A New Approach for Integration of Min-Area Retiming and
Min-Delay Padding for Simultaneously Addressing Short-path
and Long-path Constraints *

Vijay Sundararajan, Sachin S. Sapatnekar, Keshab K. Parhi
Dept. of ECE University of Minnesota
Minneapolis, MN 55455
E-mail: {vijay, sachin, parhi}@ece.umn.edu

April 1, 2000

Abstract

This paper describes a polynomial time algorithm for min-area retiming for edge-triggered
circuits to handle both setup and hold constraints. Given a circuit G and a target clock period
¢, our algorithm either outputs a retimed version of G satisfying setup and hold constraints
or reports that such a solution is not possible, in O(|V|*log|V|log(|V|C)) steps, where |V|
corresponds to number of gates in the circuit and C is equal to the number of registers in the
circuit. This is the first polynomial time algorithm ever reported for min-area retiming with
constraints on both long and short-paths. An alternative problem formulation that takes
practical issues in to consideration and lowers the problem complexity is also developed.
Both the problem formulations have many parallels with the original formulation of long
path only retiming by Leiserson and Saxe and all the speed improvements that have been
obtained on that problem statement are also demonstrated in simulation for the approach
presented here. Finally, a basis is provided for deriving efficient heuristics for addressing
both long path and short-path requirements by combining the techniques of retiming and

min-delay padding.

1 Introduction

The procedure of moving flip-flops around a VLSI circuit, while maintaining its functionality, to

optimize a performance objective for the circuit is known as retiming [1]. Retiming was intro-

*This research was supported in parts by the Army Research Office under grant number DA/DAAG55-98-1-
0315 and a grant from Intel Corporation.

duced as an optimization technique for edge-triggered circuits [1] but has since been extended
to handle level-clocked circuits, [2] (see [3] for detailed list of references). Further extensions of
retiming now include logic synthesis, power optimization and testability [4,5]. The execution

time required to perform retiming has been drastically reduced in [6,7].

The thrust of early research firmly established the far-reaching effectiveness of retiming as an
optimization strategy for sequential VLSI circuits [1,4,5]. These techniques, however, included
only the setup time constraints for flip-flops in the circuit and ignored the hold time constraints.
Hold-time violations were traditionally corrected by padding delay buffers in violating short-
paths using techniques such as [8]. However, with short-paths becoming increasingly prominent
in deep submicron circuits, the number of such buffers may become inordinately large and there
is a need to incorporate hold-time constraints directly into a retiming formulation. The ideal
situation is to be able to combine the techniques of padding delay-buffers and retiming in to a
unified framework for addressing both long paths and short-paths simultaneously. Recently, a
new retiming strategy was presented [3] which could solve min-period retiming for VLSI circuits
with both setup and hold constraints in polynomial time using a strategy known as integer
monotonic programming. However, there is no straightforward extension of this technique to
incorporate min-area retiming, and the nature of the constraints in [3] do not lend themselves

to a fast network flow formulation for a linear objective function.

In this paper we present a novel technique that performs min-period and min-area retiming
of edge-triggered circuits with setup and hold constraints. The problem formulation used to
perform min-area retiming is similar to the original retiming framework in [1], but with con-
straints to satisfy both long path and short-path timing requirements. An alternative problem
formulation is then developed that lowers the problem complexity to make it practical for large

circuits. As in the result in [3], we assume that all flip-flops in the circuit have identical values

for the setup and hold times.

Given any edge-triggered sequential circuit G, a target clock period ¢, a setup time S, and a
hold time H, our algorithm computes a retimed circuit G, in which all long path and all short-
path constraints are satisfied. If the problem is infeasible for the given input, it reports so and ter-

minates. The worst case execution time of our technique is bounded by O(|V|3log|V |log(|V'|C)).

The chief advantages of our technique over the technique in [3] are:
1) An efficient solution to the min-area retiming problem is facilitated.
2) The problem formulation is similar to [1] and hence speedup techniques for min-period con-

straints in [6,7,9,10] are admissible.

The new technique presented in this paper is then used in conjunction with min-delay padding
to obtain a basis for obtaining lower area retiming solutions as opposed to the “traditional” long
path only retiming, followed by min-delay padding based approaches [8]. It is demonstrated
that by a judicious combination of the new retiming approach presented here and min-delay
padding the number of buffers required to address short-path violations can be reduced with a
minimal increase in the number of flip-flops. The run-time requirements for the new approach

in this paper are comparable to fast implementations of traditional retiming [6,7].

The rest of the paper is organized as follows. We demonstrate the need to include hold
constraints as a part of the retiming problem in section 2. A graph model for the problem is
developed in section 3. In section 4 we formulate a new set of constraints to guarantee satisfaction
of hold time requirements. Additionally, we describe an alternative practical approach to solve
the min-area retiming problem that considerably lowers the problem complexity. An approach
for combining min-delay padding and retiming to address the problem of satisfying setup and
hold time requirements is presented in section 5. In the same section, a description of a basis is

presented for deriving useful heuristics for addressing the problem of satisfying both short-path

and long path constraints using the retiming formulation in this paper and min-delay padding,
along with a new concept called buffer-relocation. Simulation results comparing traditional
approaches to retiming and a heuristic derived using techniques introduced here are presented

in section 6. Finally, conclusions and directions for future work are presented in section 7.

2 Motivational Example

Figure 1: (a) Original circuit. (b) Retimed circuit with hold violation. (c) Retimed circuit with

no timing violations.

In this section we reproduce an example from [3] to demonstrate that the solution to the retim-

ing problem under setup and hold time constraints differs from that obtained by conventional

retiming algorithms that consider only the setup time constraints.

The sequential circuit shown in Fig. 1(a) has five combinational logic blocks connected in
a ring and two edge-triggered registers. The pair of integers in each block gives the maximum
and minimum propagation delay of the data through that block. For example, whenever data
propagate through block A, they always require at least 1 time unit and never more than 10
time units. For simplicity, each register and wire is assumed to have zero delay, and in addition
each register is assumed to have zero setup time, and a hold time of 4. Moreover, clock skew is
assumed to be zero. Thus, the shortest clock period achievable by this circuit is 10+ 30+20 = 60,
corresponding to the longest combinational path, ABC. There are no hold violations in this
circuit since the minimum propagation delays along ABC and DE are 7 and 5, respectively,

both exceeding the register hold time.

The retimed circuit in Fig. 1(b) is obtained by shifting the register k£ across block C and is
functionally equivalent to the one in Fig. 1(a). This circuit can be computed by applying the
retiming algorithm in [1] with a target clock period of 46. Since the longest combinational path
in this circuit is CDFE with a delay of 20 + 6 + 20 = 46, there are no setup violations in the
retimed circuit. The minimum delay along the path AB is 1+ 2 = 3 < 4; therefore, a fast signal
propagating along AB can contaminate the inputs of register £ and result in erroneous circuit

operation.

The retimed circuit in Fig. 1(c) satisfies all setup and hold constraints and achieves a clock
period of 50. This is the shortest clock period that can be achieved by retiming the original

circuit. Our algorithm will find such an optimal solution in polynomial time.

3 Preliminaries

In this section we will present a graph model to illustrate some background information on
retiming. We model an edge-triggered circuit as a directed multi-graph G = (V, E,d, 6, w, o).
For the purpose of compatibility, this model is identical to the one in [3]. Each vertex u in
the vertex-set V' corresponds to a combinational logic block. The nonnegative weights d(u) and
d(u) associated with each vertex u denote the maximum and minimum data propagation delay
through u, respectively. Each edge u - v in the edge-set E corresponds to a wire from u to v
in the circuit. All wires are assumed to have zero delay. For each edge u - v, the nonnegative
integer edge-weight w(e) denotes the register count of the corresponding wire from u S . All
registers in the circuit are assumed to have equal positive setup times S and equal positive hold

times H. Without loss of generality, register delays can be assumed to be zero.

In addition to the register count w(e), each edge u > v is associated with a weight o(e) that
represents the delay in the propagation of the clock signal from the clock source to the wire
denoted by e. Clock skew is assumed to be monotonic, that is, the “effective delay” of a path
increases with the number of combinational gates on it. Given a path r <5 u Loy 3 1y, where
p is combinational, w(e;) > 1, and w(e;) > 1, the minimum effective delay of p is given by the

expression A(p) + o(e;) — o(e;), where A(p) = 3>, 6(z). Clock skew monotonicity is ensured

if for each edge pair r =5 u, u 4 y in E, we have,
(S(U) —I—a(ei) —O'(Ej) > 0. (1)

A retiming of an edge-triggered circuit G = (V, E,d, d, w, c) is an integer-valued vertex-labeling
r: V — Z. This labeling denotes a transformation of the original circuit G into a functionally
equivalent circuit G, = (V, E, d, §,w,, o), where for each edge u = v in G, w, is defined by the
equation,

wy(e) = w(e) + r(v) — r(u). (2)

In order for G, to be well-formed for all edges e € E, we must have,

wy(e) > 0. (3)

A retiming that satisfies (3) is called legal. It can be shown that for any path u % v, we have,

wr(p) = w(p) + (V) —r(w), (4)

where w(p) = Y ¢, w(e). From (4) it follows that when the path p is a cycle, retiming does
not change its register count. The relation in (4) can be used to identify paths that can become
critical after retiming. In order to preserve legality of retiming for all paths from node u to node

v the maximum reduction in the register count of any path u Lovis given by the expression,
W (u,v) = min{w(p) : u S v}. (5)

Thus, the only paths u &, v that can become combinational (and possibly critical) in G, are
those for which w(p) = W(u,v) in G. For each of the O(|V|?) vertex pairs u, v in V, the
quantity,

D(u,v) = max{d(p) : u -5 v, w(p) = W(u,v)} (6)

gives the longest propagation delay from u to v whenever the retimed circuit includes a combi-
national path between the two vertices. Assuming zero setup/hold times for all flip-flops in the
circuit, the clock period of any retimed circuit G, is always some element in the O(|V|?) size set

of D(u,v)’s.

For the retimed circuit G, to have a critical path under the target clock period, every
combinational path in G, whose propagation delay exceeds the target clock period ¢ must be
interrupted by a register. Thus, for each vertex pair u, v in V with D(u,v) > ¢, the retimed

register count W, (u, v) of each path u ~» v that can become combinational must satisfy,

Wi (u,v) = W(u,v) +r(v) —r(u) > 1. (7)

The O(|V|?) difference constraints specified by (3) and (7) can be computed in O(|V||E| +
|V|%1g|V'|) steps by an all-pairs shortest-paths algorithm and can be solved in O(|V|?) steps by

a Bellman-Ford algorithm for single-source shortest-paths.

4 Timing Constraints

As techniques to handle setup constraints have been discussed elsewhere, (e.g., [1]), we will not
discuss them here. Prior to this work, hold constraints in retiming have only been discussed
in [3] and we will derive here a new set of requirements for retimed circuits to satisfy hold

constraints.

A retimed circuit is free of hold constraints if and only if there exists no register-to-register
combinational path whose minimum effective propagation delay is shorter than the register hold

time H.

We will now set out to develop two mathematical formulations, both of which will model
min-area retiming with long as well as short-path constraints. The first technique we develop
(formulation I) will provide a theoretically sound basis for solving min-area retiming with setup
and hold constraints under general skew values. We will then present a practical argument
(formulation IT) that has a potential to reduce the problem complexity considerably under

practical situations as it leads to a significant reduction in the number of constraints.

4.1 Formulation I

For the remainder of the paper we assume, without loss of generality, that any edge in the given
circuit-graph G, has at most one register on it. Any edge with more than one register on it can

be decomposed in to multiple edges, with identical clock-skew, that connect dummy nodes with

zero delay.

We begin by defining a new attribute, critical short-path, for every pair of edges e;, e;.

Definition 4.1 For a pair of edges e;,e; and a path u <5 z By Sy the term A(p) + o(e;) —
o(ej) — H x (w(p) + w(e;) + w(ej) — 1) is the short-path metric of path e; — p — ej. Note
that nodes z, y are included in the path p. And the path v =5 Pmin Y % vy with the smallest
short-path metric A(pmin) + o(e;) — o(ej) — H X (W(pmin) + w(e;) + w(e;) — 1) is the critical

short-path containing the edges e; and e;.

Theorem 4.1 A circuit is free of hold time wviolations if and only if for every pair of edges
ei,e;j the critical short-path p containing these edges has a non-negative short-path metric, i.e.,

satisfies A(p) + o(e;) —o(ej) — H x (w(p) +w(e;) +w(e;) —1) > 0.

Proof: (=) Consider a path terminated at both ends by edge triggered registers. Let
one register be on edge e; and the other on e; such that the path is directed from e; 2 €;j-
Furthermore, let there be no other registers on the path from e; RN ej. Clearly by the assumption
of (=), A(p)+o(e;) —o(e;) —H x (2—1) > 0. Hence, the path p satisfies hold time constraints.
Due to the generality of the path p, all register to register combinational paths satisfy hold

constraints.

(«<)We will prove this by contradiction. If possible, assume that no hold time constraints are
violated in the circuit and yet for e; % e, A(p)+o(e;) —o(e;) —H x (w(p) +w(e;) +w(e;)—1) < 0.
Assume that the path under consideration has the following form wu, & V1 2, Uo 63 Vo P& u3 e—lg

Cip_o Pn—1 1 Dn €j
V3...Up—1 — Up—1 ~ Up — Up ™ Upyl — Upil-
There can be four different scenarios that we have to consider.

Case I: Edges e;,¢€;,...,€;,_,,€; have a single register on them and pi,ps,...,p, are purely

combinational paths. Note that the case where edges have multiple registers are guaranteed to

violate hold times [3], and hence violate the assumption in (<).

Case II: Edge e; has no register on it, and the rest of the conditions are identical to Case 1.
Case III: Edge e; has no register on it, and the rest of the conditions are identical to Case L.
Case IV: Edges ¢;, e; have no registers on them, and the rest of the conditions are identical to
Case 1.

We will prove Case I, and the remaining cases can be proved similarly. In Case I, note that
there are n + 1 registers in the path under consideration (including the registers on edges e; and

e;). Due to the assumption that all hold time constraints are satisfied we have,

A(p1) + o(e;) —ole;,) > H, (Path e; — e;,)
A(pg) + U(eik) - U(eik+1) > H, (Path €ip — eik+1)
1<k<n—2,

A(pp) +o(ei,_,) —olej) > H, (Path e;,_, — €;). (8)

By adding all the above inequalities we obtain,

> Alpr) + olei) — o(ej) > (n)H,
k=1

= A(p) +o(ei) —o(e;) >
(w(p) +w(e:) +wlej) —1) x H, (9)

where we use the fact that w(p) +w(e;) + w(e;) = n+ 1. The last inequality contradicts our

initial assumption, and hence we arrive at the required proof.

Cases II-IV can be proved similarly by observing the fact that leading and trailing combina-
tional paths will contribute a nonnegative amount to the expression A(p) + o(e;) —o(e;) due to
clock skew monotonicity. Stripping away these leading and trailing combinational paths leaves

us with Case 1.

It follows that after retiming, a circuit will be free of hold time violations if and only if we

can guarantee that for all edge pairs e; and e; the critical short-path u HGah Y Xy satisfies,

10

Due to the fact that r(v), r(u) are integral, the above constraint is equivalent to,

r(v) —r(u) < {A(p) + G(Hei) — a(ej)J —w(p) —w(e;) —w(ej) + 1. (11)

Note that the above constraints are simple difference constraints very much in the manner of
the retiming constraints in [1]. This means that the fast minimum cost network flow algorithms
utilized for solving traditional min-area long path only retiming can still be used when hold
constraints are included. So as long as we can identify a critical short-path for every pair of
edges e; and e; we can perform min-area and min-period retiming in a manner akin to that

in [1]. Thus the number of constraints we add to the original retiming framework is O(|E|?).

Next we will establish a retiming invariance property for the short-path metric for edge-to-

edge cycles for edges with a register on them.

Property 4.1 Let e be any edge with a register on it. Any cycle consisting of edge e has a

retiming invariant short-path metric.

Proof: Consider an edge e with a single register on it. Let e be part of some cycle C = u % z &

u % z. The short-path metric from e-to-e along C is A(p) +0o(e) —o(e) — H x (W (p) +2w(e) —1).
Now since the path p includes z and u therefore A(p) = A(C). Also, since w(e) = 1 by
assumption, W(p) + 2w(e) — 1 = W(p) + w(e) = W(C). Hence, the short-path metric from
e-to-e along cycle C' is A(C) — H x W(C). Since both A(C) and W (C) are retiming invariant,
the present short-path metric is also retiming invariant. Clearly for the hold time constraints
to be satisfiable all edge-to-edge cycles should have a non-negative short-path metric and hence

A(C)—H x W(C) > 0 for all cycles C in G,.
Next we will show that the problem of finding a critical short-path for any pair of edges can

11

be modeled as a shortest path problem in a graph but with the possibility of negative weight

edges in the graph.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2: Illustration showing how to obtain the auxiliary graph G, from the circuit-graph G,.

From the original circuit graph G,, we generate an auxiliary graph G, = (V,, E,, W/(E,))
such that every node v € V(G,) has a corresponding node in v, € V,(G,). Also every edge
ud e E(G,) has a corresponding edge u, e—(’; va € Eq(G,). In addition this edge ef has
a weight w(e?) € W'(E,) which has a value §(v) if e; is register-free and a value 6(v) — H
if e; has a register on it. We illustrate the construction of G, in Fig. 2. Every acyclic, u
to v, path u 3 2 LN Y % y therefore has a corresponding path in G, with total weight
A(p) +6(v) — (w(p) + w(e;) +w(e;)) x H. Note that the short-path metric corresponding to the
acyclic e; to e; path p differs from the previously computed path-weight for the corresponding
uq to v, auxiliary path in G, by an additive factor o(e;) — o(ej) — d(v) + H. Note also that
this additive factor is the same for all e; to e; paths. Therefore an e} to €] path with minimum

weight in G, identifies an e; to e; path with minimum short-path metric and hence identifies the

critical short-path from e; to e; in G.

Property 4.2 If the hold time constraints are satisfiable then the auziliary graph G4 has no

negative weight cycles.

12

Proof: Now consider a cycle C, in G,; clearly there must be a corresponding cycle C in G,.
Also, this cycle C in G, must contain at least one register as combinational cycles are illegal
in G,. Let e; be an edge in this cycle C containing a register. The cycle C is therefore of
the form u % z % u. Now the short-path metric for this cycle computed from e; to e; is
= A(C)—W(C) x H as w(e;) = 1, from Property 4.1. On the other hand the path-weight for
C, in G, is also given by A(C) — W(C) x H. Hence, a negative weight cycle in G, will imply
a register-to-register cycle with a negative short-path metric in G,. Since a register-to-register
cycle with negative short-path metric implies unsatisfiability of the hold time constraints from
Property 4.1, so does a negative weight cycle in G,. Any such cycle can be easily detected by a

Bellman-Ford algorithm with O(|V||E|) complexity.

Therefore we can use an all pair shortest path algorithm on the auxiliary graph to compute

short-path metrics for all pairs of edges in the circuit graph.

Next, we will setup the min-area retiming problem with setup and hold constraints. Fanout
nodes are handled by using mirror vertices as detailed in [1]. We call the new algorithm MARSH

(Min-Area Retiming with Setup and Hold constraints).

13

Algorithm MARSH
0)Objective:
Minimize Y, oy (Indegree(u) - Outdegree(u))r(u)

1)Legality constraints: For every edge u o,
wy(e;) =1(v) —r(u) +w(e;) > 0. (12)

2)Long-path Constraints: For every edge pair z <5 u 5 v %y such that D(u,v) + o(e;) —
o(ej) > c— S we have,

W(u,v) + r(v) —r(u) > 1. (13)

3)Short-path Constraints: For the critical short-path p of every edge pair u Haoh Yy = v

we have,

o) = r(w) < | SPETD =D |) e —wley) +1, 14

r(u) €Z, u,v €V,

due to the fact that all the above constraints are difference constraints with at most two
retiming variables corresponding to two vertices, many of the constraints will be redundant and
by standard elimination techniques the number of constraints can be brought down to O(|V|?)

from O(|E[?).

We can use the minimum cost circulation techniques presented in [11] and MARSH can there-
fore be executed in O(|V||V|?log|V |log(|]V'|C)) where C = Number of registers in the graph. Ad-
ditionally, we can drastically reduce the number of min-period constraints by using the speedup

methods in [6,7,9,10].

14

4.2 Formulation II

Recall that the basic requirement to ensure satisfaction of short-path constraints is that all
register-to-register combinational paths should have a minimum effective propagation delay that
exceeds H. Also, clock skew monotonicity ensures that if P; is a sub-path of a path P then
the effective minimum delay of Ps is no larger than the effective minimum delay of P. The last

observation leads to the following:

Theorem 4.2 A retimed circuit is free of hold time violations if and only if any path, p = u =

x4y Doy satisfies: if A(p) +o(e;) —o(ej) < H then wy(p) < 1.

Proof: (=) Assume, if possible that hold time requirements are satisfied and yet a path p =
w1y 3y has A(p) + o(e;) — o(ej) < H and w,(p) > 2. Clearly, due to clock skew
monotonicity any register-to-register sub-path of p will have a hold time violation.

(«) Clearly if any register-to-register path p = u Hzd Y % 4 has a hold time violation then

A(p) + o(e;) — o(ej) < H while wr(p) > 2 and hence < is proved.

The potential problem with the above formulation is that for general values of hold time
H and clock skew o(e;) the number of constraints may grow exponentially. However, as it
turns out, for the present retiming model to be applicable, the clock skew value for any edge e
must satisfy o(e) < e, i.e., we have a near zero-skew clock network. Therefore € can be safely
assumed to be restricted to a small number of (say 2-3) gate delays; in addition the value of H is
also limited to about 2 gate delays. This implies that the hold time constraints only need to be
enumerated for all paths over a small number of logic levels. The formulation of our work and [3]
are invalid for larger deliberate values of clock skew [12] since additional constraints ensuring

logic wave separation [13] need to be included and are beyond the scope of this paper.

15

The above observations guarantee that the number of constraints added for ensuring satis-
faction of hold time requirements in practical circuits is significantly less than O(|V'|?). This
complexity reduction can probably be combined with the complexity reduction in [6,7] to possi-
bly develop a faster technique for retiming with both short-path and long path constraints. We

will now summarize the new formulation that we call MARSH-IT as follows:

Algorithm MARSH-II
0)Objective:
Minimize Y, cy (Indegree(u) - Outdegree(u))r(u)

1)Legality constraints: For every edge u 5 v,
wy(e;) =r(v) —r(u) + w(e;) > 0. (15)

2)Long-path Constraints: For every edge pair z <5 u 5 v 4, y such that D(u,v) + o(e;) —
o(e;j) > c— S we have,
W(u,v) +r(v) —r(u) > 1. (16)

38)Short-path Constraints: For all pathsp =u <5 z 5 y & v satisfying A(p)+o(e)—o(ef) <

H we have,

r(v) —r(u) + w(p) < 1. (17)

r(u) € Z, u,veV

5 The Unification of Retiming and Minimum Delay-Padding

The work in [8] provide a technique that may be used to address short-path constraints as a
post-processing step after retiming has been performed for addressing long path violations. This

technique will always guarantee the fastest possible circuit implementation that can be achieved

16

RS

wW
Wd buff L

Figure 3: A gate of width Wy driving a buffer with width Wy, ; that drives a load of width W,

with retiming. What cannot be guaranteed, however, is that the resulting circuit will have a
minimum area. Using retiming alone to solve the problem of simultaneously addressing short-
path and long path constraints, on the other hand, can guarantee neither the fastest circuit
implementation nor can it guarantee the minimum area solution for a given circuit speed. The
trick lies in being able to combine the two approaches in to a single unified framework. Before
proceeding further we need to examine the problem of delay padding in detail. Specifically, we
will examine the mechanism of trying to delay a signal at the output of a gate driving a fanout

load.

5.1 Delay-Padding for a Gate with Fanout

In Fig. 3 a gate G'1 with width Wy is shown to drive a delay-buffer By with width Wy, y, that
in turn drives a fanout load gate G3 with width Wp. Using the commonly used Elmore delay
model [14], we will consider two cases, if the buffer Bj is replaced by a short circuit then the

delay of the signal of the output net of the gate G is given by

delay(gate) = a x %, (18)

where a is a constant. In the presence of the delay-buffer, the delay can be computed as

Whus 4 Wy,

W Woug) (19)

delay(gate) = a x (

17

Therefore, in order for the buffer to delay the signal on the net we require that,

Wbuf+ 147 S 143

—= 20
Wy Wyyp = Wy (20
which implies that either Wy < 4W; or Wy, s must satisfy the following,
1% Wi (W, —4W,
WbufSTL_\/ L(; d)aora
w. W (W, —4W,
Whur > TL + VIV 2L d)- (21)

In case, Wi > 4Wy, since we are looking for a minimum area solution we would be more

Wy VWi(Wr—4Wy)
2 2 :

interested in W,y < We restrict our discussion to the delay-padding
problem where any given wire uses delay buffers of unit delay. If a delay of multiple units is
required on the wire, then a chain of buffers is used to achieve this objective. We ignore fanout
loading effects for the moment and assume that irrespective of load a buffer of unit delay has
unit area. This assumption is made because the vast body of literature on retiming, including
our present paper, ignores variable loads on nets due to the presence/absence of flip-flops. So
keeping in tune with these assumptions it is reasonable to assume that unit-delay buffers have
identical area irrespective of the load they drive. However, we have a solution that can take
care of fanout loading effects also, in such cases the previous approximation is enhanced in the
following manner. Due to the different loading effects at the output of various wires in the
circuit, the area of a unit delay buffer at the output of each wire could be different. The area of
the buffer required to produce unit delay on the wire from gate, u to gate v can be denoted by
Ap(u — v). For any fixed configuration of flip-flops in the circuit Ay(u — v) can be determined
for various wires in the circuit and the min-delay padding problem as formulated in [8] can be
solved. Once padding has been accomplished to satisfy all the short-path requirements we can

further formulate a buffer relocation strategy to obtain a minimum area padding solution, by

noting the following,

1. Delaying different wires by the same amount will require buffer chains of different areas

18

that can be quantified by the cost parameters Ay(u — v).

2. Relocating the buffers can be accomplished using a technique very similar to [15].

5.2 Buffer-Relocation Constraints for Minimum Delay Padding

Assume that the number of unit-delay buffers on the wire e; is given by wy(e;). The buffer-
relocation transformation associates an integer valued label b(u) with every gate/flip-flop in the
circuit graph and performs the following optimization problem, where F'F' denotes the set of

flip-flops.

° e
® O, O ©
© Dummy Gaté
° --of O-delay

Figure 4: A circuit-graph transformation to handle fanout nodes.

Algorithm Buffer-Relocation
0) Transform the circuit as shown in Fig. 4.
1)Objective:

Minimize ZuEV,vEFanout(u) ’U)b(’u - U) (b(’l)) - b(u))

2)Legality constraints: For every edge u Ao,
b(v) — b(u) + wy(e;) > 0. (22)

3)Short-path, Long-path Constraints: For all all primary inputs, PI, all primary outputs

PO and all flip-flops FF, we must have,

b(PI) = b(PO) = b(FF) = 0. (23)

19

The requirement that b(FF) = 0 is added to make sure that buffers are not relocated across
flip-flops as this can affect the long path/short-path constraints of the circuit. All the properties

of retiming [1] also hold for the buffer-relocation problem, [15].

5.3 Putting It All Together

As pointed out earlier, using using MARSHI or MARSHII alone cannot always guarantee the
fastest possible circuit implementation. This is due to the fact that relocating flip-flops in
such a manner that hold time requirements are also satisfied may make it difficult to satisfy
long path constraints for the fastest possible clock period. To guarantee fastest possible circuit
implementations, better heuristics must be devised. One strategy tries to selectively introduce
short-path constraints in the input circuit with a formulation like MARSHII. The key idea
used here is to use flip-flop relocation for fixing short-path violations in those paths that allow
relatively higher freedom of flip-flop movement and use min-delay padding elsewhere. The notion
of how easy it is to relocate a flip-flop about a region can be obtained by examining the bounds
on the retiming variable, [6, 7], associated with circuit-graph nodes in that region. A search
technique can be employed by iteratively running a MARSHII like formulation, while retaining
the short-path constraints only on paths originating/terminating on nodes with varying “slack”
(upper bound of retiming variable - lower bound of retiming variable). In this way a near-optimal

search based technique can be formulated.

We now describe the approach in detail. The approach we describe here uses a “modified”
branch and bound strategy by using a binary search, [16], based approach. This approach guar-
antees at least as good a solution as the traditional approach because the traditional approach
is used as a starting point for the branching strategy. The advantage of these approaches is

that they can reduce the number of buffers inserted for correcting short-path violations while

20

marginally increasing the number of flip-flops.

One such approach will be to first identify nodes in the circuit-graph that are hard to
retime. This can be done in a manner similar to [6,7] where mobility of flip-flops is used to
find bounds on the retiming variables of various nodes of the circuit-graph. It is therefore
possible to identify certain nodes that are hard to retime, i.e., the retiming variable associated
with them can not change by a large amount. Typically in [6,7] a class of such nodes is
identified and is defined as “fixed” nodes. These nodes will have no flip-flops moving either
way across them. Intuitively, the neighborhood of any such node is likely to remain relatively
unchanged due to retiming. Therefore, if we include short-path constraints on such a node then
the resulting problem formulation might turn out to be infeasible. It is possible to identify
nodes in a decreasing order of “hardness” to retime by sorting them with respect to their slack
(upper bound of retiming variable - lower bound of retiming variable). An iterative approach
can then be devised which identifies hard-to-retime nodes by classifying them according their
slack. Once such a class of hard-to-retime nodes is identified, we can formulate a relaxed version
of MARSHII which relaxes the short-path constraints imposed on edges emanating/terminating
from/on such hard-to-retime nodes. We now describe MARSHIII a heuristic in this category
that first explores the nodes in the circuit to be retimed and identifies nodes that are hard-
to-retime. As mentioned before, this is accomplished by calculating bounds on the retiming
variables corresponding to nodes, as in [6,7]. Any node that has a small difference between the
upper and lower bound for the retiming variable associated with it is especially hard to retime
and the short-path constraints in MARSHII involving such a node are relaxed. This will allow a
greater freedom for the retiming problem than MARSHI or MARSHIT alone, so that a possibly

faster circuit can be realized.

Now we will describe the steps required to implement MARSHIIIL.

21

Algorithm MARSHIII

1)Define FREEDOM of a node = (upper bound of retiming variable - lower bound of retiming
variable). Let mazimum freedom of a node in the circuit graph be MAX and let the minimum
freedom of a node in the circuit-graph be MIN.

2)Perform long-path only retiming followed by min-delay padding, buffer relocation and
a MARSHII like approach which introduces short-path constraints only on those paths that
either originate or terminate on a node with FREEDOM > 1 followed by min-delay padding,
buffer-relocation.

Note that the traditional long-path only retiming is mathematically equivalent to introducing
short-path constraints for paths either originating or terminating on nodes with FREEDOM
> MAXIMUM + 1, i.e., there are no such paths. Define ITER(LIM) as the process of
performing a MARSHII like approach which introduces short-path constraints only on those
paths that either originate or terminate on a node with FREEDOM > LIM by min-delay
padding, buffer-relocation.

3)Set MAXp = FREEDOM + 1, MINp = 0. If area after ITER(MAXp) > area
after ITER(MINFE), then set MINp = L%J Otherwise, set MAXp =
[W] If either ITER(MAXF) or ITER(MINF) is infeasible then return an
area of oo for that case.

4)Iterate above process till MINp > M AXp, and put out the circuit which has a lower area

among the two.

Note that MARSHIII involves at most [logo(FREEDOM + 1)] iterations.

22

6 Simulation Results

Simulation results were obtained for circuits from the ISCAS89 benchmark suite. Additional
large circuits obtained by splicing together multiple instances of ISCAS89 benchmark circuits
were also simulated. A unit delay model was used for the gates, a setup time of 0 unit and a hold
time of 1 unit was assumed for all the flip-flops in the circuit. The fast retiming tool MINARET,
[6,7], was modified to incorporate hold time constraints. Simulation results were obtained for
traditional long path only retiming followed by min-delay padding, and for MARSHIII. Table 1
shows the results of the simulation, and displays the number of flip-flops and buffers in each
case. The platform used for simulation was an Ultra-Sparcl0 Sun workstation. It is observed
that a significant reduction in the number of delay buffers is often possible with a consequent
increase in the number of flip-flops. As an example, the number of buffers in myex5, in Table. 1,
is decreased by 92 at the expense of 10 flip-flops. As these buffers are non-inverting, assuming
conservatively that a flip-flop is 3 times as large as a delay buffer, this represents a savings
equivalent to 62 delay buffers. We expect to achieve higher gains in real circuits that have a
larger number of flip-flops and a larger number of hold constraints to correct. As can be seen
from Table. 1, in some cases it is possible to reduce the number of buffers required for min-delay
padding with a minimal increase in the number of flip-flops. All circuits have been retimed for
the fastest possible clock period possible with retiming. The last column reports the effective
savings in buffer area for MARSHIII over MINARET here it is assumed that a flip-flop is 3

times as large as a non-inverting delay buffer.

7 Conclusions

We have presented the first polynomial-time algorithm ever reported for min-area retiming with

setup and hold constraints (MARSH). Our algorithm runs in O(|V [2log|V|log(|]V|C)) steps, as

23

Table 1: Comparison of MINARET (I) and MARSHIII (II) for retiming of benchmark circuits .
The last column M AX ppee refers to the FREEDOM of the node with the maximum FREEDOM

in the circuit.

Circuit # Hold #FFs | #FFs | #Buffers | #Buffers Eff. CPU CPU MAXFpree
Violations | I 11 I 11 Savings | (TIME) | (TIME)
I I

$3271 3 168 168 3 3 0 0.19s 0.6s 0
53384 25 167 167 25 17 6 1.22s 3.9s 8
$38417 146 1395 1397 147 93 9 81.26s 361s 48
54863 4 138 139 4 0 3 2.76s 5.6s 1
$5378 14 173 173 14 11 8 0.78s 2.34s 3
s13207 47 446 447 47 24 14 5.91s 24s 20
515850 12 525 525 12 3 6 25.81s 78s 9
$38584 156 1427 1427 156 154 11 39.68s 160s 2
myex2 177 2022 2024 177 155 11 100.24s 401s 16
myex1 146 2293 2296 146 114 7 95.89s 288s 23
myex3 242 3279 3279 242 233 12 278.18s 1210s 9
myex4 289 2803 2816 289 233 13 239.95s 1032s 17
myex5 334 3378 3388 334 242 13 444.35s 1790s 62

24

described in section 4. We have also provided a practical argument to show that the prob-
lem complexity can be be reduced considerably by following an alternative formulation. Also,
presented were an extension to the min-delay padding algorithm with a concept called buffer-
relocation. Finally, a heuristic was presented which uses iterative applications of relaxed versions
of MARSHII to address the retiming problem with setup and hold constraints. The heuristic
MARSHIII guarantees at least as good a performance as the traditional approach of performing
setup only retiming followed by min-delay padding for addressing hold constraints. The execu-
tion time requirements for MARSHIII involve at most [logo(FREEDOM + 1)] iterations of a

process similar to MINARET, which is known to be extremely fast.

References

[1] C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,” Journal of VLSI and
Computer Systems, vol. 1, no. 1, pp. 11-67, 1983.

[2] C. Ebeling and B. Lockyear, “The Practical Application of Retiming to the Design of
High-Performance Systems,” Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 288-295, November 1993.

[3] M. C. Papaefthymiou, “Asymptotically Efficient Retiming under Setup and Hold Con-
straints,” Proceedings of the IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 288-295, November 1998.

[4] S. Dey and S. Chakradhar, “Retiming Sequential Circuits to Enchance Testability,” Pro-
ceedings of the 12th VLSI Test Symposium, pp. 28-33, April 1994.

[6] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Retiming and
Resynthesis: Optimizing Sequential Networks with Combinational Techniques,” Proceedings
of the Hawaii International Conference on System Sciences, June 1990.

[6] N. Maheshwari and S. S. Sapatnekar, “Efficient Retiming of Large Circuits,” IEEE Trans-
actions on VLSI Systems, pp. 74-83, March 1998.

[7] N. Maheshwari and S. S. Sapatnekar, “Optimizing Large Multiphase Level-Clocked Cir-
cuits,” IEEE Transactions on Computer-Aided Design, pp. 1249-1264, September 1999.

[8] N. Shenoy et al., “Minimum Padding to Satisfy Short Path Constraints,” Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp. 156-161, November
1993.

9

[9] N. Shenoy and R. Rudell, “Efficient implementation of retiming,” Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp. 226-233, November
1994.

25

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Sapatnekar and R. Deokar, “Utilizing the retiming-skew equivalence in a practical algo-
rithm for retiming large circuits,” IEEE Transactions on Computer-Aided Design, vol. 15,
pp- 1237-1248, October 1996.

A. V. Goldberg, E. Tardos, and R. E. Tarjan, “Network Flow Algorithms,” Technical Re-
port, Department of Computer Science, Stanford University, 1989.

J. P. Fishburn, “Clock Skew Optimization,” IEFE Transactions on Computers, vol. 39,
pp- 945-951, July 1990.

D. A. Joy and M. J. Ciesielski, “Clock Period Minimization with Wave Pipelining,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
pp- 461-472, April 1993.

N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspec-
tive 2nd Edition. Addison-Wesley, 1993.

V. Sundararajan and K. K. Parhi, “Low Power Gate Resizing Using Buffer-Redistribution,”
in Proceedings of the Twentieth Anniversary Conference on Advanced Research in VLSI,
pp- 170-184, March 1999.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. Cambridge,
Mass. : MIT Press; New York : McGraw-Hill, 1990.

26

