
IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 1

BDD Decomposition for Delay Oriented
Pass Transistor Logic Synthesis

Rupesh S. Shelar, Member, IEEE, and Sachin S. Sapatnekar, Fellow, IEEE,

Abstract— We address the problem of synthesizing pass transistor logic
(PTL), with the specific objective of delay reduction, through binary
decision diagram (BDD) decomposition. The decomposition is performed
by mapping the BDD to a network flow graph, and then applying the
max-flow min-cut technique to bipartition the BDD optimally under a
cost function that measures the delay and area of the decomposed imple-
mentations. Experimental results obtained by running our algorithm on
the set of ISCAS’85 benchmarks show a 31% improvement in delay and a
30% improvement in area, on an average, as compared to static CMOS
implementations for xor intensive circuits, while in case of arithmetic
logic unit and control circuits that are nand intensive, improvements
over static CMOS are small and inconsistent.

Index Terms— Binary Decision Diagrams (BDD’s), Pass Transistor
Logic, Logic Synthesis, Functional Decomposition

I. INTRODUCTION

A. Motivation

Static CMOS has been a favorite logic style of VLSI designers
for the last two decades due to its advantageous noise immunity
properties and good performance. However, due to technology scaling
and the increasing number of transistors on chip, the performance
of static CMOS circuits comes at substantial area/power dissipation
costs that may not be desirable, especially for portable appliances.
Therefore, new logic families that address the power and performance
challenges must be explored [1]. Among low power logic families,
pass transistor logic (PTL) has great potential due to its ability to
implement logic functions with a lower transistor count, smaller
capacitance, and hence better performance, perhaps at the same
or lower area/power cost as that of static CMOS [2–5]. Although
rising transitions in NMOS-only PTL are slower than those for fully
complementary logic, our simulations show that PTL will continue to
result in better implementations than static CMOS in case of XOR-
dominated circuits. The results of these simulations for a 3-input
XOR gate, using predictive technology models [6], are displayed
in Figure 1(a) and demonstrate that PTL will continue to provide
benefits over CMOS for several technology generations. However,
due to a lack of synthesis tools and methodologies for PTL, it is
unclear whether PTL will live up to the promise of providing equal
(or better) performance at lower cost as compared to static CMOS.

PTL (or one of its variants, such as CPL [2]) is known to yield
better implementations as compared to static CMOS for arithmetic
circuits, such as adders and multipliers. However, when these ele-
ments are synthesized along with random logic using standard cell
libraries, the structural properties of the network that are suitable
for PTL may remain unexploited, resulting in possibly suboptimal
solutions. PTL elements are used in design even today: ASIC libraries
typically contain PTL-like one-hot multiplexers and pass transistor
gates because of the area/power/performance gains that they offer

Manuscript received November 4, 2003; revised November 26, 2004. This
work was supported in part by Semiconductor Research Consortium (SRC)
under contract 2002-TJ-1092 and under award NSF CCR-0098117. This paper
was recommended by an Associate Editor Srimat Chakradhar.

R. S. Shelar was with the Department of ECE, University of Minnesota,
Minneapolis, USA. He is now with Intel Corporation, Hillsboro, OR, USA.

S. S. Sapatnekar is with the Department of ECE, University of Minnesota,
Minneapolis, USA.

over static CMOS circuits, even though the latter have higher noise
immunities [7]. In practice, most of these cells are employed in
an ad-hoc manner after verifying that the nets driving PTL cells
are appropriately buffered. Thus, although the use of PTL may be
desired, it remains underutilized and more so, because of the lack
of good performance-driven synthesis algorithms and methodologies
exploiting the properties of PTL circuits.

It is well known that PTL is not universally better than CMOS
for all types of logic structures: for NAND-intensive circuits, for
example, static CMOS can result in better implementations than
PTL. This is demonstrated in Figure 1(b) by our simulations for
a three-input NAND gate in both logic styles, at various technology
nodes. Therefore, mixed static CMOS/PTL synthesis is likely to be
an attractive alternative in the future. Even for such an approach,
synthesis solutions targeting performance that exploit the properties
of PTL circuits must be developed, and this work may be considered
as a step in that direction.

For performance-driven pass transistor logic synthesis, this article
proposes an algorithm that is based on decomposing binary decision
diagrams (BDD’s) to minimize the delay in BDD-mapped PTL
circuits with the least area penalty. Using this synthesis algorithm
for PTL and standard synthesis flow for static CMOS, we answer the
following questions that are of interest to VLSI designers:� Can PTL match the delay in static CMOS circuits at a lower

area cost than static CMOS standard cells? If so, then is this
true only for specific kinds of circuits?� In cases where the results favor PTL, how much is the gain over
static CMOS for benchmark circuits?

These questions are even more important with technology scaling as
leakage power, which is indirectly dependent on the area of a circuit,
becomes a major bottleneck.

B. Previous Work

Synthesis techniques for PTL circuits have been closely related to
the binary decision diagram (BDD) representation of logic functions,
for several reasons: firstly, BDD-based PTL circuits are guaranteed
not to have any sneak-paths1, and secondly, the use of BDD-
based methods can benefit from the plethora of efficient algorithms
available for the construction of BDD’s. The BDD representation of
a logic function affects the PTL implementation, and therefore, BDD
decomposition methods must be adapted to optimize cost functions
that represent their PTL implementation.

The idea of decomposing logic functions, in general, and BDD
decomposition, in particular, for optimizing specific objectives is
not new, although there is little work on considering PTL-based
cost functions during BDD decomposition. We review some of
the representative work in the area of Boolean decomposition and

1A sneak-path is a path from V ��� to ground in a steady state. The sneak-
paths do not exist in static CMOS circuits, since a path either in pull-up or
pull-down network is active for any assignment of inputs. For PTL circuits,
however, if not designed carefully, there may exist sneak paths. Employing
BDD’s for PTL ensures a sneak-path-free implementation, since only one path
is active for any assignment of inputs in a BDD.

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 2

10

100

1000

10000

60 80 100 120 140 160 180 200 220 240 260

P
D

P
 (p

s*
W

at
t*

10
e4

)

Technology Node (nm)

PTL/CMOS PDP Comparison for 3 i/p Ex-OR

PTL
CMOS

(a)

1

10

100

1000

60 80 100 120 140 160 180 200 220 240 260

P
D

P
 (p

s*
W

at
t*

10
e4

)

Technology Node (nm)

PTL/CMOS PDP Comparison for 3 i/p NAND

CMOS
PTL

(b)
Fig. 1. Power-delay product (PDP) values for (a) a three-input XOR gate and (b) a three-input NAND gate. Both circuits are implemented in NMOS-only
PTL and in static CMOS at various technology nodes, and the results of SPICE simulations using predictive technology models [6] are shown.

BDD decomposition. In the area of decomposition of switching
functions, Ashenhurst performed pioneering work with a theorem
relating column multiplicities in a partition matrix, corresponding to
a partition of variables into bound set and free set of variables, with
the simple disjunctive decomposability of a switching function, and
also proved relevant theorems on non-simple decompositions of a
switching function [8]. An excellent review on the development of
theory of decomposition of switching functions in 1960’s and 1970’s
is presented in [9]. Recently, Lai et al. have proposed an ordered
BDD (OBDD) based function decomposition method that involves
forming a cutset in the BDD, and then encoding the nodes in the
cutset to yield disjunctive or non-disjunctive decompositions [10].
This OBDD-based decomposition has been applied to the synthesis
of field programmable gate arrays targeting area, measured in terms
of the number of configurable logic blocks, with no depth constraints.
In [11], a BDD-based logic synthesis system is developed, in which
transformations such as AND/OR decomposition based on 0/1 dom-
inators, and XOR and functional MUX-based decompositions are
proposed; synthesis for performance-driven PTL is not specifically
targeted.

Several techniques for PTL synthesis have been suggested in the
recent past. A loose upper bound of theoretical utility on the number
of multiplexers required to implement a given logic function is
developed in [12]. Buch et al. propose a greedy heuristic in [13]
to decompose larger BDD’s into smaller BDD’s whose sizes are
kept under a specified threshold. For area-driven PTL synthesis,
Chaudhry et al. [14] present a method similar to traditional multilevel
logic optimizations, first invoking the iterative application of logic
transformations, and then mapping the BDD representation on to a
PTL cell library. A similar philosophy has been used for performance-
driven synthesis in [15]. Both [13] and [15] imply that multilevel
BDD’s are to be used, but the limitation of these approaches is
that they are unable to predict the performance gain beforehand.
Ferrandi et al. propose the use of PTL cell generation and subsequent
binate covering of the nodes in the Boolean network using a set of
heuristically generated BDD’s to minimize the cost [16]. Scholl and
Becker [17] report the use of multiplexer circuits for area and depth
optimizations of PTL circuits. Unlike [13], they allow the threshold

size of the decomposed BDD’s to be varied, and their cost function
allows area and depth to be traded off. Poli et al. propose techniques
for transistor level construction of static CMOS and PTL cells from
BDD’s and provide a comparison of these logic styles by restricting
the number of inputs to a cell to four [18]. Cho and Chen propose a
genetic algorithm for technology mapping of mixed static CMOS and
PTL circuits using a predefined set of PTL cells [19]; their approach
does not specifically target performance driven PTL synthesis.

C. Our Contributions

In this paper, we present a novel approach to performing delay
oriented PTL synthesis through the decomposition of a monolithic
BDD representing a circuit. Our contributions can be summarized as
follows:� We explicitly incorporate delay and area considerations simul-

taneously into a global technique for finding the decomposition.� Our bipartitioning scheme employs the max-flow min-cut tech-
nique to roughly halve the delay of a PTL implementation
of a BDD with the least area overhead. The delay in a PTL
circuit is well known to be linear in the number of input
variables after buffer insertion, and our recursive bipartitioning
approach can result in logarithmic depth reductions over the PTL
implementation of the monolithic BDD. Although logarithmic
depth reductions, in terms of transistors, may not translate to
logarithmic delay reductions, the resulting delay reductions are
still substantial. The area penalty is minimal, up to the accuracy
in estimation, as the algorithm explicitly attempts to minimize
this overhead by finding an optimal cut.� Experimental results, obtained using the above techniques, on a
set of ISCAS’85 benchmarks containing xor dominated arith-
metic circuits such as multiplier and the circuits for error
correcting codes, show that PTL outperforms static CMOS
implementations with 31% improvement in delay and 30%
improvement in area, on an average, for a 0.13 � m technology.
We found that in case of arithmetic logic unit (ALU) and control
circuits, the improvements over static CMOS are small and
inconsistent, although PTL (or its variant CPL) is known to yield
cost effective implementations of adders, which are important

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 3

PSfrag replacements

c3 c3

1 0

a0
a0

a1 a1
a1 a1

a2

a2a2

b0
b0

b1

b1

b2

b2

a0’

a1’a1’

a2’a2’

b0’

b1’b2’ 4

16

32

(a) (b) (c)

Fig. 2. (a) The BDD for Carry function for 3-bit adder (b) Its corresponding
PTL implementation, using inverters with weak pull-ups, shown at the
transistor level in (c).

components of ALU and control circuits. This anomaly may
be attributed to the scripts in SIS [20] that are used for
preprocessing and also to the structure of control logic, which
is usually nand intensive, in these circuits. Employing our PTL
synthesis algorithm in case of the designs that are inherently
well suited for PTL, one may obtain performance that is close
to custom designs while the use of static CMOS standard cell
libraries to obtain the same performance may come at a very
high area/power cost.

D. Organization of the Article

The remainder of this article is organized as follows. Section II
illustrates the BDD decomposition technique that is applied for delay
optimization. We transform the BDD decomposition problem to a
bipartitioning problem in Section III, and describe a solution that
employs the max-flow min-cut technique, without dwelling on the
precise delay analysis method. In Section IV, we complete our
description by outlining the delay models and the delay analysis
method used in decomposition and for post-synthesis delay esti-
mation. Section V presents experimental results on the ISCAS’85
benchmark circuits, followed by concluding remarks in Section VI.
A preliminary version of this work was presented in [21].

II. PTL IMPLEMENTATION USING DECOMPOSED BDD’S

A. The Relationship between BDD’s and PTL

A BDD can be mapped on to a PTL implementation as follows.
Each node of the BDD implements a Shannon expansion about
the variable � associated with the node, and can be expressed as��� �	� ��
 + ���� �
�� , where

��

and

�
��
are, respectively, the

Shannon cofactors of the function
�

. This may be translated to a
multiplexer that passes

�

when � is high, and

�
��
when � is low; the

procedure can then be applied recursively to the functions
��

and
�
��

.
Therefore, for any logic function, the BDD representation can be used
to directly arrive at its PTL implementation, as shown in Figure 2.
Moreover, mapping from a BDD on to a PTL circuit ensures a sneak-
path-free implementation: this follows from the property of BDD’s
that for any assignment of inputs, only one path from the root node
to a terminal node is active. For the purposes of this paper, all BDD’s
are reduced ordered BDD’s (ROBDD’s), which implies that the order
of variables on any path from an output node to a leaf node is
identical. We also restrict ourselves to NMOS-only PTL, although the

algorithms proposed in this article are applicable to other variants of
PTL, such as transmission gate PTL, albeit with different area/delay
trade-offs. NMOS-only PTL, as the name suggests, employs only
NMOS transistors as pass transistors. Therefore, it requires buffers
with weak pull-ups after every � transistors in series to avoid long
chains of pass transistors and also to recover the voltage drop across
transistors while passing logic one.

B. BDD Decomposition for Delay Optimization

Mapping a BDD directly to PTL can result in delays that are
linear in the number of input variables, and BDD decomposition
can be applied to reduce these delays. We outline a general BDD
decomposition technique with the help of the following example.
Consider a carry function for a three-bit adder whose optimized BDD
is shown in Figure 3(a). This BDD is built on six variables, a0, b0,
a1, b1, a2 and b2, and one output, c3. We choose a cutset across the
BDD that is indicated by the shaded nodes in Figure 3(a). When
this cut is used to separate the upper and lower parts of the BDD,
dangling edges are created in the upper part, for instance, edges from
nodes labeled a1 to nodes labeled a2. We introduce dummy nodes
V0, V1, V2 that replace these shaded nodes, as shown in Figure 3(b).
These dummy nodes can be assigned unique codes employing one-
hot or minimum-bit encoding, as shown in Table 1. The two types of
encoding lead to two alternative PTL implementations with different
area/delay trade-offs.

Once an encoding is chosen, the original function can be realized
using a decomposition based on this cut. The encoding bits (i.e.,�����������

or � � � �) can be utilized as select inputs to a multiplexer
whose data lines correspond to the evaluated values of the BDD’s
rooted at the three shaded nodes as shown in Figure 3(e), depending
on the value of the encoding. Therefore, each such select input corre-
sponds to a BDD representation that sets the leaf nodes according to
the chosen encoding. As an example, the select bit

���
for the one-hot

encoding corresponds to the combination V0 = 0, V1 = 1, V2 = 0,
and is used to select the BDD rooted at the shaded node b1. By
substituting these values into the dummy terminals in Figure 3(b),
we can obtain the BDD for the select input

���
. The BDD’s for

other select inputs such as
� �

and
� �

can be obtained similarly. The
multioutput BDD for

�����������
is illustrated in Figure 3(c).

One-hot Encoding Minimum-bit Encoding
Terminal Node

� � � � � �
Terminal Node � � � �

V0 100 V0 00
V1 010 V1 01
V2 001 V2 11

TABLE I
ONE-HOT AND MINIMUM-BIT ENCODING SCHEMES FOR THE DUMMY

TERMINAL NODES INTRODUCED DURING DECOMPOSITION.

If, instead, a minimum bit encoding is used, a similar procedure
may be employed to derive the BDD for the select inputs � � and
� � ; the corresponding multioutput BDD is depicted in Figure 3(d).
We observe that depth of the BDD’s for the select inputs is the
same for one-hot encoding and for minimum-bit encoding. Note that
in case of select functions obtained by one-hot encoding, for any
assignment of a0, b0, and a1, only one of the select functions is
true and we can use a one-hot multiplexer circuit to implement c3.
On the other hand, select functions that correspond to minimum-
bit encoding are employed as inputs to regular multiplexers. Two
alternative implementations of c3 using a one-hot multiplexer and
a regular multiplexer are shown in Figure 4(a) and in Figure 4(b),

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 4

PSfrag replacements

��� ��� ��� � � � �

V0 V1 V2

a0a0 a0a0a0a0a0

a0

a1a1 a1a1 a1a1

a1a1
a2 a2

a2a2

b0b0 b0b0b0b0b0

b0

b1

b1

b2

b2

b2

a0’
a1’
a2’
b0’
b1’
b2’

c3c3

c3

(a)

(b)(b) (c) (d) (e)(e)

11 1

1

1 0

0

Fig. 3. (a) The BDD for the carry function for a three-bit adder, where the shaded nodes form the cut that is used to decompose the BDD. (b) The upper
part of the cut, with the dangling edges replaced by dummy nodes V0, V1, V2. (c) The select function under the one-hot encoding for V0 V1 V2. (d) The
select function under a minimum-bit encoding for V0 V1 V2. (e) The data function. In all of these pictures, the solid edges in the BDD denote the 1-cofactor,�

, the dashed edges denote the 0-cofactor,
�
 �

, and the dotted edges denote the complemented 0-cofactor,
�
 �

.

PSfrag replacements

�� ��! ��"

� �

� �

����

����

a2
a2

a2

a2

a2 a2’

a2’

a2’a2’

b1
b1’ b1’

b2

b2b2’b2’
b2’

c3

c3

(a) (b)

Fig. 4. Alternative implementations of c3 (a) using one-hot multiplexer, (b)
using regular multiplexer. Note that, one multiplexer driven by a2’ and a2 is
duplicated in case of (b) because of the difference in the number of inverters
from this multiplexer to the output.

respectively. The select inputs are simply the PTL implementations
of the BDD’s shown in figures 3(c) and 3(d). The data inputs are due
to PTL implementation of the BDD’s in Figure 3(e), whose terminal
nodes are assigned appropriate polarity to account for the inverters
at the output of one-hot or regular multiplexer.

Implementation Active Area(� m
��#

Delay(ps)
Monolithic BDD 2.974 201

One-hot Multiplexer 3.532 103
Regular Multiplexer 3.768 174

TABLE II
A COMPARISON OF ALTERNATIVE IMPLEMENTATIONS OF C3.

Table II shows the active area and delay, obtained by circuit
simulations under an excitation with a 50ps2 transition time, for

2The transition time of 50ps is chosen, as it corresponds to a typical
microprocessor clock period of 500ps corresponding to a 2GHz frequency.

alternative implementations obtained by (1) directly mapping the
BDD, and using decomposition based on (2) one-hot multiplexers and
(3) regular multiplexers in 0.13 � m technology [6]. All of the pass
transistors have widths of 14 $ and the inverters are sized as follows:
all PMOS transistors have widths of 32 $, all NMOS transistors have
widths of 16 $, and all weak pull-ups have widths of 4 $, as shown in
Figure 2, where %&$ is the minimum feature size. Clearly, the one-hot
multiplexer based implementation has the least delay, albeit with a
slightly larger area than that obtained by directly mapping the BDD.
We also observe that in the decomposed implementation using one-
hot multiplexers, the depth of the circuit is halved as compared to the
implementation obtained by a direct mapping of the BDD. Moreover,
this procedure can be applied recursively, halving the depth at each
step to result in a logarithmic depth PTL implementation.

C. Trade-offs between the Choice of a One-hot or a Regular Multi-
plexer

PSfrag replacements

'�(" '�("
'�(!

' "' "

'�!

'�! '*) ',+- " - "- ! - !-) -)- + - +

O

O

(a) (b)

Fig. 5. Transistor-level implementation of (a) a one-hot 4:1 multiplexer, (b)
a regular 4:1 multiplexer

Figures 5(a) and 5(b) show transistor-level implementations for 4:1
one-hot and regular multiplexers, respectively. In case of the one-hot
multiplexer, four select inputs are required, of which only one can
be high at a time. In contrast, the regular multiplexer has two select
inputs which are used to select among four data inputs. We observe
that the depth of a one-hot multiplexer circuit, as measured by the
maximum number of series transistors, is always one, irrespective
of the number of data inputs. On the other hand, the depth of a

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 5

regular multiplexer increases logarithmically with the number of data
inputs. Apart from the delay advantage that can be obtained from this
reduced depth, a one-hot multiplexer with . data inputs also uses
fewer transistors than a regular multiplexer. Specifically, the number
of transistors required to implement a one-hot multiplexer is . , while
the corresponding number for a regular multiplexer is %/.102% .

The complete picture, however, is more complex. The number of
select inputs required for a one-hot multiplexer is the same as the
number of data inputs, and therefore, such a multiplexer requires
the generation of more select functions than a regular multiplexer.
Moreover, although the number of levels for a one-hot multiplexer is
always one, its delay is not constant but increases with the number of
data inputs. This arises since an increase in the number of transistors
connected to the output results in an increase in the load driven
by the one-hot multiplexer, as additional drain capacitances, which
contribute to the total output capacitance, are brought in by each data
input. This is one of the reasons why the logarithmic depth reductions
provided by our approach, which uses one-hot multiplexers, do not
translate into logarithmic delay reductions. However, this is not a
significant limitation, since the obtained delay reductions, as shown
in Table II, are nevertheless substantial for real circuit examples.

III. THE BDD DECOMPOSITION ALGORITHM

The decomposition technique presented in the Section II can be
thought of as a bipartitioning that halves the circuit depth and
therefore, shortens the critical path and its delay. If we take a single
cut across the BDD that halves the critical path, then we find that
the delay in the PTL implementation using a one-hot multiplexer,
which adds one extra series transistor, is approximately halved. We
can apply this bipartitioning procedure recursively, such that on each
application of the procedure, the critical path is roughly halved. The
price being paid for this delay reduction is in terms of area, since the
number of transistors required for implementation may increase as
we recursively bipartition the BDD. BDD decomposition for delay
reduction does not always result in an area penalty since one-hot en-
coding of the select functions may result in simpler Boolean functions
and hence, smaller BDD’s. In such a case, bipartitioning should be
performed so that it approximately halves the delay and also results
in area-wise good implementation. In our algorithm, we perform this
bipartitioning to aim for the minimum area penalty. This approach
differs from that of [22] in the objective as well as the application
of bipartitioning: aim of that work is power minimization in the
combinational logic blocks implemented in PTL, where bipartitioning
is applied only once to a given BDD, as opposed to this work which
targets delays, and applies bipartitioning recursively.

A. Recursive Bipartitioning for Performance

A key step during bipartitioning is that of identifying candidate
nodes for the cut that will succeed in approximately halving the
circuit delay. Our delay estimator for the PTL implementation of a
given BDD assumes the insertion of a buffer after at most three pass
transistors in series and inverters for complemented edges. Based on
this assumption, each node in the BDD is assigned two delays:
� Delay from bottom (35476�898:6�;): This is the delay of the PTL

network rooted at a given BDD node.� Delay from top (3 8:6=<): This is the maximum delay from a given
BDD node to any of the outputs.

These delays can be evaluated employing the delay analysis proce-
dure outlined in Section IV, which can be used to identify the critical
path through the PTL network.

We define three types of nodes for delay-balanced bipartitioning:

PSfrag replacements

> �> � > �> �

>@?
> ? > � � > � �

> � ?A � A � A ?

B �
B �

B �
B �

B � � B � �
C

C
C

C C

C

CC

C

D D Cut A

Cut B

(a) (b)

EGFIH E F=J

E F=K

L

M

Fig. 6. Creating a flow network: (a) digraph corresponding to a BDD with
essential and candidate nodes, (b) corresponding flow network.

� Essential nodes, for which 3 476�898:6�; lies within a small range
(N�O) of half of the critical path delay (3 FQP�R 8 RSFQT�U). In other words,
essential nodes lie in the middle of critical path, with small
tolerance O .� Candidate nodes, for which 3 8:6=< and 3WV 6�898X6Y; are both less
than (

��Z\[Q]X^X]:Z_Y`� 0	O).� Non-candidate nodes, which comprise all of the remaining
nodes. These nodes will not be considered for inclusion in the
cut.

The optimum cut will halve the critical path, ensuring that no other
path in the decomposed implementation has a delay of more than
half the critical path delay. Therefore, all essential nodes must be in
the cut, while we have the freedom to choose among the candidate
nodes. We assign an area cost, explained in the next subsection, to
the candidate nodes and then use the max-flow min-cut technique
[23] to find an optimum cut that halves the circuit delay with the
smallest area cost.

Figure 6 shows an example of how the flow network is created.
The procedure begins with a digraph corresponding to the given BDD,
illustrated in Figure 6(a). In this example, let us assume that there
are three nodes

Aa�
,
Ab�

, and
A ? corresponding to the three primary

outputs, three candidate nodes > � , > � and > ? , and two essential nodesB � and B � . The dashed edges in Figure 6(a) (for instance, an edge
from

Aa�
to > �) indicate that there are directed paths between the

corresponding nodes, but the nodes on these paths are not shown
since none of them are essential nodes or candidate nodes. Figure 6(b)
shows the corresponding flow network with one source node L and
one destination node

M
. Each essential node in the digraph is split

into two nodes: for instance, node B � is represented by two nodesB � and B � � with an edge from B � to B � � that is assigned a small
capacity3, D . Similarly, candidate nodes are also split into two nodes:
for instance, node > � in the digraph is represented by two nodes> � and > � � , respectively. However, the edge capacity for these nodes
is not D , but is set to the area cost of the candidate nodes in the
BDD. In this example, the edge from > � to > � � has an edge capacity
of
EGF �

. The remaining edges in the flow network are assigned a
capacity of C , and therefore will not appear in the cut. Thus, in
this example two cuts are possible, Cut A and Cut B, corresponding
to cutsets

E�F=c 89d=eQ8 �gf B �ih B �&h > ?bj and k FQc 89dQe=8 �gf B ��h B �bh > ��h > � j in
the digraph corresponding to the given BDD. The application of the

3The small capacity l to the edges between split essential nodes ensures that
all essential nodes are in the cut. A capacity of 0 cannot be associated with
these edges because of the conventions in the max-flow min-cut algorithm; a
capacity of 0 means that edge does not exist.

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 6

Ford-Fulkerson technique to find the minimum cut will result in one
of these, depending on values of

E�FmH
,
EGF=J

and
E�F=K

. The pseudocode
for the entire procedure is is shown in Algorithm 3.1. Once the cut
has been determined, the vertices in the cut are replaced by dummy
terminal nodes, which can be assigned unique codes and implemented
as PTL circuits, as illustrated in Section II.

Algorithm 3.1 Algorithm for BDD decomposition
Input: A digraph n5o\p hIq

#
corresponding to the given BDD, the set

of nodes p in the digraph, the set of edges
q

in the digraph
Output: An optimal cutset � F=c 8

1: DelayAnalysis(n);
// Assign 3 8:6=< , 3 V 6�898:6�;srtvu p

2: 3 FQPIR 8 RSFQT@Uxw max
f t . 3WV 6�898:6�; rtvu p j ;

// Compute the critical path delay
3: pzy dQd=e={|8 R}T�U w f t : t~u p and

� Z7[=]X^X]:Z_�`� 0�O���3 476�898:6�; �� Z7[=]X^X]:Z_�`� � O j ;
// Identify the essential nodes

4: pz� T {&� R � T 89e w f t : t�u p and 3 8:6=< , 35476�898:6�;�� ��Z\[Q]X^X]:Z_Y`� 0�O j ;
// Find the candidate nodes

5: AreaCostEstimate(p,� T {&� R � T 8:e);
// Compute the area cost for all candidate nodes

6: n�� U 6Y� w CreateFlowNetwork(n , p,y d=d=eQ{|8 RST�U , p � T {b� R � T 89e);
// Create the flow network

7: Ford-Fulkerson(n � U 6�� h n h � F=c 8);
// Find an optimal cut

This bipartitioning procedure can be applied recursively till no
further delay reduction can be achieved. If we define the depth of
the implementation as the maximum total number of series transistors
(discounting buffers) from any input to any output, then the resulting
implementation has a depth that is logarithmic in number of inputs. In
contrast, the original undecomposed BDD yields an implementation
whose depth is linear in the number of variables. This is stated in
the following theorem:

Theorem 3.1: The recursive application of the procedure in Algo-
rithm 3.1 to any BDD with the use of one-hot multiplexers results in
an implementation that has a depth, in terms of the number of series
transistors, of

� o��S�|�zo73 Bm� M=�,�
#m#

, where 3 Bm� Mm�z� is the depth of the
PTL implementation obtained by directly mapping the BDD.
Proof Since the PTL implementation obtained by directly mapping
the BDD has depth 3 Bm� Mm� � , the select and data functions obtained
by the first level of bipartitioning each has a depth of at most� 3 BI� Mm� ��� %/� . The use of the one-hot multiplexer adds a constant
depth of one transistor to this. The bipartitioning procedure can be ap-
plied further to these decomposed select and data functions, a process
that can continue recursively. There can be at most

� �S�|�zo73 Bm� Mm� �
#
�

such recursions, and after each recursion only a constant depth is
added due to the one-hot multiplexer. Therefore, at the end of the
recursion, the resulting implementation has

� o��S�|�,o73 Bm� M=� �
#m#

.
Unlike the regular multiplexer-based implementation for PTL

circuits in [17] that obtains a logarithmic depth for the functions,
where the cutset has only two nodes (for instance, xor function),
our use of one-hot multiplexers and recursive bipartitioning results
in a logarithmic depth implementation for any circuit, irrespective
of the cutset size. A logarithmic depth PTL implementation for
any BDD is neither claimed nor proved in [17] whose approach
relies on the use of regular multiplexers, although they demon-
strate such an implementation for xor function. It is clear that
if, instead of one-hot multiplexers, regular multiplexers are em-
ployed during decomposition, the reduction in depth is, somewhat,
lower: a regular multiplexer based implementation has depth with

a lower bound ��o��}�&�zo73 Bm� Mm� �
#
�S�|�zo\���7. � c 89d R}� e

#m#
and an upper

bound
� o��S�|�zo73 Bm� M=� �

#
�}�&�zo\����� � c 89d R}� e

#m#
, where ���\. � c 89d RX� e and

��� � � c 89d R}� e denotes the minimum and the maximum of cardinalities
of cutsets at any bipartitioning stage, respectively.

B. Area Estimation

The flow network described above requires an estimate of the area
cost for each candidate node in the BDD. To generate this estimate,
we assume a BDD-mapped PTL implementation with pass transistors
and buffers after every � transistors. The contribution of a node to
the area cost is estimated as the sum of
� the area of the PTL implementation of the BDD rooted at a

given node, and� the area of the PTL network that terminates on the given node.

This area cost is computed in linear time by a postorder traversal of
the network. At multi-fanout BDD nodes, the area cost is divided
by the number of fanout edges. This heuristic is similar to the one
employed in technology mappers for standard cell libraries such as
[20], [24].

C. Complexity Analysis

The computation time required to find essential and candidate
nodes is linear in the size of the BDD network, as it involves a
traversal, similar to the critical path method [25], of the BDD. The
time required for area cost estimation is also linear in the size of the
network. The only computationally expensive procedure is the max-
flow min-cut algorithm, which is applied to find an optimum cut
with minimum area penalty. The time complexity of the Edmonds-
Karp implementation of the Ford-Fulkerson algorithm for finding the
max-flow and min-cut is

� oI¡ip¢¡|¡ q ¡
� #

, where p (
q

) is the set of
nodes (edges) in the flow network [23]. While this seems expensive,
in practice the time complexity of this algorithm is hardly reflected
in the CPU times for the following reasons:

1) In our case, the size of flow network is very small as compared
to the size of the BDD to be bipartitioned, since only a small
fraction of all the BDD nodes qualify as either essential or
candidate nodes.

2) Since the capacity assignment to the nodes is such that essential
nodes are assigned very small capacity and are always in an
optimum cut, a majority of flow augmentations are associated
only with the part of the network that involves paths with
candidate nodes. In other words, the flow network effectively
contains only the candidate nodes and related edges.

Since bipartitioning is applied recursively, the following recurrence
equation describes the time complexity of the entire algorithm for a
BDD containing . nodes

£ o�.
�¤£ o�.¥dQe U e F 8

� £ o�.,� T 8 T
� A o�.

#
(1)

where, .¥dQe U e F 8 and .,� T 8 T are the number of nodes in BDD’s for
select and data functions, respectively. The number of recursions is
bounded as noted in the proof of Theorem 3.1, and this ensures the
termination of the algorithm in a finite time. Although o�.¦d=e U e F 8 �
.,� T 8 T

#¨§
. due to possible increase in the number of nodes for select

functions because of possibly high number of select functions, the
one-hot encoding and the node-sharing among select functions result
in .*d=e U e F 8 , which is usually smaller than (or equal to) . as observed in
practice on ISCAS’85 benchmarks. Being the number of BDD nodes
for the data functions, which are part of original BDD, . � T 8 T is also
smaller than (or equal to) . . To account for the possible increase
in the number of nodes and to simplify the equation,

£ o�.¦d=e U e F 8
�

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 7

£ o�.,� T 8 T
#

can be approximated as % £ o�. � �
#
, where ©��ª�v�¤% . Using

such an approximation, the equation can be re-written as shown below
£ o�.

� % £ o�. � �
� A o�.

#
(2)

In the above equation,
A o�.

� ��o�.
#

due to linear time complexity of
delay analysis and

A o�.
� � o�. ?

#
assuming the size of flow network

to be same as that of the size of the BDD. Note that assumption that
the size of the flow network is

� o�. ?
#

is highly pessimistic for the
two reasons mentioned before, but is useful enough to derive a loose
upper bound on the time complexity. Applying the master theorem
[23], the above equation yields

£ o�.
� ��o�. log _ � # h £ o�.

� � o�. ?
#

(3)

In practice, the algorithm requires CPU times that vary between
super-linear to quadratic in number of BDD nodes, and in absolute
terms, the run-times for the ISCAS’85 benchmarks are of the order
of seconds.

IV. DELAY MODELING AND ANALYSIS

To identify essential and candidate nodes, it is important to perform
delay analysis using a delay model that has good fidelity. The
Elmore delay model [26] satisfies such a requirement while being
computationally inexpensive, and has even been used in the past for
timing verification of complex microprocessor chips [27]. We adapt
this model for computing delays in PTL networks that are mapped
directly from BDD’s. It is important to note that the Elmore delay
model is utilized only for identifying essential and candidate nodes
during the synthesis stage, while for the post-synthesis delay analysis
of netlists for the PTL and static CMOS circuits, we employ the
widely used non-linear delay model (NLDM) [4], [28] that involves
other factors, such as consideration of the slope of the input signal
transition and load.

In the following subsections, we describe the adaptation of El-
more delay model to PTL circuits, the corresponding delay analysis
procedure and the post-synthesis delay model.

A. Delay Model for BDD-mapped PTL Circuits

The insertion of buffers that break up long transistor chains
can result in short pass transistor segments such as that shown in
Figure 7(a). Each pass transistor in such a segment can be modeled
using an RC « model, where R denotes the resistance of the transistor
and C denotes the drain/source capacitance. Pass transistors offer
different resistance for rising and falling transitions: typically, for
NMOS pass transistors, falling transitions are faster than the rising
transitions. To account for this, two different values of resistance,
one for the rising and one for the falling transition, are associated
with each pass transistor. The value of the resistance is obtained by
characterization of a pass transistor using circuit simulator such as
SPICE.

Figure 7(b) shows the corresponding RC network for the pass
transistor segment in Figure 7(a). This is a special case where the pass
transistor segment maps to an RC line. For more complex BDD’s, it
is likely that the pass transistor segment may be more complex, as
illustrated in Figure 7(c). From this picture, it can be seen that BDD-
mapped PTL networks, when modeled using an RC « model, look
like an RC mesh rather than an RC line. In such a mesh, directions can
be assigned to the resistive edges since transistors act as unidirectional
switches; such methods have long been used in delay analysis tools
and have even been used in very old timing verifiers such as Crystal
[29]. Therefore, we can model a BDD-mapped PTL network, using
RC « models, as a set of RC directed acyclic graphs (DAG’s) between
buffers, as shown in the figure.

PSfrag replacements

¬ d¬ d

¯®

% ¬ d

% ¬ d

% ¬ d

° ¬ d

± ¬ d
± ¬ d

± ¬ d

¬ d � ¬ R

% ¬ d � ¬ R

% ¬ d � ¬ R
² < ² <

² <
² <

² <
² < ² <² <

² <

² <

² <

² <

² <

² <
² <
² <
² <

³�´

³G´

³�´

³�´

B1 B2

B3

G1

G2

G3

(a) (b)

(c)

(d)

I

I

O O

1

2

3
4

5

Fig. 7. (a) A PTL circuit segment with three pass transistors in series. (b)
The equivalent RC model for the PTL segment in (a). (c) The equivalent
RC network with assigned directions for resistances corresponding to PTL
implementation in Figure 2(b). Here, µ < (µ �) corresponds to pass transistor
(driver) resistance, while ¶ d and ¶ R represent the source (as well as drain)
capacitance and the inverter input capacitance, respectively.

Delay analysis for an RC tree can be performed using tree traversal
in linear time in the size of a tree [25], while delay analysis for RC
meshes using tree/link partitioning requires

� o�.,·
� #

time, where .
is the number of edges in a tree and · , the number of links, which
when removed from an RC mesh results in an RC tree [30]. In our
case, however, the resulting RC structure is neither a tree nor a mesh,
but an RC DAG – a more complex structure than trees and perhaps,
simpler than meshes, from a graph theoretic perspective. The delay
for an RC DAG can be defined as the maximum of the delay along
any path and the Elmore delay along any path is defined similar to
RC trees, as in [25]

3Wy U ;¨6 P e � ¸ R7¹ < T 8�º ² R � ¬
R
��6Y�z{&d=8 P e T ; (4)

This model of the network as an RC DAG does not take into
account the logical dependencies between signals. If we consider
these, we can see that depending on the input assignments, some of
the resistances can be treated as open circuits when the corresponding
gate signals to the transistors are not high and may be removed
from the RC network. The RC DAG’s that model BDD-mapped
PTL networks have a peculiar property that arises from a well
known property of BDD’s, namely, that for any assignment of inputs,
only one path from a terminal node to a given node is active.
The implication of this for RC DAG’s is stated by the following
observation.
Observation For any assignment of inputs, a given RC DAG must
reduce to an RC forest.
Proof The proof proceeds by contradiction. Assume that for some
assignment of inputs, a given RC DAG does not reduce to an RC
forest. It implies that there is a cycle, which in turn implies that
there exists a node which is driven by two different signals – a
contradiction, since only one path to any node in a BDD is active.

More details on the reduction of RC DAG’s onto RC forests can
be found in [31].

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 8

PSfrag replacements

a0

a1 a1

a2a2

b0

b1

b2

c3

Cut after 3
P � level

Cut after 6 8�º level

01

(a)

Fig. 8. A pictorial illustration of the inverter insertion heuristic in [32]:
inverters are used for the edges that are indicated as being cut. Under such
an assumption, at most »/¼ assignments must be considered for the part of the
BDD between inverters.

B. Delay Analysis for BDD-mapped PTL Circuits

To analyze RC DAG’s, we may have to consider all possible
input assignments; this number of such assignments is exponential
in the number of inputs, assuming that the primary inputs are
independent of each other. Fortunately, we can assume a reasonable
PTL implementation from a given BDD that will allow us to perform
delay analysis in linear time4.

One such implementation5 is shown in Figure 8. This assumes
that each BDD node is mapped on to a PTL multiplexer and the
edges that cross every multiple of the � 8�º level (edges crossing the
cuts in the figure, where � � °) have inverters/buffers on them [32].
This buffer insertion heuristic ensures that there is an inverter after
at most � transistors in series. In case of such a BDD-mapped PTL
network that has buffers or inverters after at most � transistors in
series, where � is bounded by a small constant, it is adequate to
consider only % ¼ different assignments for parts of the RC DAG that
lies between successive buffer levels to find the maximum delay. Each
edge will have to be traversed no more than % ¼b½

�
times, as stated

by the following observation.
Observation For a PTL network that has at most � transistors in
series between buffers, the total number of edges in all of the forests
corresponding to various input assignments is bounded by % ¼b½

�
�7¡ q ¡ ,

where ¡ q ¡ is the number of edges in the RC DAG.
Proof Each edge in the BDD is associated with the true or com-
plementary form of a variable in the BDD. Since inverters are
inserted in such a way that at most � variables lie between two
successive inverter insertion levels, only % ¼ different assignments
must be considered for a given part of the DAG. For exactly half
of these assignments, a variable associated with the edge is true, and

4Performing the delay analysis in linear time is critical to keep the time
complexity of our bipartitioning algorithm reasonable, since the delay analysis
procedure is invoked during each bipartitioning call of our algorithm.

5Although our delay analysis procedure is targeted for this particular
implementation, it can be extended to consider other PTL implementations
that may use different heuristics for inverter insertion.

therefore, any edge can appear only in half of the forests. Since there
are ¡ q ¡ edges in the DAG corresponding to a BDD, the total number
of edges in all the trees is bounded by

� o\% ¼/½
�
¡ q ¡

#
.

Algorithm 4.1 Algorithm for delay analysis of BDD-mapped PTL
circuits
Input: Digraph n5o\p hIq

#
corresponding to the given BDD, number

of variables . in the BDD, inverter insertion interval � , pass
transistor resistance

²
.

Output: 3 V 6�898:6�;srtvu p
1: for ¾ B t B ¾ = © to

� . � � � do
2: for rt¿u f �1��¾ B t B ¾ h �1�a¾ B t B ¾�0À© h�ÁSÁSÁSh �¢��¾ B t B ¾x0�o7�¢0�©

j ,
r Â�u k ¼ , k �ÀfbÃ h © j do

3: GetDownStreamCapacitance(t , Â);
4: end for
5: end for
6: In topological order, rt�u p
7: t . 3WV 6Y8:8:6�; w

max
f t � . 35V 6�898:6�; + R Ä t .DownstreamCap :

o t � h t
#
u q j

8: Procedure GetDownStreamCapacitance(t , Â) f
9: if (AllFanoutEdgesBuffered(t)) then

10: t .DownstreamCap
w t .Capacitance;

// If all fanout edges are buffered
11: else
12: > w Ã

;
13: for r B o t h t �

#
u fanout(t) do

14: if B is not buffered && Â�u BooleanExpression(B) then
15: > w > + GetDownStreamCapacitance(t � , Â);

// For un-buffered edges that satisfy Boolean expression
16: end if
17: end for
18: end if
19: > w > + t .Capacitance;

// Add the capacitance at the node
20: if >�Å t .DownStreamCap then
21: t .DownStreamCap

w > ;
// Store maximum of > and current downstream capacitance

22: end if
23: j

Different portions of the RC DAG can be successively considered
to yield a linear time delay analysis procedure. We exploit this idea
in the delay analysis algorithm. Algorithm 4.1 shows the pseudocode
for the same. The maximum downstream capacitance for a given
node is computed by calling GetDownStreamCapacitance()
procedure for all possible �,0 bit Boolean assignments. This procedure
traverses all the fanout edges that satisfy a specific �z0 bit Boolean
assignment till the buffers are reached, adds the capacitances at
the visited nodes, and stores the maximum downstream capacitance.
Once the maximum downstream capacitance is computed, the delays
at each node can be computed by sorting the nodes in topological
order and computing the maximum arrival time at each node. The
following theorem states the time complexity of the delay analysis
algorithm.

Theorem 4.1: The delay analysis using the Algorithm 4.1 takes no
more than

� oI¡ q ¡
#

time, where
q

is the set of edges in the BDD.
Proof Using the arguments from the previous observation, it can be
stated that the computation of downstream capacitance requires each
edge to be visited at most % ¼b½

�
times. The topological sort of the

nodes requires linear time in the size of graph [23]. Therefore, time
required by delay analysis routine is

� oI¡ q ¡
#

since � is a constant.

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 9

C. Post-synthesis Delay Models

.

. . .

PSfrag replacements

� �

� �
£ �
¬��

¬ �

(a) (b)

source-to-drain

gate-to-drain

Fig. 9. (a) Timing arcs for delay analysis of PTL circuits showing two arcs,
gate-to-drain and source-to-drain, for a pass transistor. (b) If pass transistorÆ �

in a multiplexer Ç � is ON, a capacitive load (¶ U 6 T �) seen by a driver at
any source terminal for a multiplexer Ç � is related to ¶ � and ¶ � as follows:¶ U 6 T �GÈ ¶ �ÊÉ ¶ � , assuming zero capacitances at the sources of Ç � and no
shielding effect in pass transistors.

1) Post-synthesis Delay Model for PTL: Figure 9 (a) shows timing
arcs in PTL circuits, which correspond to two possible paths going
through each transistor. Nonlinear delay models (NLDM’s) are a
popular way of representing the delays on the arcs of a timing graph.
The widely used nonlinear Synopsys delay model for timing analysis
involves the following equation [28]:

Ë ��Ì � ¬ �ÎÍ � Ë P �ÎÏ � ¬ � Ë P � O (5)

In the above equation,
¬

stands for the load capacitance, Ë P the
transition slope of input signal, Ë the delay from input pin to output,
while

Ì
, Í , Ï , and O are the parameters obtained by characterization

employing a circuit simulator such as SPICE. Each timing arc in the
timing graph has four NLDM parameters associated with it, which
are, typically, stored in lookup tables. The sizes of these lookup
tables blow up when different supply voltages and temperatures are
considered. To overcome this limitation, scalable polynomial delay
models (SPDM) [33] are currently employed in commercial tools.
However, NLDM is still accurate with a single supply voltage and a
given temperature. Therefore, for comparison purposes at the logic
synthesis level, where only a single supply voltage and a single
temperature is considered, non-linear delay model of the form of
Equation 5 is still valid, and we use the same delay model for static
CMOS and PTL synthesis results.

Adapting NLDM to timing analysis for PTL circuits requires the
computation of downstream capacitance that may be beyond the
given PTL multiplexer, as shown in Figure 9 (b). We employ a
DAG traversal, which is similar to that of the procedure shown in
Algorithm 4.1, to compute the downstream capacitance by traversing
the downstream DAG. Unfortunately, the resulting pass transistor
network does not possess a structure that will allow the incorporation
of logical dependencies between signals during computation of down-
stream capacitance. This is because the accounting for these logical
dependencies is at least as difficult as the NP-hard dynamic path
sensitization problem, as pointed out in [34]. This differs from the
problem of delay analysis employed during recursive bipartitioning,
where the gates of all of the multiplexers are controlled by primary
inputs, which, however, is not true in case of the pass transistor
network obtained after recursive bipartitioning. For this reason, the
analysis ignores logical dependencies and computes the downstream
capacitance by simply traversing the DAG until the buffers are
reached. This may result in an overestimate of the downstream
capacitance and hence, an overestimate of the delay. Apart from
logical dependencies, another source of pessimism in the capacitance
estimate is the shielding effect due to the (nonlinear) resistance of
the pass transistors that are ON.

Example Transistors SPICE delay Timing analysis delay
ps ps

rd53 72 196.10 205.54
rd73 144 401.40 473.65
rd84 194 501.50 628.34
parity 100 999.90 1172.64
9sym 102 462.40 618.50

TABLE III
COMPARISON OF SPICE DELAYS WITH THE DELAYS OBTAINED FROM

STATIC TIMING ANALYSIS USING NLDM ON SEVERAL COMBINATIONAL

BENCHMARK CIRCUITS.

Once the downstream capacitance for all multiplexers is computed,
the precharacterized NLDM parameters are used to compute the
delays in an entire PTL circuit. After precharacterization, it was
verified that the delay estimated by the model was indeed an over-
estimate, as compared to SPICE, as illustrated on several benchmark
circuits in Table III. All of these circuits were mapped directly
on to a PTL network with inverters with weak pull-ups inserted
after every three series-connected transistors. Because of the direct
mapping, the critical paths in these circuits are long and contain
at least as many number of transistors as there are primary inputs
(besides the inverters with weak pull-ups). Technology parameters
for

Ã Á © ° � m technology [6] are used for SPICE simulations and all
of the transistors have a length of

Ã Á © ° � m, while the widths of the
transistors are as follows. The widths of NMOS pass transistor areÃ Á Ð ©i� m, the widths for transistors in inverters with weak pull-ups areÑ { � © Á Ãb± � m, Ñ < � % Á Ã&Ò � m, and Ñ < c&UÓU ½ c < ��Ã Á %&Ô/� m, where Ñ < ,Ñ { , and Ñ < c&UÓU ½ c < are widths of PMOS, NMOS, and weak pull-up,
respectively. The critical paths are determined employing static timing
analysis (STA) and simulated by applying appropriate stimulus. The
transition time for rising as well as falling transition of input signal is
50ps. We can verify from the table that the delays estimated by static
timing analysis are always overestimates. For long critical paths,
overestimates tend to be high because of the cumulative effect.

2) Post-synthesis Delay Model for Static CMOS: We employ the
same Equation 5 for the static timing analysis of static CMOS
standard cell circuits. For each cell, all input-to-output timing arcs
are precharacterized for NLDM parameters employing SPICE. We
note that in case of static CMOS circuits, there is no pessimism in
capacitive load estimation, unlike PTL circuits, since all the inputs
are always connected to the gates of the transistors.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The algorithms described in sections III and IV are implemented in
a C++ program called Pass Transistor Logic Synthesizer (PTLS). For
all of our experiments, the BDD package CUDD [35] is employed for
generating BDD’s, along with sifting [36] for variable ordering. We
use NMOS transistors as pass transistors and use inverters with weak
pull-ups after every three pass transistors in series. The inverters with
weak pull-ups are also inserted to drive the gates of transistors in one-
hot multiplexer for the implementations obtained by our recursive
bipartitioning technique. We synthesize both the PTL and static
CMOS circuits (which are used to compare the PTL circuits against)
in a

Ã Á © ° � m technology [6]. All transistor lengths are set to
Ã Á © ° � m,

and the following two sets of transistor sizes are employed for the
PTL implementations:� Set 1: All NMOS pass transistors have Ñ { � © Á Ò %/� m and

inverters have sizes Ñ < =
± Á ©�Ô/� m and Ñ { � % Á Ã|Ò � m, while

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 10

the weak pull-up transistor in each inverters are sized to a width
of
Ã Á Õ %/� m.� Set 2: All NMOS pass transistors have Ñ { �ÖÃ Á Ð ©i� m and

inverters have sizes Ñ < = % Á Ã&Ò � m and Ñ { � © Á Ãb± � m, while the
weak pull-ups in the inverters are sized to a width of

Ã Á %&Ô/� m.
In other words, all the transistors in Set 2 have half the widths
of the corresponding transistors in Set 1.

For static CMOS circuits, we choose the lib2.genlib library in
[20] and add at least two strengths (Ñ em×/×�e F 8 RXØ e �ÙÃ Á Ú Ò � m andÑ e=×b×�e F 8 R}Ø e � © Á Õ Ôb� m) for each of the cells in the library. Simpler
gates such as inverters, NAND’s (up to four inputs), and NOR’s (up
to four inputs), have up to four strengths (Ñ em×/×/e F 8 R}Ø e �ÛÃ Á Ú Ò � m,
1.56 � m, 2.34 � m, 3.12 � m).

Under this sizing scheme, we see that PTL circuits have uniform
sizes for pass transistors and inverters, while the static CMOS
implementations use better sizing, with each gate having several
choices for the transistor sizes. In spite of this, we show that PTL
results in implementations that have the same (or better) delay as
that of static CMOS implementation with a significant area advantage
in case of arithmetic, error correcting, and some control circuits in
ISCAS’85 benchmark suite. If we allow a larger variety of transistor
sizes for PTL circuits, it is likely that these results will improve even
further in favor of PTL.

B. Synthesis Procedure

Static CMOS circuits are preprocessed by running script.rugged
in SIS [20] before performing technology mapping for optimizing
delays. For PTL synthesis, we use the same Boolean network obtained
from script.rugged, and create a multilevel BDD representation. Our
recursive bipartitioning procedure is then applied level-by-level on
this multilevel BDD representation.

While creating this multilevel BDD representation, it is important
to control the number of BDD nodes, since the number of transistors
in the resulting implementation depends on this number. It has
been shown in [11] that the use of traditional multilevel boolean
network optimization, followed by the construction of BDD’s for
nodes in the network, results in reasonable BDD sizes. These sizes
are comparable to those obtained by applying area-oriented pass
transistor logic synthesis techniques such as [14]. We use these
multilevel BDD representations, which have reasonable sizes, for
delay oriented decomposition. Further improvements may be possible
if the multilevel BDD’s are preprocessed employing algorithms such
as eliminate, as in [14], and by using better variable ordering heuristic
such as symmetric sifting.

C. Analysis of Results on ISCAS’85 Benchmarks

Table IV shows the area/delay comparison between PTL circuits
and their corresponding static CMOS implementations for all of
the ISCAS’85 benchmarks. In this comparison, the PTL circuits in
Table IV have transistor sizes from Set 1 and Set 2 described in
Section V-A. For the same table, Column 1 shows the name of the
benchmark and its functionality while Columns 2 and 3 show the
area and delay, respectively, for the static CMOS implementation.
Columns 4 and 5 show the area and delay, respectively, for the PTL
implementation with the transistor sizes from Set 1, while Column
6 shows the CPU time required for our PTL synthesis algorithm on
a 400 MHz Sun Ultra-Sparc 60 machine. Columns 7 and 8 show the
area and delay, respectively, for the PTL implementation with the
transistor sizes from Set 2.

For the comparison between static CMOS implementations and
PTL implementations with transistor sizes from Set 1, the following
observations can be made from Table IV.

� For circuits that implement error correcting codes, namely,
C1355, C1908, and C499, for the multiplier circuit, C6288, and
for the arithmetic logic unit (ALU) and control circuit, C880,
PTL implementations are superior in terms of area as well as
delay. On average, the area advantage is 30%, while the delay
advantage is 31%.� For ALU and Control circuits such as C2670, C7552, and
C3540, the PTL implementations are superior in terms of area
but could not match the static CMOS delay. On average, the area
advantage is 84%, while the delay disadvantage is 22%. With
the area numbers strongly favoring PTL, it is likely that static
CMOS delays may be matched with sizing for PTL circuits,
perhaps even while retaining some area advantage.� For the priority decoder circuit, C432, PTL has a marginal delay
advantage of 4% at the cost of a 15% area increase.� For the ALU and selector circuit, C5315, PTL produces infe-
rior results both in terms of area as well as delay. The area
disadvantage is minor, at 2%, while the delay disadvantage is
39%.

Note that the observations are made with a pessimistic delay model
for PTL, as described in Section IV-C. From the above observations,
the following conclusions can be arrived at:
� For the ALU and control circuit, C5315, static CMOS results

in a superior implementation. In case of other ALU and control
circuits such as C2670, C3540, and C7552, static CMOS yields
a superior delay, but with a significant area cost. For the
ALU and control circuit, C880, using even naı̈ve transistor
sizing PTL results in a superior implementation as compared to
static CMOS. All these circuits contain arithmetic components
such as adders apart from control logic. Since these circuits
contain nand intensive control logic, scripts in SIS [20], which
are skewed towards control logic synthesis, perhaps destroy
the structure of arithmetic components in these circuits, and
PTL implementation due to our synthesis algorithm with naı̈ve
transistor sizing is not able to match (or outperform) the static
CMOS delay consistently. PTL implementations still have a
good area advantage that can be used by a sizer to match delays
due to their static CMOS counterparts.� The PTL implementation provides large area savings and im-
proved delays in case of the purely arithmetic and error correct-
ing circuits (C1355, C1908, C499, C6288) as compared to the
static CMOS implementations. In these cases, SIS [20] perhaps
is not able to destroy the structure as much, since most of these
circuits are heavily xor dominated circuits.

A comparison between PTL implementations with smaller tran-
sistor sizes and static CMOS implementations is also shown in
Columns 7 and 8 in Table IV. For these columns, the PTL circuit
implementations use transistor sizes that are chosen according to Set
2 in Section V-A. With the smaller transistor sizes, the delays in PTL
circuits are degraded, as expected. Although the transistor sizes are
halved, the delay in static CMOS is still matched in case of C499,
and is within 20% for the circuits C1355, C1908, C6288, but with a
large average area advantage of 166%. Given such an area margin,
it is likely that an intelligent sizer may be able to match the delays
in static CMOS circuits, while maintaining an area that is less than
that of the PTL circuits shown in Column 4 of Table IV, which
use double the transistor sizes of this case. For the set of circuits
that includes ALU and control circuits such as C2670, C7552, C432,
C880, C3540, and C5315, the average area advantage is 184%, while
delays degrade by 35%, on an average. It is likely that improved
transistor sizing in these cases may improve the results in favor of
PTL, since as shown in Table IV, simplistically doubling the sizes of

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 11

Example (Functionality) Static CMOS PTL Set 1 PTL Set 2
Area Delay Area Delay CPU Area DelayÜ m
�

ps Ü m
�

ps s Ü m
�

ps
C1355 (Error correcting codes) 4886.4 962.2 3521.6(38%) 599.2(60%) 00.18 1760.8 (177%) 1009.4 (-4%)
C1908 (Error correcting codes) 5157.2 1205.9 3726.4(38%) 980.8(20%) 00.25 1863.2 (176%) 1432.9 (-15%)

C2670 (ALU and Control) 12307.9 1208.2 8781.9(40%) 1660.2(-27%) 02.78 4390.9 (180%) 2132.6 (-43%)
C499 (Error correcting codes) 4784.0 938.7 3259.4(46%) 630.4(48%) 00.16 1692.7 (182%) 929.7 (1%)

C432 (Priority Decoder) 3370.5 1334.3 3981.6(-15%) 1278.3(4%) 00.23 1990.8 (69%) 1758.6 (-24%)
C6288 (16-bit Multiplier) 29592.5 4799.2 25771.8(14%) 4152.3(15%) 17.73 12885.9 (129%) 5563.3 (-13%)
C7552 (ALU and Control) 32051.5 1323.0 16649.5(92%) 2112.1(-37%) 10.71 8324.7 (285%) 2528.2 (-47%)
C5315 (ALU and Selector) 24042.9 1355.5 24612.1 (-2%) 2233.6 (-39%) 17.48 12306.0 (95%) 2668.5 (-49%)
C880 (ALU and Control) 5579.0 1080.0 4748.5 (17%) 952.8 (13%) 01.13 2374.2 (134%) 1430.7 (-24%)

C3540 (ALU and Control) 34280.2 1796.1 15409.0 (122%) 1850.3 (-2%) 22.42 7704.5 (344%) 2454.9 (-26%)
Avg. Improvement 39% 5% 177% -24%

TABLE IV
AREA/DELAY COMPARISONS FOR STATIC CMOS AND PTL IMPLEMENTATIONS OF ALL ISCAS’85 BENCHMARKS.

all transistors results in a large improvement in delay while retaining
significant area savings in most cases.

D. Comparison with Previous PTL Approaches

We now present a comparison of our PTL implementations with
those due to previous PTL synthesis approaches such as [13],
[17]. We emphasize that these approaches and that of [16] report
depth in terms of number of series transistors as a delay and do
not mention actual delays, which depend on capacitive load for
a particular transistor and the slope of an input signal at that
transistor. This is particularly important in case of PTL, since the
load seen by a transistor varies significantly depending on whether
transistors in downstream multiplexers are ON. Previous approaches
have completely ignored this issue by considering the depth as a delay
metric, which is a reasonable measure at technology independent
level abstraction. It, however, suffers from inaccuracies, as it ignores
load and transition time of signals, and therefore, may not even
correlate well with delay due to NLDM for the mapped netlists.
Since previous approaches have only reported depths, Table V shows
the comparison using that metric and number of transistors in PTL
implementation. The table shows the number of transistors required
for the PTL implementation of the ISCAS’85 circuits due to [17],
[13], and our approach in columns 2, 3, and 4, respectively, while
columns 5, 6, and 7 show depths, respectively, due to [17], [13], and
our algorithm. It is worth mentioning that comparison with [17] is
not fair (to our method), since the underlying BDD’s for their and our
approach are not the same: in their work, to improve the optimization
potential they heuristically grow the BDD’s till the number of nodes
is smaller than 100, while our method and Buch’s algorithm [13]
do not perform such pre-processing and use the networks obtained
by script.rugged in SIS [20]. Since we have proved in Section III-A
that our algorithm and application of one-hot multiplexer can result in
logarithmic depth implementation, which is not guaranteed by [17] in
their work because of the heuristic nature of the algorithm, it is likely
that our approach will result in smaller depths as compared to their
method, if the underlying BDD’s are the same. The comparison with
[13] shows that our approach results in 10% smaller depths, on an
average, with 42% average reduction in the number of transistors. The
inconsistencies in the improvements over all the benchmarks can be
attributed to inter-node optimizations such as composition employed
in [13], which changes BDD structure between different nodes in a
Boolean network, while our approach focuses on BDD optimizations
at a given node in the network.

Example Number of Transistors Depth
[17] [13] PTLS [17] [13] PTLS

C1355 1474 1969 1037 24 34 21
C1908 1450 2116 1145 25 39 32
C2670 2144 3198 2876 18 28 33
C499 1490 1947 998 20 26 21
C432 908 979 1110 31 47 25

C6288 10878 10787 7794 107 159 153
C7552 7220 13268 5347 26 38 54
C5315 4842 8277 8221 30 47 43
C880 1332 1622 1467 19 32 31

C3540 4214 4997 4757 32 52 41
Total 35976 49160 34752 332 502 454

TABLE V
COMPARISON OF THE NUMBER OF TRANSISTORS AND DEPTHS RESULTING

FROM OUR APPROACH WITH PREVIOUS PTL APPROACHES [13], [17]

VI. CONCLUSION

We have proposed a delay oriented synthesis algorithm for PTL
circuits that uses recursive bipartitioning of BDD’s. Based on the
experimental results, we answer the two questions raised in Section I-
A.

1) Using the delay-driven synthesis algorithm, naı̈ve uniform
transistor sizing for PTL circuits and a pessimistic delay model
for PTL, we have shown that PTL can certainly improve upon
the delays in static CMOS circuits by 30%, with a significant
area advantage of an average of about 31% for an arithmetic
circuit, error correcting circuits, and a control circuit.

2) For control circuits, static CMOS may sometimes, but not
always, result in superior implementations than PTL in terms
of area as well as delay.

3) Some control circuits may be implemented well in PTL with
slightly degraded delays as compared to static CMOS, but with
large area savings. Allowing multiple transistor sizes for PTL
may improve the results in favor of PTL, but this has not been
explored in our work.

ACKNOWLEDGMENT

The first author would like to thank Michel Berkelaar of Magma
Design Automation, Prof. Andre Reis of Universidade Federal do
Rio Grande do Sul (UFRGS), Brazil, and Clive Bittlestone of

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 12

Texas Instruments for valuable suggestions and discussions on PTL
synthesis.

REFERENCES

[1] International technology roadmap for semiconductors, 2001 edition: De-
sign. http://public.itrs.net/Files/2001ITRS/Design.
pdf, 2001.

[2] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigsahi, and
A. Shimizu. A 3.8ns CMOS 16 x 16 multiplier using complementary
pass transistor logic. IEEE Journal of Solid State Circuits, 25(2):388–
395, April 1990.

[3] K. Yano, Y. Sasaki, and K. Rikino. Top-down pass transistor logic
design. IEEE Journal of Solid-State Circuits, 31(6):792–803, June 1996.

[4] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI design:
A systems perspective. Addison-Wesley, New York, New York, Second
edition, October 1994.

[5] J. M. Rabey. Digital integrated circuits: A design perspective. Prentice-
Hall India, New Delhi, India, Second edition, September 2000.

[6] Berkeley predictive technology model. http://www-device.
eecs.berkeley.edu/˜ptm/download.html.

[7] C. Bittlestone, A. Hill, V. Singhal, and N. V. Arvind. Architecting ASIC
libraries and flows in nanometer era. In Proceedings of ACM/IEEE
Design Automation Conference, pages 776–781, June 2003.

[8] R. L. Ashenhurst. The decomposition of switching functions. In
Proceedings of the International Symposium of Theory of Switching,
volume 1, pages 74–116, April 1957.

[9] M. Davio, J-P. Deschamps, and A. Thayse. Discrete and switching
functions. McGraw-Hill International, St. Saphorin, Switzerland, 1978.

[10] Y-T. Lai, K-R. R. Pan, and M. Pedram. OBDD-based function decompo-
sition: algorithms and implementation. IEEE Transactions on Computer
Aided Design for IC’s and Systems, 15(8):977–990, August 1996.

[11] C. Yang and M. Ciesielski. BDD decomposition for efficient logic
synthesis. In International Conference on Computer Design, pages 626–
631, October 1999.

[12] T. Sasao. Switching theory for logic synthesis. Kluwer Academic
Publishers, Boston, Massachusets, 2000.

[13] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli.
Logic synthesis for large pass transistor circuits. In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, pages
663–670, November 1997.

[14] R. Chaudhry, T.-H. Liu, A. Aziz, and J. Burns. Area-oriented synthesis
for pass transistor logic. In Proceedings of the IEEE International
Conference on Computer Design, pages 160–167, October 1998.

[15] T.-H. Liu, M. Ganai, A. Aziz, and J. Burns. Performance driven synthesis
for pass transistor logic. In Proceedings of VLSI Design Conference,
pages 372–377, January 1999.

[16] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and F. Somenzi.
Symbolic algorithms for layout-oriented synthesis of pass transistor logic
circuits. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 235–241, November 1998.

[17] C. Scholl and B. Becker. On the generation of multiplexer circuits for
pass transistor logic. In Proceedings of Design Automation and Test in
Europe, pages 372–378, March 2000.

[18] R. E. B. Poli, F. R. Schneider, R. P. Ribas, and A. I. Reis. Unified
theory to build cell-level transistor networks from BDD’s. In Symposium
on Integrated Circuits and Systems Design, pages 199–204, September
2003.

[19] G. R. Cho and T. Chen. Synthesis of single/dual rail mixed ptl/static
logic for low power applications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems , 23(2):229–242, February
2004.

[20] E. M. Sentovich. SIS: A system for sequential circuit synthesis.
Memorandum No. UCB/ERL M92/41, May 1992.

[21] R. S. Shelar and S. S. Sapatnekar. Recursive bipartitioning of BDD’s
for performance driven pass transistor logic synthesis. In Proceedings
of IEEE/ACM International Conference on Computer-Aided Design,
November 2001. 449–452.

[22] R. S. Shelar and S. S. Sapatnekar. Efficient algorithm for low power pass
transistor logic synthesis. In Proceedings of Asia South Pacific Design
Automation Conference, January 2002. 87–92.

[23] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
algorithms. Prentice-Hall India, New Delhi, India, 1998.

[24] K. Chaudhary and M. Pedram. A near optimal algorithm for technology
mapping minimizing area under delay constraints. In Proceedings of
ACM/IEEE Design Automation Conference, pages 492–498, June 1992.

[25] S. S. Sapatnekar and S.-M. Kang. Design Automation of Timing-Driven
Layout Synthesis. Kluwer Academic Publishers, Boston, Massachusets,
1992.

[26] W. C. Elmore. The transient response of damped linear networks with
particular regard to wideband amplifiers. Journal of Applied Physics,
19(2):55–63, January 1948.

[27] N. Nassif, M. P. Desai, and D. H. Hall. Robust Elmore delay models
suitable for full chip timing verification of a 600 MHz CMOS micropro-
cessor. In Proceedings of ACM/IEEE Design Automation Conference,
pages 230–235, June 1998.

[28] J. F. Croix and D. F. Wong. A fast and accurate technique to optimize
characterization tables for logic synthesis. In Proceedings of ACM/IEEE
Design Automation Conference, pages 337–340, June 1997.

[29] J. K. Ousterhout. A switch-level timing verifier for digital MOS VLSI.
IEEE Transactions on CAD of IC’s and Systems, 4(3):336–349, July
1985.

[30] P. K. Chan and K. Karplus. Computing signal delay in general RC
networks by tree/link partitioning. IEEE Transactions on CAD of IC’s
and Systems, 9(8):898–902, June 1990.

[31] R. S. Shelar. Synthesis for Nanometer Technologies. PhD thesis,
University of Minnesota, Minneapolis, May 2004.

[32] M. Munteanu, I. Bogdan, P. Ivey, and L. Seed. Single-ended pass
transistor loic (SPL) - A design handbook. http://www.shef.ac.
uk/eee/esg/lowpower/pdf-papers/d4.5.pdf, 2001.

[33] Scalable polynomial delay model. http://www.synopsys.com/
products/library/lib_comp_spdm.html.

[34] M. P. Desai and Y. T. Yen. A systematic technique for verifying critical
path delays in a 300 MHz Alpha CPU design using circuit simulation. In
Proceedings of ACM/IEEE Design Automation Conference, pages 125–
130, June 1996.

[35] F. Somenzi. CUDD: CU Decision Diagram package, Release 2.3.0.
http://vlsi.colorado.edu/˜fabio/CUDD/.

[36] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 42–47, November 1993.

Rupesh S. Shelar (S’00-M’05) received the B.E.
degree in instrumentation engineering from the
Marathwada University, Aurangabad, India in 1997,
the M.Tech. degree in electrical engineering with
specialization in microelectronics from the Indian
Institute of Technology, Mumbai in 1999, and the
Ph.D. degree in electrical engineering from the Uni-
versity of Minnesota, Minneapolis in 2004.

He was a software engineer with Silicon Automa-
tion Systems, India from 1999 to 2000. He spent the
summers of 2002 and 2003 at Strategic CAD Labs,

Intel researching congestion-aware logic synthesis. He is currently a senior
component design engineer in the Enterprise Microprocessor Group at Intel,
where he works on the backend design methodology for a 65 nm Pentium 4
design. He has authored 11 papers in refereed conferences and journals. His
research interests include logic synthesis, physical synthesis, and physical
design.

IEEE TRANSACTIONS ON VLSI SYSTEMS, VOL. XX, NO. XX, XX 2005 13

Sachin S. Sapatnekar (S’86-M’93-SM’99-F’03)
received the B.Tech. degree from the Indian Institute
of Technology, Bombay in 1987, the M.S. degree
from Syracuse University in 1989, and the Ph.D.
degree from the University of Illinois at Urbana-
Champaign in 1992. From 1992 to 1997, he was an
assistant professor in the Department of Electrical
and Computer Engineering at Iowa State University.
He is currently a Professor in the Department of
Electrical and Computer Engineering at the Univer-
sity of Minnesota. He has coauthored two books,

“Timing Analysis and Optimization of Sequential Circuits,” and “Design
Automation for Timing-Driven Layout Synthesis,” and is a co-editor of a
volume, “Layout Optimizations in VLSI Designs,” all published by Kluwer.
He has been an Associate Editor for the IEEE Transactions on VLSI Systems,
the IEEE Transactions on CAD, and the IEEE Transactions on Circuits and
Systems II, has served on the Technical Program Committee for various
conferences, as Technical Program and General Chair for the Tau workshop
and the International Symposium on Physical Design. He is currently a
Distinguished Visitor for the IEEE Computer Society and a Distinguished
Lecturer for the IEEE Circuits and Systems Society. He is a recipient of the
NSF Career Award and SRC Technical Excellence Award, and received the
best paper awards at DAC 1997,2001, and 2003, and at ICCD 1998.

