presence of a 2nd transistor, which we detail in Section 6.
However, the area budget still remains modest.
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5) Voltage sensing circuitry for monitoring the power source.

Minimal hardware is required for the memory controller.” With the exception of resolving
branches (covered in Section 3.4.4) and updating architectural variables, its sole responsibility is
repeatedly reading instructions, decoding them, and broadcasting them to the CRAM arrays. We
use a highly simplified instruction set, covered in Section 3.4, hence decoding requires very little
computation. The DR is the same size as one row of the MOUSE arrays and is used for intermediate
storage when transferring data to and from different arrays. BR1 and BR2 hold data near the
memory controller, enabling quick comparison tests for branch resolution. Finally, the voltage
sensing circuitry is standard in beyond edge devices, and is as described in [71].

3.2 Row Activation

In standard memory technology a row decoder activates wordlines for read and write operations.
As described in Section 2.3 and depicted in Figure 3, logic operations require the activation of
multiple rows (up to 3) simultaneously. To avoid increasing complexity of the row decoder, we use a
latching mechanism which holds wordlines high after a row activation [67]. In this manner, the row
decoder can activate rows sequentially with normal operation. The hardware cost is two transistors
per row. Additionally, each logic operation must wait for the three sequential activations, which
increases latency.

3.3 One-Hot Column Decoder

Typically it is desirable to drive logic operations in every column simultaneously. However, it is
frequently preferable to perform computation only in a subset of the columns, leaving data in other
columns unperturbed. Hence, in addition to a row decoder we also require a column decoder, which
will select which columns participate in each operation.

Column activation patterns are different than for rows. With rows, 1-3 rows are activated for
every instruction, and the rows which are activated are typically different on each consecutive
instruction. For columns, typically many are activated simultaneously (commonly all columns or a
large subset). Additionally, columns tend to remain active for long periods of time - (de)activating
columns is a rare event.

Previously, MOUSE relied on a decoder which allowed bulk addressing [93, 104]. Activation for
the column decoder was the same as for the row decoder, except there were reserved addresses which
corresponded to groups of columns and up to 5 column addresses could be specified simultaneously
[93]. In this work, we propose a One-Hot bitmask decoding to reduce the significant complexity of
the decoder.

Rather than an address, a bitmask is supplied to the column decoder. In a 1:1 bit to column
scheme, each bit indicates whether each column should be activated or not. The bitmask is stored
a 1024-bit non-volatile register (corresponding to the 1024 columns in each array) within each
CRAM array. We call this register the column bitmask register (CBR). The CBR can be written
with a standard write operation. The advantage of One-Hot bitmask activation is that the column
decoder complexity is low: no addresses need to be resolved. The activation signal of each bit can
be supplied directly to the columns. The disadvantage is that each activation of the columns (if the
column addresses are changing) must be preceded by a write operation to CBR.

It it possible to use different bit to column ratios. Fore example, a 1:32 scheme could be used,
where each bit activates a consecutive set of 32 columns. This would allow a 32 bit mask to activate
all 1024 columns. This comes with the drawback of being less precise - it cannot activate less than

50Our memory controller is a standard memory controller which has been augmented with the capability to read, decode,
and issue PIM instructions. We simply refer to it as the memory controller for the remainder of the paper.
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32 columns at a time. If computation requires less than 32 columns, additional (and unnecessary)
operations will be performed in all 32 columns. This wastes energy. As a 1024 bitmask is easily
handled by the CBR we maintain a 1:1 ratio.

3.4 Instructions

Instructions for MOUSE are 64-bit and have the formats shown in Figure 7. There are four categories
of instructions, which we explain here.

3.4.1 Memory Instructions. Reads and writes are the standard memory operations, but have ad-
ditional overhead to account for intermittent operation. The data register (DR) is a non-volatile
register the same size as the rows of the CRAM arrays (128B) that holds data between read and
write instructions. A read instruction will read from a CRAM array (at the specified address) and
write the data into the DR. A write instruction will read data from the DR and write it into a CRAM
array (at the specified address). Hence, if there is a power interruption between consecutive reads
and writes, the DR will maintain the data being transferred - circumventing the need to re-perform
the prior read operation. In addition to memory operations which use the DR, there is also a write
immediate instruction, which allows instructions to write data directly into memory.

3.4.2 Logic Instructions. Logic instructions correspond 1:1 with logic gates (as covered in Section
2.2). For example, NOT, (N)AND, and (N)OR are all individual instructions. The instruction specifies
the CRAM array address the operation is to be performed in and the row addresses of the logic gate
(which rows the inputs and outputs reside in). NOT requires two row addresses (1 input, 1 output)
and all others require three row addresses (2 inputs, 1 output). For example, a NAND instruction
may specify it is to be performed in CRAM array 15, with inputs in row 7 and 9, and the output in
row 12. We restrict logic operations to at most two inputs, which are known to be reliable [94, 127],
hence there are only 5 unique logic instructions.

The CRAM array address can specify a single array, or multiple arrays with bulk addressing
[104]. There are reserved memory addresses which correspond to groups of memory arrays. For
example, it may be desirable to trigger an operation in all CRAM arrays. Array address 111111111
can be a reserved address which will send the instruction to all arrays.

3.4.3 Activate Columns Instruction. It is necessary to specify which columns should participate in
each operation. As noted in Section 3.3, consecutive operations typically use the same columns.
Hence, which columns to activate changes infrequently. To take advantage of this, we use a strategy
where columns are activated and then held active. All following logic operations will be performed
in the columns which are held active. To (de)activate columns we use a dedicated instruction,
the activate columns (AC) instruction. As described in Section 3.3, the column decoder simply
activates the columns depending on the values in CBR. Hence, a column activation consists of two
components

(1) A write to the CBR
(2) Triggering of the column decoder to activate columns

Typically an AC instruction will do both components. However, when restarting the device it is
only necessary to do the 2nd. Hence there are two variants of the AC instruction, one which does
both parts (set and activate) and one which only does the second (activate).

The write to CBR acts like a standard write. As noted in Section 3.4.1, a write can use the value
in the DR or an immediate field in the instruction. Hence, there are a total of 3 unique versions of
the AC instruction:

(1) Re-activate: Activate using pre-existing value in CBR
(2) Set and Activate: Use data in DR to set CBR and then activate
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(3) Set and Activate (Immediate): Use data in immediate field of instruction to set CBR and then
activate

3.4.4  Branch Instructions. Branch instructions involve an update to the program counter (PC)
in the event a logical condition holds true. As the logic required to evaluate the condition (e.g.,
checking equality of two numbers) is not complex, it can be implemented efficiently within the
memory controller.

Non-volatile registers, BR1 and BR2, reside in the memory controller and are used for condition
evaluation. We support simple standard branches based on BR1 and BR2.

(1) beq BR1 BR2: branch if BR1 and BR2 contents are equal
(2) bge BR1 BR2: branch if BR1 is equal or greater than BR2
(3) begz BR1: if BR1 equal to 0

Hence, the memory controller evaluates a simple condition based on BR1 (and BR2) and updates the
PC accordingly. Additional instructions are required to write values to BR1 and BR2. This follows
the same semantics as writing the CBR. A dedicated instruction writes to BR1 or BR2, and the value
can come either from the DR or an immediate field in the instruction.

Branch instructions increase programmability by enabling function calls, repetitions of com-
putational blocks, and handling I/O events. However, as the computation for branch instructions
happens in the memory controller, it cannot capitalize on the extreme energy efficiency and large
degrees of parallelism provided by the CRAM arrays. Hence, to remain efficient, branch instructions
should remain a low percentage of instruction count.®

Logic

‘ Opcode ‘ Tile Address ‘ Row Address 1 ‘ Row Address 2 Row Address 3 ‘
Memory

‘ Opcode ‘ Tile Address ‘ Row Address ‘ Immediate Value ‘
Activate Columns

‘ Opcode ‘ Tile Address | Immediate Value ‘
Branch

‘ Opcode ‘ Offset Immediate Value ‘

Fig. 7. MOUSE instruction formats. There are three types of instructions, logic, memory, and an additional
activate columns instruction for configuration. Opcodes are 5 bits; tile addresses, 9 bits; and row addresses 10
bits each. Branch offset is 20 bits. For instructions which allow for an optional immediate value, it consumes
the remaining bits.

3.4.5 Compilation. Compiling high-level code to MOUSE instructions (or any PIM substrate)
requires knowledge of the PIM hardware in order to make efficient use of available parallelism.
This situation is similar to compiling Open-CL or CUDA code for GPU architectures. Unfortunately,
there does not yet exist an equivalent software compiler for PIM.

There is a rich design space, where a multi-dimensional trade-off exists between efficiency, area,
power, and performance. Higher degrees of parallelism are possible by spreading computation out
over more columns. However, this increases power, consumes more area, and adds communication
overhead which reduces energy efficiency. Our strategy was to minimize area by using as few
columns as possible, to maximize energy efficiency. Our data layout is similar to a number of other

% Avoiding branch instructions is easy for machine learning applications. For our benchmarks, we do not need any branch
instructions during a single inference pass. Branches are used only to repeat inference or to handle I/O.
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works which have mapped applications to PIM substrates [67, 104], including machine learning
algorithms [94].

3.4.6 Issuing Instructions. While operations can occur in multiple arrays simultaneously, arrays
do not operate autonomously. All operations are triggered by the memory controller (discussed in
more detail in Section 4). Effectively, there is a single controlling “thread”, and hence there are no
concurrency concerns between individual arrays.

The CRAM arrays in MOUSE hold both data and the instructions. For clarity, we categorize
arrays into instruction arrays and data arrays based on the contents they store. However, all arrays
have identical hardware - arrays can be re-categorized to fit the programmer’s needs.

Instructions and required data are written into the arrays prior to deployment. During operation,
the memory controller repeatedly fetches each instruction from the instruction arrays, decodes it,
and then broadcasts it to the data arrays. Instructions are performed entirely sequentially. The next
instruction does not start until the previous has finished. This is to guarantee correctness, which
will be explained further in Section 3.6 and Section 4.

Different instructions can take different amounts of time to complete. This is because instructions
can activate different numbers of rows, each of which has an associated latency. To guarantee that
all instructions complete, the memory controller waits longer than the longest instruction before
commiitting and starting the next instruction. This time lapse forms a cycle. This conservative
approach to issuing instructions comes with a performance cost. For example, a more complex
event-driven strategy could issue instructions faster. However, we opt for the conservative approach
for three main reasons. The first is that MOUSE is already capable of high performance relative
to other devices in the beyond edge domain (as will be shown in Section 6), hence aggressive
optimization is unnecessary. Second, complex hardware is less energy efficient and makes it more
difficult to guarantee correctness during intermittency. Simplicity is a strength for beyond edge
devices. And finally, energy efficiency (rather than high performance hardware) is the limiting
factor for performance beyond the edge [38]. Devices which use less energy will be able to complete
their programs faster because they will spend less time waiting for sufficient power.

3.5 Power Draw

As power sources for beyond edge devices are highly variable, it is undesirable to connect them
directly to the compute circuitry. A solution is to utilize an energy buffer (capacitor) which is
charged by the power source. The device can consume energy from this buffer, without having
to match the power supplied from the source in real time [73]. Power delivery systems, such as
Capybara [19], have been specifically designed to harvest energy and reliably power beyond edge
devices in such a manner. Because MOUSE uses such an energy buffer, it accumulates energy over
time and consumes it in bursts. This allows MOUSE to consume more power during its power-on
time than the power source provides. However, it is possible to program MOUSE to tune the amount
of power it consumes. The amount of parallelism that is exploited is determined by the instructions.
High degrees of parallelism (many active columns) will enable high performance but also draw
more power. This enables a trade-off between latency and power consumption, which can be
controlled by the programmer.

3.6 Intermittent Processing

Beyond edge devices are powered by unreliable sources and must frequently shut off. Hence, the
devices must be able to maintain correctness of the program during these frequent power cycles.
This is referred to as intermittent processing. In addition to providing a correctness guarantee,
the hardware support for intermittent processing must also be highly energy efficient. Energy is
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Table 1. Four possible cases for re-performing an interrupted AND gate. The output MT] either should or
should not switch for correct operation, and it either did or did not prior to the power being cut.

H Output did not switch before interrupt

Output did switch before interrupt

Output should not switch || Input MTJs prevent the switching of the output MTJ, | Not possible. Input MT]Js prevent switching of out-
both before and after interruption. put MTJ. By construction, repetition cannot induce

switching.

Output should switch Inputs and output did not change prior to interrupt. | The output has already switched to 0 (correct out-
Second attempt has same inputs and will produce | put). Second attempt has the wrong output preset
correct output. value. However, due to the direction of the current,

the output MTJ will remain at 0.

a precious resource for beyond edge devices, and any spent on guaranteeing correctness will be
unavailable for normal program execution.

Satisfying both of these constraints is a challenging task. Previously, sophisticated software
and hardware strategies have enabled intermittent processing on more traditional architectures
[17, 36, 81, 96]. MOUSE is in significant contrast to these strategies. MOUSE is able to checkpoint
after every instruction and maintain correctness with extremely limited additional hardware. In
fact, the memory controller of MOUSE need only maintain a valid copy of the program counter
(PC) and an additional non-volatile status bit in order to guarantee correctness. This strategy is
extremely simple and would be crude for more traditional architectures. However, the novel PIM
architecture enables this strategy to work effectively and efficiently. More sophisticated and complex
strategies are unsuitable and unnecessary. As MOUSE performs the computation in non-volatile
memory, progress is automatically saved after every operation. Hence, there is no additional backup
operations required - a task that has high overhead and complexity in traditional architectures.
Hence, MOUSE can checkpoint after every operation with very low overhead. When MOUSE
restarts, only two pieces of information are required.

(1) What was the last instruction that was completed (valid value of PC)
(2) Which columns were active

Item 2 is held in the CBR register within all CRAM arrays. Hence, the memory controller need only
send a Re-Activate instruction to all arrays, causing the column decoders to re-activate all columns.
Item 1, the PC, needs to be maintained by the memory controller. In order to keep a copy of the PC
up to the last instruction, the memory controller writes (checkpoints) the PC into a non-volatile
register after the completion of every instruction. The correctness of the PC is covered more in
Section 4.2.

In the worst case, MOUSE looses power after an instruction has been completed, but before the
PC can be updated and saved. When power is restored, MOUSE will re-issue the same instruction,
performing it for a second time. However, this does not break correctness as the same result is
obtained if a single instruction is repeated multiple times, i.e., each such repetition is idempotent[46,
113] as will be shown in Section 4.1. The only requirement is that the PC checkpoint happens
strictly after each instruction is performed. It must be known that an instruction has been fully
completed before the PC is updated.

Checkpointing after every instruction not only minimizes the amount of work potentially lost on
shutdown, but it also simplifies the restart process. The simple correctness guarantee, an operation
being idempotent, does not apply to sequences of operations (over multiple instructions). This is
because over the course of multiple instructions, the inputs to logic operations can be overwritten.
If we were to re-perform multiple instructions, these input values may be incorrect. To guarantee
correctness when repeating multiple instructions, software-level policies and additional presetting
operations would be required. While possible, such strategies introduce additional (and unnecessary)
complexity.
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The second requirement on restart is to restore the previously active columns. As the active
columns are stored in the CBR of each memory array, all that is required is for the memory
controller to issue a re-active AC instruction. The column decoder in each memory array will
re-activate its columns and the memory controller can resume issuing instructions. Correctness
during intermittent operation is covered further in Section 4.

3.7 System Integration

When performing the computation for inference, MOUSE is a self-contained system. Memory
arrays hold all the instructions and data and the memory controller drives operations. To act as
a full beyond edge device, MOUSE will need to be integrated with an energy harvesting power
source, a sensor to provide input data, and a transmitter. We assume that input data is stored in
a non-volatile buffer within the sensor. The sensor is given a memory address and is considered
to be a single memory array, where MOUSE can use read instructions to retrieve data from it.
Additionally, the sensor has a non-volatile valid bit, which indicates if new input data is ready.
When MOUSE is ready to receive new input data, it can check the valid bit and begin reading
from the sensor and writing the data into the MOUSE data arrays. These reads and writes are
controlled by instructions in the instruction arrays, hence data transfer is a software controlled
(programmable) process.

When MOUSE finishes inference, the memory controller reads out the data from the arrays, and
writes it into a non-volatile buffer for the transmitter. This buffer is also considered to be another
memory array, where standard write instructions can be used. In this work, we focus only on the
accelerator and do not consider any overhead for the sensor or transmitter.

The programmability of the data transfer process is important. For example, it is possible that
MOUSE could loose power during the process of transferring data in to be processed. If power
is not available for an extended period of time, when MOUSE restarts there may be a new set
of data in the sensor. MOUSE can handle this with branch instructions. If the data in the sensor
is timestamped, the first instruction in the transfer process can be used to copy this timestamp
into BRI. The last instruction of the transfer process can be used to copy the timestamp into BR2.
MOUSE can check the equivalence of BR1 and BR2, and branch back to the beginning of the transfer
to overwrite old data.

4 INTERMITTENT CORRECTNESS GUARANTEE

Beyond edge devices need to protect program correctness in spite of power outages. If not unac-
counted for, interruption due to power outage can corrupt the architectural state. In this section
we show how MOUSE remains correct, even with unexpected power outages. There are two com-
ponents that need to be considered, the correctness of individual in-memory operations when
interrupted or re-performed (Section 4.1) and the correctness of architectural state variables in
transitions between states (Section 4.2). As MOUSE checkpoints after every instruction, we need
only show that each instruction and the transitions between instructions remain correct when
interrupted. We will show that all instructions and transitions are idempotent [46, 113], which means
they produce the same results, even if repeated multiple times. The key to remaining idempotent
is not over-writing data that will be required on restart (or if it is overwritten, in a manner that
does not change the outcome). The architectural state variables and their protection mechanisms
are listed in Table 2. Note that the correctness guarantee covered in this section applies only to
interruptions and power outages. It does not cover errors in the computation itself or perturbations
due to soft errors from radiation.
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Table 2. Architectural state variables and how they are protected under power interruptions.

Variable Volatility Protection Mechanism
Program Counter | Non-Volatile Duplicated, valid copy is read only
Parity Bit Non-Volatile Only flipped after instruction has finished. Flip is an atomic operation
BR1 and BR2 Non-Volatile Write operation guarantee (Section 4.1.2)
CBR Non-Volatile Write operation guarantee (Section 4.1.2)
DR Non-Volatile Read and Write operation guarantee (Section 4.1.2)
Active Columns Volatile Bitmask stored in CBR. Re-actived on restart with AC instruction (Section 3.4.3)
Active Rows Volatile Activated by every instruction
Data Non-Volatile | Idempotent logic operations (Section 4.1), Read and Write operation guarantee (Section 4.1.2)

4.1 Operation Level Correctness

In this section we cover the correctness of individual operations performed in the memory when
interrupted and re-performed. We are considering the most general case, where the power can be
cut at any moment (unexpectedly). Hence, we need to consider what happens when an operation
is interrupted in all its possible stages.

4.1.1 Logic Operations. All logic operations are threshold operations (the output MTJ either
switches or it doesn’t). Hence, there are only two stages for each logic operation, pre- and post-
switching. An additional complication to consider is whether the output MTJ should switch or not.
To be explicit, we use an AND operation as an example. However, the observations here apply to
all gates.

To perform an AND gate, the output MTJ must be in the logical 1 (high resistance) state. Voltage
is applied across the two inputs and the output (as in Figure 1), such that electrons flow from the
fixed layer to the free layer of the output MT]J. This current can potentially change the state of the
output MT]J to 0. If either of the two inputs is 0 (low resistance), the current will be sufficiently
high to switch it to 0. If both inputs are 1, the current will be too low and it will remain at 1. We
must now consider what happens when this operation is interrupted due to power outage, and we
need to re-perform it a second time once power is restored.

Consider first the case where the output MTJ should not switch. This means the input MTJs are
preventing the output MT]J from switching. Hence, the output MT] could not have switched prior
to the interruption. When we re-perform the operation, the initial values of all MTJs are the same.
Hence this is identical to performing it the first time, and again the output MT] will not switch.

Now consider the case where the output MT] should switch. In this case, there are two possibilities:
1) The output MTJ did not switch before interrupt and 2) the output MT] did switch prior to interrupt.
For possibility 1, when re-performing the operation, the initial states of all MT]Js are the same. Hence,
performing it the second time is identical to performing it the first time (minus the interruption).
Hence, this time the operation will be able to finish, and the output MTJ will switch as desired. In
possibility 2, the MT]Js are not in the same state: the output MT] has already switched to 0, whereas
it should be preset to 1. However, the operation remains correct when performing it a second time.
The current applied can only cause the output MTJ to switch to 0, it cannot revert it back to 1.
Hence, after performing it a second time, the output MTJ will remain in the 0 state, as desired.

All four cases are listed in Table 1. The catch here is that repeating a logic gate is effectively
the same as performing the gate for a longer duration. Doing so results in an identical outcome,
regardless of whether the output MTJ switched before interruption (i.e., power outage) or not.

4.1.2  Memory Operations. Re-performing a read operation has no effect on the read data, reading
it a second time will produce the same results. Re-performing a write will over-write whatever
was written the first time. If the data was unable to be written successfully the first time (due to
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interruption) it will be written the second time. If it was written successfully the first time, the same
value will be written twice. As noted in Section 3.4.1, read (write) instructions can involve a write
to (read from) the DR. These are protected by the idempotency of both read and write operations -
a memory operation does not write to any address/register that it also reads.

4.1.3  Column Activation. Column activation involves a write to the CBR in a data array and then
a triggering of the column decoder. The write to the CBR is kept correct by the same semantics
as memory operations (a write can be performed multiple times). The column activation by the
column decoder does not change any non-volatile data, and hence cannot introduce corruption.
The volatile state is entirely lost on shutdown and will be overwritten on restart.

4.1.4 Summary. Power interruptions can waste energy (due to re-performing instructions) but
cannot corrupt the data in memory. Idempotency of all instructions guarantees they produce
the same results, even if performed multiple times. Idempotency is not required beyond a single
instruction as only one instruction is performed between each checkpoint.

_ Re-Activate
Columns

PCO Valid Read Broadcast Write Set
PC1 Invalid v Ins:;L;:t[l]on Command Idle to PC1 Parity Bit
PCO Invalid Read Broadcast Wit a

i Instruction > c;cr):mc::d > Idle g I;ceo > ParitearBit

PC1 Valid 2t PC1 v

Re-Activate
Columns

Fig. 8. Memory controller’s state transitions to ensure correctness of the program counter as MOUSE
transitions from one instruction to the next. Effect of interrupts are dashed and highlighted in red, corrective
measures in blue, and forward progress (guaranteed completion of an instruction) in green.

4.2 Maintaining Correct State

The previous section showed that the individual operations performed in the memory are idempo-
tent. We must also be sure that the memory controller can drive the operations and maintain the
architectural state in an intermittent safe fashion.

4.2.1  Memory Controller. The memory controller repeatedly reads instructions from the instruction
arrays, decodes them, and broadcasts them to the data arrays. The memory controller waits a
sufficient amount of time for the instruction to complete, then updates the program counter (PC).
The PC must be stored in a non-volatile register to prevent loss on shutdown. However, a concern
remains if the update to the PC gets interrupted. If power is lost during a write to the PC register, it
can be corrupted - resulting in incorrect behavior on startup.

We circumvent the issue by maintaining two PC registers, PC0 and PC1, and an additional
non-volatile parity bit. If the parity bit is 0, PCO is valid, and if the parity bit is 1, PC1 is valid.
When the memory controller updates the PC, it takes the value in the valid PC register, updates it
accordingly, and stores it into the invalid PC register. After which, it flips the value of the parity
bit, indicating the advancement to the next instruction. Hence, the memory controller never writes
to the valid PC register, and there is no risk of corruption.
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The setting of the parity bit is analogous to the committing of an instruction in traditional
architectures. As it is a single bit, the operation is atomic, it cannot be interrupted mid-way through.
It either is set or it is not. If an interruption occurs before the setting of the parity bit, the memory
controller will re-issue the same instruction on restart, which is safe to do (covered in Section 4.2.2).
If the interruption occurs after the setting of the parity bit, the instruction has completed and the
memory controller will issue the next instruction on restart. This process is depicted in Figure 8.

There are other non-volatile registers that hold the architectural state. This includes the data
register (DR), branch registers (BR1 and BR2), and the column bitmask registers (CBR) in each array.
These registers are protected by the same semantics as in Section 4.1.2. If values are overwritten,
they are guaranteed to be completed before the memory controller commits the instruction. No
register is both read and written by the same instruction, so no required data can be corrupted.

The currently active columns is part of the architectural state. When MOUSE restarts, the columns
will need to be re-activated. The non-volatile CBR in each memory array will maintain the currently
valid bitmask. Hence, all that is required is for the columns decoders to re-activate columns. The
memory controller can accomplish this by issuing a re-activate columns instruction to all arrays on
restart (Section 3.4.3).

4.2.2 Data in Arrays. The previous section showed that the memory controller itself remains
correct during intermittent operation. We must also ensure that the memory controller does not
generate any signals which corrupt the data residing in the memory arrays.

The memory controller broadcasts instructions to the data arrays. This broadcast is not atomic,
and thus can be interrupted at any stage. However, all the operations that it can trigger are
idempotent (Section 4.1), meaning they can safely be interrupted at any point in their progression.
As a direct result, the broadcast cannot cause corruption as it’s only effect is the initiation of the
operation. Power can be cut before the broadcast reaches a memory array, while the operation is
being performed, or after the operation has finished —none of these cases can introduce error.

5 IMPACT OF ORBITAL DEPLOYMENT

An exciting domain for beyond edge devices is low earth orbit (LEO) where they can act as nano-
satellites [74]. One impact of LEO deployment is that the cost of communication is much greater than
computation (even more so than for terrestrial deployment) [37, 74]. For this, MOUSE is well suited
as it has a large memory capacity relative to other beyond edge devices (due to consisting nearly
entirely of high density non-volatile memory). The high memory capacity would enable MOUSE
to go long periods of time and store many results of interest before attempting communication.
However, orbital deployment will also introduce challenges related to operating temperature and
subjection to radiation. We discuss here how MOUSE can tolerate such conditions.

5.1 Temperature

Satellites in LEO can experience a wide range of temperatures, from -170C to 123C [65]. Maintaining
proper temperature on large scale satellites is an important engineering challenge [8]. However,
nano-satellites might not have sufficient resources to do any temperature modulation. Hence, it is
desirable that they be able to operate properly across a wide range of temperatures. A potential
challenge for MOUSE is that it consists mostly of non-volatile memory, which has characteristics
which are significantly impacted by temperature [92].

The resistance of MT] devices is dependent on temperature. It increases with decreasing tempera-
ture. The resistance at -170C can be as much as 30% higher than at room temperature [62, 122]. This
increases the voltage required to write MTJs, and consequently, increases energy consumption. The
SHE architecture will be less affected than STT as the SHE channel is metallic and will not increase
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in resistance. Hence, write operations with SHE will remain largely unaffected. However, SHE still
requires current to travel through the body of input MT]Js for read and logic operations. Hence, the
overall energy efficiency of SHE will still decrease. Because of this, PIM which uses MT]Js (or other
non-volatile technologies), is less energy efficient at cold temperatures [92]. However, the change
is modest, overall remaining within approximately 10% additional energy consumption (relative
to room temperature), even at cryogenic (77K) temperatures [92]. Given that MTJs are extremely
energy efficient [126, 128], this increase in energy consumption remains tolerable. Additionally,
there is a benefit of cold temperature. The ratio between the high and low resistance state increases
[62, 125]. This leads to more robust logic gates which are less susceptible to voltage fluctuations
[94, 127]. The overhead we consider for cold operation is described further in Section 6.

The inverse is true at high temperatures. The overall MTJ resistance and the ratio between the
high and low resistance states are both lower. MT] resistance at 123C is roughly 86% of its resistance
at room temperature. Hence, the MT]J logic gates themselves will be more energy efficient. However,
they will also be more susceptible to voltage fluctuations. This increases the critical nature of
the power delivery system. Power systems, such as Capybara [19], will be necessary to ensure
the proper voltage is applied across a variety of temperatures. Using switched-capacitor voltage
converters [53, 89, 89], the necessary voltages can be delivered to facilitate operation. The overhead
of voltage conversion is discussed more in Section 6.

In contrast to the resistive memory devices, the peripheral circuitry in MOUSE should benefit from
cold temperatures. At colder temperatures CMOS transistors have higher ON current [122], switch
faster [86], have a higher trans-conductance, and have a steeper subthreshold slope [105] leading
to lower leakage current. However, MOUSE will not benefit significantly from these characteristics.
The non-volatile memory already has extremely low static power and the latency will be limited by
the switching time of the MTJ devices. CMOS performance can degrade with increasing temperature
due to increasing leakage current. However, typical CMOS devices can operate well up to 175C
[54]. Radiation hardened bulk CMOS technology can increase this further to 250C [54, 72]. Hence,
CMOS technology is well suited to operate within the expected temperature range of LEO satellite.
We discuss overhead of our CMOS components further in Section 6.

5.2 Radiation

Exposure to radiation can cause bit-flips (soft errors) on CMOS circuitry. When deployed in
orbit, beyond edge devices will be exposed to significantly higher levels of radiation. The CMOS
components of MOUSE, such as the memory controller, will be equally susceptible to soft errors
as other beyond edge devices. A variety of circuit level strategies to mitigate soft errors [102]
exists (such as increasing node capacitance and transistor drive current [130]), which will introduce
additional area, latency, or power overhead. However, the vast majority of MOUSE’s computation
and all of its memory exist in non-volatile MT] devices. Fortunately, MT]Js are considerably more
robust to soft errors than other forms of memory [57, 58]. In fact, MTJs have been shown to be
highly resilient to radiation from heavy ions [20, 58], neutrons [91], protons [49], and gamma
rays [49, 91]. For these reasons, MTJs have been considered a leading candidate for usage in space
applications [35, 57]. Since MOUSE consists mostly of MT]Js, it will be less susceptible to radiation
than traditional architectures. As only minimal circuitry is required external to the memory arrays,
using circuit level strategies to increase CMOS resilience to radiation [130] will have a lower total
overhead. To account for the overhead, we increase the latency and energy of MOUSE’s peripheral
circuitry, discussed further in Section 6.
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Table 3. Parameters for MT] devices.

Parameter Modern Projected
P State Resistance 3.15kQ 7.34kQ
AP State Resistance 7.34kQ 76.39kQ

Switching Time 3ns [84,97] | 1 ns [50, 126]
Switching Current 40 pA [97] 3 pA [126]

6 EVALUATION SETUP

Benchmarks: The exact use case of beyond edge devices can vary significantly, applications
include agricultural monitoring [74, 114], security, and structural and environmental monitoring
[26]. However, general sensor processing algorithms can be used to solve a wide variety of problems.
We use benchmarks which are representative for many possible use cases - machine learning
inference on data sets which are tenable for beyond edge devices. The specific input problem will
vary depending on the user, however the computation involved should remain highly similar.

We implement two machine learning algorithms, Support Vector Machines (SVM) and Binary

Neural Networks (BNN). Both are widely used and light weight, which makes them highly suitable
for the beyond edge domain. We built customized SVM implementations and trained and tested
them in R [88]. We use only operations that are efficient in MOUSE, all bit-wise and integer
arithmetic. We were able to achieve a similar accuracy as standard SVM implementations from
1ibSVM [12]. For inference, the main computation is effectively performing the dot product between
an input vector and each of the support vectors. The results of these dot products are then squared,
multiplied by a set of coefficients, and finally summed together. By construction, SVMs have two
class outputs, where the sign of the output value is the classification. We extend to multi-class
classification by training a separate SVM for each possible output class, where each has the task of
identifying a single class. BNNs are neural networks use neurons and weights represented by a
single bit each [22]. This enables multiplications to be replaced by XNOR operations and addition
is simplified to a popcount operation. This gives BNNs extreme energy efficiency. Previous work
has efficiently mapped BNNs onto FPGAs, including FINN [111] and FP-BNN [68]. We copy their
network configurations exactly. We modify the algorithms only in transforming them to run on
our PIM substrate. Hence, our accuracy is identical.
Data Sets: For small scale image recognition we use MNIST [63]. The task is digit recognition,
where a 28 x 28 pixel image with 8-bit precision is to be classified into one of ten digits (0-9). We
use both BNNs and SVMs on this benchmark. With SVM, the pixels are a 784 element vector. We
also create a binarized version, where pixels that have a value below 255/4 =~ 63 are assigned 0 and
those above are assigned 1. This allows us to replace multiplications with AND gates, significantly
reducing the time, energy, and area overhead. For BNNs, we use the network configurations of
FPGA-based FINN [111] and FP-BNN [68]. FINN [111] uses binarized input. It has three hidden
layers of 1024 neurons (bits) each and the output layer has 10 neurons with 10-bit precision. FP-BNN
[68] 8-Dbit inputs and has three hidden layers of 2048 neurons each. The output layer has 10 neurons
with 16-bit precision.

Human Activity Recognition (HAR) [3] is a data set which has accelerometer and gyroscope
measurements from a smartphone, which is carried by participants performing a variety of activities.
The problem is to classify the physical activity the individual is performing. Each input is a vector
of 561 elements. We convert the input to fixed point representation with 8-bit precision.

ADULT [59] contains census information. The problem is to classify whether an individual
makes greater than $50K per year or not. We use a reformatted version of the data set from libSVM
[12]. Each input is a 15 element vector where each element is an 8-bit integer.
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Performance and Energy Model: We use an in-house simulator to evaluate MOUSE. We set each
array in MOUSE to 1024x1024, which is a recommended subarray size for non-volatile memories
from NVSIM [29].

We simulate with both modern MT] parameters [98] and with projections of MT]J parameters
expected to be possible within a few years [126, 128]. MTJs are expected to significantly more
energy efficient as the technology matures. Two techniques will enable a reduction in the switching
current, 1) decreasing the damping constant of ferromagnetic materials [30, 83, 101] and 2) using
a dual-reference layer structure [27, 47]. It is possible switching currents will be as low as 1 pA,
however we assume 3 pA to be conservative. The parameters we use are shown in Table 3. For
Modern MT]Js we use only the STT architecture, for projected MTJs we use both the STT and SHE
architectures. The benefit of SHE is providing a more efficient write mechanism. We model the
SHE channel as a 1kQ resistance. This provides a conservative estimate of SHE energy efficiency.

Due to the different switching times of modern and projected MTJs, we clock MOUSE at different
speeds for each. With Modern MTJs MOUSE operates at 30.3 MHz clock rate (33ns per cycle) and
for projected MTJs MOUSE operates at 90.9 MHz clock rate (11ns per cycle). This enables sufficient
time for instruction read, decode, and the peripheral circuitry latency and MT]J switching time.

For modelling peripheral circuitry, we take data from NVSIM [29] which reports the relative
overhead of peripheral circuitry for modern MRAM memory. We set the latency and energy
overhead of MOUSE so that is consumes the same relative share of total latency and energy as
reported by NVSIM. We also account for the energy required to read instructions, update program
counter and valid bit, and the specification of row addresses.

We first evaluate MOUSE with continuous power (using a power source which can supply as
much power as MOUSE desires). Then, we evaluate with an energy harvesting power source where
MOUSE will have to operate intermittently. We model the energy harvester as a (small) constant
power source which is filling an energy buffer (capacitor). When MOUSE is off, the power source
charges the capacitor and the voltage will rise. When MOUSE is on, it will consume the energy and
the voltage will drop. MOUSE will shut off when the voltage hits a pre-defined minimum value,
hence the voltage on the capacitor will fluctuate within a specified range. When the voltage hits the
lower end of the range, power is instantaneously cut - MOUSE does not do any preparation for the
shutdown. We start all benchmarks with a capacitor that has voltage just below the cutoff, hence all
benchmarks begin with an initial charging time. Modern MTJs and Projected MT]Js have different
operating voltages [126], so we use a different voltage range for each technology. We let the voltage
fluctuate between between 400 mV and 420 mV when using Modern MTJs and between 100 mV
and 120 mV when using Projected MTJs. Switched-capacitor converters are used for upconversion
and downconversion [41] to supply the required voltages for all operations. All required voltages
can be acquired by using conversion ratios of 0.75, 1, 1.5, and 1.75 [53, 89]. We evaluate MOUSE on
the power supplied by the converter, the evaluation does not include regulator efficiency overhead.
The converter may have an efficiency anywhere between 35-80%, hence the energy harvester may
need to provide roughly 1.25-2.85X the energy that MOUSE consumes. As noted in Section 3.4.6, a
single instruction is performed in every cycle. A portion of the cycle must be dedicated to changing
the output voltage of the converter (if consecutive operations require different voltage levels). The
time overhead can be overlapped with the row activations.

It is desirable to match the capacitor size to the expected energy consumption. Hence, we also
use different capacitor sizes for modern and project MT]Js. We use a 100 uF capacitor (energy buffer)
with Modern MTJs and a 10 pF capacitor for Projected MT]Js. The optimal capacitor size depends
on the technology and the program being executed. When deployed, a system such as Capybara
[19] could be used to tune the parameters of the energy buffer.
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Given that energy harvesting power sources can vary significantly in how much power they
can provide, we sweep the power source over a wide range. At the low end, we test from 60 pW
which is approximately what can be harvested from a 1cm? thermal energy harvester running on
body heat [56, 66]. This is well below the operating power of MOUSE. At the high end we use
5mW, which is the same power harvested by the beyond edge device SONIC [37]. This can nearly
power MOUSE continuously. Beyond edge devices deployed as satellites will likely use solar cells
as power sources [74]. The amount of power which can be harvested will depend on the size of the
cells (typically very small) and their orientation which is likely to change over time.

Area Overhead: The CRAM arrays used in MOUSE have a similar area overhead as MRAM arrays.
The extra overhead of STT CRAM is an extra bit line per column, which is a minor impact. For SHE
CRAM, a second transistor and SHE channel is required in each cell, which has a significant impact.

We base our cell area estimates from Zabihi et. al. [127]. We use configurations where the access
transistors have a resistance less than 1kQ and give an extra 10% to account for spacing and
layout issues. The access transistors and MTJs can be placed on separate layers. As the transistors
are much larger, they dominate the area overhead. As the SHE architecture has twice as many
transistors, it is approximately twice as large. We use NVSIM [29] to estimate the area overhead
of peripheral circuitry. NVSIM reports the percentage of chip area which much be dedicated to
the peripheral circuitry for different memory sizes. We increase the area overhead for each of
benchmarks accordingly. Our conservative area estimates are shown in Table 4.

Impact of Temperature: MT]Js have been demonstrated to function over a wide range of temper-
atures [62, 125]. However, the MT]J resistance increases at colder temperatures, which will increase
energy consumption. We test MOUSE both at -170C (cold) and 123C (hot). To model the impact on
MT]Js we take data from Yuan et. al. [125]. For cold temperatures, we conservatively estimate the
MT] resistance increases by 30%. For the STT architecture, this increases the write, read, and logic
energy consumption by 30%. For SHE, the write energy remains unaffected as the SHE channel
(which is metallic) is use for write operations. However, energy consumption still increases for
read and logic operations. The CMOS circuitry will generally perform better at cold temperatures,
having a lower latency and potentially lower energy [86, 105, 122]. However, to be conservative,
we assume no additional efficiency of the peripheral circuitry. The latency improvement of CMOS
does not benefit MOUSE as we choose maintain the same clock rate across temperature ranges.
Hence, the latency of each instruction remains the same. At hot temperatures, the MTJ resistance
drops by approximately 13% [125]. We model this in identical fashion to cold temperatures, where
we change the energy efficiency of each operation.

Impact of Radiation: As noted in Section 5.2, MTJs have an inherent resilience to radiation.
However, the CMOS components of MOUSE remain vulnerable. Circuit level strategies, such as
increasing node capacitance and transistor drive currents [102, 130], can make CMOS circuits
resistance. These strategies come with a power and delay cost. We choose to be conservative, and
assume a large overhead of a 60% increase in CMOS energy and a 10% increase in CMOS latency
[130].

Baseline for Comparison: We compare MOUSE with SONIC [37], a beyond edge device which
performs machine learning inference on the same benchmarks we use. As SONIC was evaluated
at room temperature, we must estimate its performance at different temperature ranges. To be
conservative, we assume SONIC can fully exploit the benefit of CMOS operation at cold tempera-
tures, increasing performance by 30% [86]. We also assume it suffers no negative consequences of
varying temperature (hot or cold) and it pays no overhead resilience to radiation. We also compare
against estimates of the vector architecture MANIC [38]. We also give MANIC overly optimistic
assumptions, a 30% boost in performance and no overhead for temperature or radiation. MANIC
was not evaluated on end-to-end inference, rather on computational kernals required for inference
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Table 4. Area required for MOUSE for different benchmarks and configurations. Units are in mm?.

Total Modern | Projected | SHE
Benchmark Memory

STT[127] | STT [127]
SVM MNIST 64MB 28.04 21.27 42.54
Binarized 8MB 2.99 2.27 4.53
SVM HAR 16MB 5.97 4.53 9.06
SVM ADULT 1MB 0.39 0.29 0.58
BNN FINN MNIST SMB 2.99 2.27 4.53
BNN FPBNN MNIST 16MB 5.97 4.53 9.06

Table 5. Continuously powered MOUSE at room temperature (using STT design and modern MT] devices)
and related work under continuous power. The CPU does not benefit from MNIST binarization as it still
performs 64-bit integer multiplication.

Benchmark ‘ Latency (us ) ‘ Energy (W) ‘ #SV ‘ I/D Mem (MB) ‘ Area (mm?) ‘ Accuracy

SVM (CPU)

MNIST 169,824 5,094,702 | 11,813 - - 97.55

MNIST (Binarized) 192,370 5,771,085 | 12,214 - - 97.37

HAR (integer) [3, 110] 127,494 3,824,822 | 2,809 - 95.96

ADULT 4,368 131,052 1,909 - - 76.12

MOUSE SVM (Modern STT)

MNIST 23,116 1,700 11,813 4.5/30.0 28.04 97.55

MNIST (Binarized) 6,071 81.43 12,214 1.25/6.0 2.99 97.37

HAR (integer) [3, 110] 11,312 575.8 2,809 2.25/10.0 5.97 94.57

ADULT 1,104 9.06 1,909 0.25/0.5 0.39 76.12

MOUSE BNN (Modern STT)

MNIST (Binarized) FINN | 1,605 | 1804 | NA [ 315171 | 299 | 984

MNISTFP-BNN | 2150 | 1254 | NA | 420/800 | 597 | 9824
libSVM [12]

MNIST 7,830 234,900 8,652 - - 98.05

MNIST (Binarized) 19,037 571,116 | 23,672 - - 92.49

HAR (integer) 1,701 51,042 2,632 - - 93.69

ADULT 379 11,370 15,792 - - 78.62
SONIC [37]

MNIST [ 2740000 | 27,000 [ NA | 0.256 [ >10 [ 99
HAR | 1,100,000 | 12500 | NA | 0.256 [ >100 [ 88

(i.e. convolution). Hence, we rely on rough estimates of its performance on the same benchmarks.
We follow the authors’ statement, that MANIC 9.6X more energy efficient than SONIC [38].

7 EVALUATION

Continuous Power: Continuously powered MOUSE at room temperature and related work is
reported in Table 5. MOUSE implements both BNNs and SVMs. SONIC [37] is beyond edge device
which uses TI-MSP430FR5994 microcontroller to run neural networks on the same benchmarks.
For reference, our custom SVM implementation and optimized SVMs from 1ibSVM [12] are run on
a Intel Haswell 5-2680v3 processor. To be conservative, we account only for the processor power
consumption and assume it operates at its idle power. Overall, MOUSE has a significant energy
efficiency advantage and a competitive latency. Notably, MOUSE consumes more memory than
SONIC. However, this is reasonable as MOUSE consists nearly entirely of non-volatile memory,
which has high density. MOUSE does not require external processing logic or area costly volatile
memory.

Intermittent Operation: We now evaluate MOUSE with intermittent computation, where a small
power source is charging a capacitor that MOUSE can draw energy from. The latency (including time
powered off) of all benchmarks with each MTJ device (and different operating temperatures) over
the range of power sources (60 uW - 5mW) is plotted in Figure 9, along with a comparison to SONIC
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Fig. 9. Latency (us) vs. Power Source (W) for each MOUSE configuration and SONIC [37]. MOUSE at hot
temperature is shown in Red/Filled shapes and at cold temperature is shown in Blue/empty shapes.
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Fig. 10. Latency/Energy Breakdown: Modern STT.

[37] and MANIC [38]. All MOUSE configurations are able to significantly outperform SONIC for the
same power budget. Despite conservative estimates of MT] performance, conservative estimates
of peripheral circuitry, and very optimistic estimation of MANIC across the temperature range
(30% boost in performance and no overhead for temperature or radiation) MOUSE has a similar
performance with MANIC. On the MNIST data set, if MOUSE uses 8-bit inputs, its latency is 0.91x
(1.15%) that of MANIC at hot (cold) temperatures. On the HAR data set, MOUSE has a latency that
is 0.66% (0.83%) that of MANIC at hot (cold) temperatures. Hence, MOUSE has better performance
on average, with better results at warmer temperatures.

At cold temperatures MOUSE has a higher latency than when hot. At 60 uW, overall cold is
23.4% slower on average. While MOUSE has the same clock rate and issues instructions at the
same rate, the instructions consume more energy when cold. Hence, MOUSE will run out of energy
and have to power off more frequently. Temperature has a varying level of impact on each MT]J
technology. Modern STT has a 33.3% higher latency and Projected STT has 28.5% higher latency at
cold temperature, across all benchmarks. SHE is less effected by temperature because write and
logic operations use the SHE channel, which is not only more energy efficient but less affected by
temperature. SHE has an 8.6% higher latency across all benchmarks at cold temperature.

Independent of temperature, SHE is the most energy efficient. Because of this it drains the
capacitor less often, and hence has fewer power outages leading to the overall lowest latency.
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Projected STT has a lower latency than Modern STT, as it can operate at higher frequency (11ns
per instruction vs. 33ns) and it is more energy efficient.
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Fig. 11. Latency/Energy Breakdown: Projected STT.

MOUSE spends negligible amounts of energy while powered off. Hence, the energy consumption
is nearly independent of the power supply. The vast majority of the energy is dedicated to normal
program execution. A small portion is dedicated to overhead for intermittent execution, which
will vary depending on the number of interruptions (which is determined by energy efficiency and
the capacitor size). The total energy is plotted in Figure 10(b) for Modern STT; in Figure 11(b) for
Projected STT; and in Figure 12(b) for SHE; assuming a 60 pyW power source.
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Fig. 12. Latency/Energy Breakdown: SHE.

There are metrics specific to beyond edge devices which indicate how efficient the checkpointing
strategy is [100]. In addition to the total energy, we report the Backup energy, Dead energy, and
the Restore energy. Backup refers to any actions required prior to shutdown to save the state. For
more traditional architectures, this involves writing data back to non-volatile memory. For MOUSE,
the only backup operations are saving the PC, flipping the parity bit, and writing values into the
CBR (to indicate which columns are active). MOUSE does the first two on every instruction, and
the second only AC instructions. Dead refers to any computation that must be re-performed after
restart (which was lost due to the shutdown). For MOUSE, this is at most re-performing the very
last instruction. Restart is any actions required to put the device back into operating condition after
a shutdown. For MOUSE, this is the re-activation of columns with an AC instruction.

Backup has no associated latency, as MOUSE’s backup operations are overlapped with normal
program execution. However, we do report Dead latency, which is the time it takes to re-perform
the last instruction, and the Restore latency, which is the time it takes to re-activate columns. To
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remain efficient, a beyond edge device should have low Backup, Restore, and Dead latency and
energy.

Overhead for Backup, Restore, and Dead are reported in Figure 10 for Modern STT; in Figure
11, for Projected STT; and in Figure 12, for SHE. Note that the y-axis is log scale. The total energy
encapsulates all energy used for computation, as well as Backup, Restore, and Dead energy. Also
note the total latency is provided for all architectures in Figure 9 — where the breakdown figures
capture the data for the 60 uW power source.

The overheads for Backup, Dead, and Restore increase with cold temperature. This is for two
reasons. The first is that the actions required for each will cost more energy due to the MT]J
characteristics. For exampling, writing the PC value or re-performing the last instruction will
involve MT]J operations, which will take more energy at cold temperatures. The second reason is
that the overall lower energy efficiency at cold temperatures leads to more power outages. At cold
temperature, across all benchmarks and technologies, MOUSE restarts 24.4% more often than at
hot temperatures. This increases the number of instructions that need to be re-performed and the
number of times architectural state variables will be saved.

Modern STT is the least energy efficient, which means it must restart the most. Because of this
it has the largest relative Dead energy. At the extremely low power of 60 uW, on average, across
all benchmarks, Dead energy is 0.98% (1.09%) of the total energy at hot (cold) temperature. The
projected MTJs have lower overhead, where Dead energy (on average) becomes 0.796% (0.804%) of
the energy for Projected STT and 0.194% (0.323) of the total for SHE at hot (cold) temperatures.
Dead latency, on the other hand, is 0.068% (0.084%) of the total for Modern STT, 0.040% (0.050%) of
the total for Projected STT, and 0.020% (0.020%) of the total for SHE with hot (cold) temperatures.
Restore is only 0.013% (0.016%) of the latency and 0.066% (0.069%) of the energy for Modern STT;
0.008% (0.010%) of the latency and 0.048% (0.049%) of the energy for Projected STT; and 0.0037%
(0.0040%)of the latency and 0.0436% (0.0436%) of the energy for SHE with hot (cold) temperatures.
As Restore latency and energy is due to peripheral circuitry, SHE has no advantage over STT
for an individual restart. However, SHE still requires fewer restart operations due to its overall
increased energy efficiency. Backup energy is, on average across all benchmarks, 0.304% (0.337%)
for Modern STT; 0.350% (0.340%) for Projected STT; and 0.009% (0.009%) for SHE. Backup has no
associated latency as it is performed at the same time as each instruction on every cycle. Overall
the Backup, Dead, and Restore overheads increase only modestly at cold temperatures. Hence, the
checkpointing mechanisms remain efficient across the wide temperature range and MOUSE is
suitable for use as an intermittent accelerator in the harsh environments of LEO.

Restore and Dead latency and energy are all zero for the case of a continuously powered system.
This is because there are no power outages and, hence, never a need to restart the system or
re-perform any potentially unfinished instructions.

8 RELATED WORK

Orbital Edge Computing (OEC) was proposed by Denby and Lucia [25, 26] as a new model for satel-
lite computation. The authors describe architectures for computational nano-satellites. Additionally,
they proposed a strategy called the computational nano-satellite pipeline, which parallelizes com-
putation across collections of satellites in order to reduce latency. MOUSE could be used as a
sub-component within such computational satellites.

MANIC [38] is a vector architecture for low power systems. The authors suggest that energy
efficiency is the most important metric for beyond edge devices, more so than efficient checkpointing
mechanisms.

Traditional architectures have been significantly modified to be intermittent safe. A strategy
has been to tightly integrate non-volatile memory with volatile registers to enable a fast and more
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efficient backup process just prior to shutdown. These architectures are known as non-volatile
processors (NVP) [71, 79]. A system utilizing a THU1010N non-volatile processor was analyzed,
where trade-offs in checkpointing strategies are evaluated [71]. Follow up work has increased the
resilience of NVPs to power interruptions [77, 78]. The NVP in [77] can complete the FFT benchmark
from MiBench [40] in 4.2 ms. Cilasun et. al. [23] evaluated FFT implementations on CRAM, the
same PIM substrate which MOUSE uses. Performing a similarly sized problem, the best latency
they were able to achieve is 1.63 ms. However, adapting this implementation to be intermittent
safe in the same manner in MOUSE would add a latency overhead. PIM has been incorporated into
beyond edge devices previously, using RRAM arrays for acceleration [106]. However, this design
still requires a CPU to perform logic and orchestrate control. PIM is only a sub-component of the
system, hence the efficient checkpointing strategy of MOUSE cannot be applied to this architecture.

ResiRCA [87] uses an adaptable RRAM crossbar accelerator for MAC (multiply+accumulate)
operations for CNNs. The architecture is able to adapt to varying levels of input power to efficiently
utilize the PIM components. However, a battery is required in order to maintain an external
controller. Additionally, a significant amount of computation occurs outside the memory array (only
MAC:s are processed by the memory). Hence, the MOUSE’s checkpointing mechanism is also not
applicable to this architecture. Many RRAM accelerators have been developed [107, 108, 119, 123].
However, these architectures only use the RRAM array as an accelerator for specific operations.
The full system contains much additional circuitry and logic in addition to the memory arrays.
This significantly increases the difficulty to adapt to intermittent processing. Additionally, they
require ADCs (analog to digital converters) for every PIM operation, which has a significant area
and energy overhead.

Capybara uses a re-configurable hardware energy storage mechanism and a software interface
that allows the specification of energy needs for different tasks. This gives the system more flexibility
in satisfying the requirements of different kinds of tasks. In this work we assumed a constant
capacitor size, however Capybara could enable variable size energy buffers to more closely match
the requirements of each application.

Hibernus [7] is a system that reactively hibernates and wakes up. This is a similar shutdown
policy to MOUSE. However, Hibernus performs an additional back-up operation before shutting
down, whereas MOUSE does not need to.

Many strategies have proposed to enable more traditional systems to operate intermittently.
CleanCut [17] works with LLVM to compile programs with checkpoints, and uses a statistical energy
model to find potential non-terminating paths. Chinchilla [81] uses adaptive checkpointing, where
the frequency of checkpoints is a function of the number of interrupts. Coati [96] developed methods
to ensure correctness of concurrent threads in the presence of interrupts for intermittent systems.
The What’s Next Intermittent Architecture [33] uses approximation to improve performance.
Rather than following an all-or-nothing approach, What’s Next computes approximate results and
continually improves the output. If an acceptable output is achieved it will skip to processing the
next input. This enables the device to process more inputs as it does not waste time and energy
achieving unnecessary accuracy.

The EH model [100] is a design space exploration tool for energy harvesting architectures.
As noted by the authors, energy harvesting systems can generally be divided into two types, 1)
multi-backup, which perform many backups between power outages, and 2) single back-up, which
only save state once before a power outage. Multi-backup systems include Mementos, [90], DINO
[75], Chain [15], Alpaca [80], Mayfly [45], Ratchet [113], and Clank [46]. Single-backup systems
include Hibernus [6], QuickRecall [51], and many others [4, 5, 10, 70, 76]. MOUSE is a multi-backup
system as it is constantly saving the architectural state.
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Many PIM architectures exist, such as Pinatubo [67], for DRAM with Ambit [104], and for SRAM
with Neural Cache [31]. These technologies target traditional memory hierarchies and have not
considered intermittent operation. Ambit and Neural Cache are not suitable for energy harvesting
as they are volatile technologies. Pinatubo has the potential to be adapted and used similarly as
CRAM in MOUSE. However, Pinatubo uses logic external to the memory array for some operations.
This adds complexity which is difficult to manage during intermittent execution. Additionally,
Pinatubo requires sense amplifiers for every operation, which comes with a high energy cost.

Neural networks [13, 120] and BNNs [109, 124] have been previously mapped to PIM substrates
for acceleration, including on CRAM [94]. However, such designs have not considered intermittent
computing and would be unsuitable for the beyond edge domain.

A number of high performance and low power accelerator exist, but which have not been adapted
for intermittent executio. The Phoenix processor [103] is an extremely low power processor with a
sophisticated sleep strategy. A number of accelerators have demonstrated high performance and
energy efficiency on inference. PuDianNao [69] is an ASIC accelerator which also targets SVM.
The XNOR Neural engine is microcontroller based system for BNN acceleration [21]. An in/near
memory SRAM substrate is proposed in [115], which performs bit-serial arithmetic, and which
was shown to have high performance and efficiency on the AlexNet [61] network. A number of
PIM accelerators also exist, including a BNN accelerator for Cifar-10 image classification [52], an
analog SRAM accelerator for MNIST classification [129], and another which does both MNIST and
Cifar-10 classification [112]. Adapting such accelerators to support safe intermittent computing
is not straight-forward and would likely come —if at all possible— at significant performance and
efficiency cost.

Orthogonal to our work, recent papers have made progress on problems relevant in the energy
harvesting domain. Low power and accurate time keeping was developed in [24]. SRAM was used
as a an efficient check-pointing memory, being able to maintain state for short periods of power off
time [117]. A new platform for intermittent computing is proposed in [60] which simplifies the
task of adapting pre-existing embedded applications to work in intermittent environments.

9 CONCLUSION

We extended the work of MOUSE [93], a non-volatile processing-in-memory (PIM) accelerator,
creating a more hardware efficient and programmable design and enabling proper functionality for
orbital deployment. We extended the PIM instruction set and added architectural support for branch
instructions, increasing the programmability of the device. We developed more efficient mechanisms
for column activation, reducing the complexity of the peripheral circuitry. It was shown that MT]
devices and supporting CMOS circuitry can operate correctly across a wide temperature range.
Even when accounting for overhead to maintain resilience against radiation, the architecture has
high performance and extreme energy efficiency. Combined with the intermittent safe operation
and inherent low-cost checkpointing mechanisms, the final result is a device well suited for use as
a satellite in low earth orbit.
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