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Compact Current Source Models
for Timing Analysis under
Temperature and Body Bias Variations
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Abstract—State-of-the-art timing tools are built around the load capacitance [4]. When interconnect resistance became
use of current source models (CSMs), which have proven to be significant, these methods were replaced by the notion of

fast and accurate in enabling the analysis of large circuits. As effactive capacitance [5]. However, this approach modeds t
circuits become increasingly exposed to process and temperature.

variations, there is a strong need to augment these models toInput as a saturated ramp with piecewise constant slope, .and
account for thermal effects and for the impact of adaptive boy Was further enhanced by the development of CSMs, which

biasing, a compensatory technique that is used to overcome on-represent a cell as a voltage controlled current source and
chip variations. However, a straightforward extension of CSMs provide fast and accurate timing estimates.

to incorporate timing analysis at multiple body biases and A CSM approach termed as “Blade” [6] represents the

temperatures results in unreasonably large characterization tales I it trolled ¢ VCCS) with
for each cell. We propose a new approach to compactly capture CEll @S @ voltage-controlled current source ( ) with an

body bias and temperature effects within a mainstream CSM internal capacitance and a time-shifted input waveformirii
framework. Our approach features a table reduction method for an arbitrary load. A lookup table, indexed by the input vgéta
compaction of tables and a fast and novel waveform sensitivity 1 and the output voltagd/,,,, models the VCCS current,

method for timing evaluation under any body bias and temper- ; ; ; _
ature condition. On a 45nm technology, we demonstrate high .I‘”“' These ideas were further refined in [7]-[12]. The work

accuracy, with mean errors of under 4% in both slew and delay in [7], [8] removed the assumptions of linearity, and [9]1

as compared to HSPICE. We show a speedup of over five orders @ddressed multiple input switching and stack effects. Heuyt
of magnitude over HSPICE and a speedup of about 92 over a current source model based on orthogonal functions was

conventional CSMs. proposed in [13], and an approach based on the small-signal
model of a transistor was built in [14].
|. INTRODUCTION Within the CSM framework, process variations are com-

monly captured through the use of process corners. Traditio

VARIATIONS in process parameter values and on-chifyy temperature variations were also handled using cermne

temperatures have grown larger with shrinking featuig,qeq methods, but this is no longer viable. Corner-based

sizes. Process variations occur due to phenomena such,@Syoaches are predicated on the idea that the timing varies
proximity effects in photolithography, non-uniform cotidins

monotonically over the temperature range, but this is ngéon

during deposition, and random dopant fluctuations, and legfl ~ase with thermally-driven variations [15]. In nanoemet

to fluctuations in parameters such as transistor dimensioggs,|e technologies, elevated temperatures cause reasidtio
ox!de thicknesses, "?‘n‘_j dopant concentrations ,[1],_[3,]'_ Ofavice mobilities (which tend to increase the delay) as well
chip temperature variations occur due to power dissipation 5q reqyctions in threshold voltages (which tend to decrease
the form of heat. Such thermal variations have a significafife gelay). The interplay between these effects may cawse th
bearing on the mobilities of elec.trons and holes, as well gg. it delay to increase monotonically (negative tempeea
the threshold voltage of the devices. These effects have |gthengence), decrease monotonically (positive temperatu
to increased shifts in circuit performance, due to which @ nhengence), or vary nonmonotonically (mixed temperature
significant fraction of the total number of acceptable dieg/m dependence) with temperature. In the last case, the wasst ca
fail to achieve the prescribed performance goals. To oveeco may occur in the interior of the temperature range, rather
this problem, designers must build resilient circuits theet .0 ot its edges. As a result, a set of temperature corners

their performance goals in spite of these variations. __is no longer adequate, and circuit delays must be simulated a
A key enabler for variation-tolerant design is the ab"'t¥unctions of temperature.

to simulate the timing behavior of a circuit during the de- rperetore, 4 first necessary enhancement of CSMs involves
sign process using static timing analysis (STA). Traddion gytending them to determine the cell delay as a function

standard cell modeling approaches represent the delay afqemperature. This capability is useful not only for citcu
output slew as nonlinear functions of the input slew and UtP, 4 \ysis but also for building optimization techniquesttha
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applying a deliberate bias to the body terminals of traossst We develop a scheme for characterizing this perturbatiah an
in a circuit. Realistically, ABB is applied at coarse levels computing it efficiently. Specifically, mathematical maglébr
granularity, e.g., by biasing individual n-wells and/omeils, such parameters are developed and further analyzed far thei
each of which contains a number of transistors. Forward bothdependence over body bias and temperature variatioranfor
bias (FBB) effectively reduces the transistor threshollage efficient computation of such parameters.
and speeds up the device, at the cost of increased leakaie, wh The remainder of the paper is organized as follows. Sec-
reverse body bias (RBB) achieves the opposite effect ondspaien Il presents the development of sensitivity models f&\C
and leakage. ABB involves the use of FBB or RBB to help diesomponents to handle variations in body bias and temperatur
recover from variations, and may be applied dynamically t®ection Il presents our algorithms for compacting the CSM
tighten the distribution of the dies with maximum opera#ibn sensitivity tables. Then we present the conventional macro
frequency, while simultaneously meeting the leakage powerodel solvers used in state-of-the-art CSMs in Section [V,
constraints [1]-[3], [17], [20]. and is followed by a description of our method for fast output
Traditional CSMs simulate the circuit at fixed values ofaveform evaluation in Section V. Section VI presents exper
the body bias ,, = v,, = 0) and at fixed values of the imental results on a set of library cells in a 45nm technaology
temperature. The obvious extensions to existing CSMs tHA€ then present the conclusion of our work in Section VII.
enable them to capture body biases and temperature effects
are rather inefficient. In principle, the body terminal of a |I. CSM SENSITIVITY MODEL DEVELOPMENT
device can be considered to be another port, and the cell
can be accordingly characterized by creating a look-upetabl
for various combinations of body biases,, vs,. Further, v
such lookup tables would have to be constructed for various ] 6
temperature values. However, this increases the amount of a
memory used as well as the characterization time significant v = bg’ G 11
Vo @

b a

over the zero body bias and the nominal temperature case. For
instance, for 10 values each of, andv,,, and for 10 values
of temperature, the table for each library cell becomes %000

larger. The need to access a larger lookup table may alstt regﬂp' 1| ExarT/péngf da CSZ/I: the Ouhpl.ﬂ port s moldeled as
in a significant concomitant increase in the simulation irmat a noniinear _depen ent_on all input port voltages, in
of CSM macromodels. parallel with a nonlinear capacitance.

This paper develops efficient timing characterization meth . . .
ods for building CSMs that incorporate changes in the body 1he CSM is a gate-level black-box abstraction of a cell in a
bias and the temperature. Since ABB is applied at the graﬁé—rary’ with the same input and output ports as the origuedl
larity of a well, we assume that all PMOS transistors in a céfU" ¢SM structure, shown in Figure 1, is of the type proposed
have the same body bias valug,, and all NMOS devices are N [6], and is augmented to model nonlinearities as in [9].
biased at,,. Further we assume that all transistors in the cefiP€cifically, output porp is replaced by a nonlinear voltage-
experience a uniform temperature: this is reasonableeghe Controlled-current-source (VCCS),, in parallel with a non-
rate of decay of temperature with respect to the distanca fréin€ar capacitancer’,. The VCCS model enables the CSM

the cell has a “time constant” that is significantly largearth [©© be load-independent, and permits it to handle an arpitrar
the size of a cell. electrical waveform at its inputs. The CSM is characterized

Our framework for incorporating effects of body bias an% terms of the value off, and the charge(,, stored on
al

) e capacitor(),,. The variables], and @),,, are functions of
temperature into the CSM has a very small memory ai input and output port voltages and temperature, and are

runtime overhead, Wh"e maintaining h_|gh levels. of aCCletermined by characterizing the cell at various port gas
racy. Our mathematical framework consists of two key steps

First, we intelligently adapt an existing scheme to enab& t ody bias combinations and temperatures as follows:
compaction of look-up tables for the sensitivities of CSM I, = F(V;, Vo, vpp, vpn, AT) (1)
components to body bias and temp'erature, over the range Qp = G(Vi,V, vy, vpm, AT) )

of allowable values of both the applied body bias and on-

chip temperature. Our second key contribution is to develde parameterd, and (), are modeled using the functions
a novel waveform sensitivity model for evaluating the impad” and G, respectively, and/; and V,, are, respectively, the
of the applied body bias and variations in temperature, whiwoltages at the transitioning input and output ports of tek c
provides accurate waveforms at the output of the cell undgr aNVe use the ternrl\7" to represent the temperature offset from a
body bias or temperature condition, with minimal compuwtati baseline temperature value, taken here to be room temperatu
The essential idea of this approach is that since body bi@s°C). In the temperature range of25°C, 125°C] that we

or temperature variation constitutes a small perturbatmn work in, the range for the values &f7" is [-50°C, 100°C].

the nominal waveform, it should be possible to determine theFor a cell,f,, characterization involves DC simulations over
perturbed waveform cheaply by determining and saving theultiple combinations of DC values @i, V,), while @, is
parameters that compute its shift from the nominal waveforroharacterized through a set of transient simulations [8e T
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presentation of our model is targeted to the more widelgll (V;,V,) points. The CSM is now modified by using the
used scenario of single-input switching for gates with glein equations:

output, though the idea can easily be extended to multijpletin V.V 0

switching (MIS) and multioutput gates, leveraging curnentk p (Vi VorUbp, Von, 0)

on CSMs on these topics [9], [11], [12]. =17 - (14 ar(Vi, Vo)usp + br(Vi, Vo)vpn) — (4)
As mentioned earlier, in order to capture the sensitivity ofQ,,(V;, V,, v, vin, 0)
M t to th li i

CSM parameters to the applied body bias and temperature _ Qf (14 agq(Vi, Vo)vop + bo(Vi, Vo)up,) (5)

offset, in principle, the circuit could be characterize@oa set
S of all possible(vy, vy, AT) points, treating body terminals where IpZ = F(V;,V,,0,0,0), Qg = G(V;,V,,0,0,0), and
as input ports, and temperature offset as the independént v@a;, b, ag, bg} correspond to the sensitivity of the function
able. Since the allowable values of the applied body biasds do the corresponding body bias. These parameters are eharac
temperature offset change in discrete steps, the canyirali terized at a discrete set ¢¥;,V,) values and are saved in a
this set is large, and the corresponding characterizatimndv lookup table.
be computationally intensive, even as a precharactesizati The characterization off, and (), using equations (4)
step that is to be performed once for a technology. Moreovend (5) can now be carried out using a minimum of three
memory requirements of the table multiply significantly ovesimulations at eactV;, V), since itis a linear model; however,
the current characterization procedure at zero body bids additional redundancy is preferable to account for the kmal
zero temperature offset. nonlinearities, and a linear least squares fit can be usézhiths

We observe through simulations that the functiéghand G For notational simplicity, we will define the following func
dependmuch moreveakly onvy,,, vy, andAT as compared to tions:
V; orV,. Hence, a simpler model can be utilized to save on this
computation. We thus develop sensitivity models of CSM with Lr(vep, vn) = 1+ ar(Vi, Vo)vyp +br(Vi, Vo)vin — (6)
respect tay,, vs, andAT (as we will soon show, the models L@ (Vep, von) = 1+ aq(Vi, Vo)uopy +bo(Vi, Vo)ven — (7)
with respect to body bias and temperature are independe@tpea”y,
and then present a scheme to incorporate the effects of the
two. Ip(‘/iav()avbpavbnao) - IpZLI(prvvbn) (8)

Qp(‘/i7vo7vbp7vbn70) = QfLQ(’pryvbn) (9)

A. Independence of Body Bias and Temperature Effects

Next, we explain the rationale for analyzing the effects ¢¢. CSM Temperature Sensitivity Model
body bias and temperature independently. Body bias (a €angwe now construct the temperature sensitivity model at zero
in the substrate bias voltagd/zs) changes the thresholdpody bias. We observe that the variations bf and Q,
voltage, Vi,. The sensitivity ofV;;, with respect toVps can with AT are nonlinear, unlike the body bias case where a

be captured from following equation [21]: linear approximation was adequate. We employ a second-
Vin  Caep order polynomial approximation, and find that the fit has an
Was  Coy ®3) average relative error of 1.6% relative error in comparistth

HSPICE simulations. The CSM for the temperature sengitivit
YModel with the first and second order sensitivities in tem-
; (Perature offset is now represented by the following modified
equations:

whereCy,, is the depletion capacitance of the MOS transist
andC,, is the oxide capacitancé€l,, is a very weak function
of temperature, being proportional to the inverse squaocé
of the built-in potential. Similarly, it is observed thateth
expression forV}, sensitivity with respect to temperature is  I,(V;,V,,0,0, AT)

mdependent of/ss [21]. Hence, the effects of changes in body. _ IpZ (1 + e1(Vi, Vo)AT + r1(V;, V,)AT?) (10)
bias and temperature on MOS transistors can be treated as in-
dependent. Sincg, and@), essentially abstract the internal cell @p(Vi; Vo, 0,0, AT)

behavior, the effects of body bias and changes in temperatur =QF - (L+cq(Vi, Vo))AT +rq(V;, V,)AT?)  (11)
on I, and @, can also be assumed to be independent. This,j

Where 17, QZ are as defined above, add;, c,, r -
ifi i po%p ' 1.¢q,T1, TQ} COF
further verlfled_ by the model formuIauons. and accuracy ltesurespond to the sensitivity of the function to the corresjiogd
as presented in the subsequent subsections and sections.

powers of the temperature offsei 7. As in the case ofay,

br, aq, bo}, these parameters are characterized at a discrete

B. CSM Body Bias Sensitivity Model set of (V;,V,) values and saved in a lookup table. Since the
We first present the body bias sensitivity model, which &mperature sensitivity model is a second order model, \d ne

independent of the changes in temperature and construciteast three points to determine the valuegfrr, cq, 7q }-

at AT = 0°C (i.e., at room temperature). We construct a As before, for notational simplicity, we will define the

polynomial approximation for the variations df, and @, following functions:

with respect to(ybp,vbn). Our simulations shqw that a Iir_1ear SHAT) = 1+ c1(Vi, Vo) AT + r1(Vi, V,) AT (12)

approximation yields an average 2f0% relative error with )

respect to HSPICE, evaluated over &ff,,v;,) points, for SQ(AT) = 1+cq(Vi, Vo)AT +rq(Vi, Vo)AT=  (13)
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Clearly, an initial 2 x 2 table corresponding to the points at the four
.z corners of the table. Next, this table is expanded to include
Ip(Vi, Vo, 0,0, AT) = IS (AT) (14) additional entries using the idea bfhops.
Qp(Vi,V,,,0,0,AT) = Q7 So(AT) (15)
e (L]
D. CSM Complete Sensitivity Model

The complete body bias and temperature sensitivity model
can now be formulated by integrating the models/pfand
@, with body bias from equations (8), (9), and with temper- ; ;
ature offset from equations (14), (15). The complete moslel i S B A
constructed as follows:

L(Vi, Vi, by, v, AT) = 17 - L o) - SH(AT) (16 Fig. 2: The initial step, considering all rectangles frony an
vl Vbpr O ) v 1(Vep; Ven) - S1(AT) (16) point (i, j), extending to any poirlt, [) at the northeast corner.
Qp(vviv Vovvbpvvbna AT) = Qp : LQ(’pravbn) . SQ(AT)

(17)

Simulations show that the above model yields approxima-
tions with an average 02.9% relative error with respect to
HSPICE. This also justifies our assumption that the effetts o
body bias and changes in temperature on CSM component:
can be analyzed independently.

: (1, n)
("'. " ® ®

1. COMPACT CSM FORMULATION @1

As described in Sections | and Il, the lookup tables obtained @ (b)
for {ar,br,aq,bq} and{cr, 71, cq, o} reduce the excessiverig 3: (a) A 1-hop solution from(i, j) to (n,n), through an
memory requirements descrlbed_ln Section I. However, vile stjiermediate point(k, 1). (b) A 2-hop solution from(1, 1) to
need a separate lookup table (indexed (by, V,)) for each (,, ) through an intermediate pointk, ) uses a previously
parameter of every cell in the library. If we can further reelu computed optimal-hop solution from(k, 1) to (

the size of these tables by suitably compacting them, we ca o . o
y y P g r]n the initial step, we consider all rectangles originatatg

gain more in terms of memory overheads induced. We thus "~ = ™ . .
gomt (i,7) at the southwest corner, extending to any point

present the development of a compact lookup table scheﬁl o
used for reducing the size of such lookup tables. (k,1) atthe northeast corner, as shown in Figure .2. We compute
the error metric over the rectangle, corresponding to thse ca
) ) _ where only the points at the four corners of the rectangle are
A. Table Size Reduction for Conventional CSMs kept in the lookup table, and all internal points are dropped
As a preliminary step, we attempt to apply the method ifihe error metric is the sum of the interpolation errors fdr al
[22] to create compact lookup tables thyand(@), for the zero points within and on the perimeter of the rectangle. Eactn suc
body bias and nominal temperature case, Iﬁ.and@z, with  rectangle corresponds to an optimal substructure for dimam
controlled loss of accuracy. For general values of the baay bprogramming: the optimal solution will be composed from
and temperature, we must also create lookup tableddpr some (but not all) such substructures.

n,mn).

br, ag, b} and {c, r1, cg, rq} at each value ofV;, V,): Next, we define a-hop operation. We optimize the region
as we will see, for these parameters, a direct extensioneof tiounded by point(¢, j) to the southwest andn,n) to the
method in [22] does not yield satisfactory results. northeast by finding an optimal poi(k, {) within this region.

We first overview the procedure in [22]. This method beginidere, optimality is defined as follows: the poifit, /) divides
with ann x n table of characterized points, indexed by variabldbe region into four subregions, as shown in Figure 3(a), and
x andy in the horizontal and vertical directions, respectivelyover all candidatgk,l) points, the optimal point minimizes
The idea behind table size reduction is to keep a subset oftakk total error summed up over these four subregions. Since
these points and to interpolate the rest. For instance,id@ns the error over each rectangle was calculated in the initégd,s
the rectangle bounded by poirts;, y1), (z2,y1), (z2,y2), and this step involves enumerating all candidéte!) points, and
(z1,y2): a point(z,y) within this rectangle can be dropped ifsumming up the previously calculated error over the redéasng
the interpolation error in its value, using these points Vigthin  in constant time for each such point. We refer to this ds a
a specified bound. hop, indicating that for eaclfi, j), the table “hops” over a

Instead of an expensive enumeration, the work in [22]ngle point, corresponding to the optin{al (), on the way to
presents a dynamic programming method for reducing a twoz, n). The associated optimal error encountered is Itt®p
dimensionaln x n table. The objective of the algorithm is toerror for (i, j).
create a smallem x m table, wherem is prespecified, while  In general, arh-hop from (i, j) to (n,n) finds a point(k, )
minimizing the total error corresponding to the points the such that the error fronfi, j) to (k,[), plus the(h — 1)-hop
dropped from the table. The procedure begins by constgictierror from (k,1) to (n,n), is minimized over all candidate
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points (k,1). To obtain anm x m table, the procedure stops‘kinks” in the CSM-based waveform that do not exist in the
afterm — 1 hops, and the optimah-hop from(1,1) to (n,n) corresponding HSPICE waveform. This happens due to the
provides the compact table. Figure 3(b) shows an example diat that an interpolation error caused by the presenceeskth
2-hop solution fromP(1, 1) to P(n,n); if the algorithm were outliers causes an error ify, and @), values, which causes
to stop here, it would result in @ x 4 compacted table. The the solver (described in the next section) to generate frror
computational complexity of this algorithm @3(m-n*), but as in output waveforms. A sample waveform with the use of
n is typically small @ = 30 in our simulations), this remains compacted/,, and @), tables, as generated by the solver for
tractable, as we will show in Section VI-A that the runtimesa rising input ramp is shown in Figure 5. As is seen, due to
for this scheme are reasonable. poor compaction, kinks appear in the evaluated waveforre. Th
It should be noted that although this method proceeds aloimgorrect waveform also incurs slew and delay errors.

the main diagonal of the table (in the north-east direction)
the interpolation error is computed by considering all tberf
end points of a rectangle (in Figure 3(a) for instance). Thtus
also considers the interpolation error induced along tierot
diagonal, and the rows and columns of the table as well. Whil _ 0

Body Bias Sensitivity Distribution Temperature Sensitivity Distribution

o
Sensitivity

this method is not exact (for example, for athop, it does not ;§>4o-
entertain the possibility of ath — 1) hop to (k,) and then a ézo %
20

1-hop to(n,n) ), in practice it is seen to work well. A faster
version of the algorithm, which trades off accuracy for shee
is also proposed in [22].

o

10 2 V_index i 0
V, index 20 o V,index 30 V, index

@ (b)
B. Modifications for Sensitivity Tables -

As stated earlier, the above approach works well for char- ¢
acterizing, and @,, where neighboring entries have similar
magnitudes. However, in case of the sensitivity parameters ,
{ar, b1, ag,bo} and {c;, r;, cq,rg}, there can be large
differences in the values of neighboring parameters. Téis i
illustrated in Figure 4(a) and (b), which show, respectivel . , 20
the values ofag = 9Q, /0w, andc; = OI,/0AT for an Voindée 30 %5y ¥pmdex T F TR 50 Y index
inverter celt. Large “outliers” (i.e., values of large magnitude) ©
are clearly visible on the plot.

The presence of these outliers is attributed to the naturefo§. 4: The CSM sensitivity parameter distribution for (&)
variation of the values of? andQZ with (V;, V,), and the way and (b)c; as functions of(V;, V;). (c) The resultant lookup
these values are derived in the CSM. At a partic(ldr, V,) table for ag, when all the outliers have been removed and
bias point, it is quite possible that only a small current owsaved separately in a table.
inside the input and output terminals of the cell. Since the
magnitudes of these inflowing currents decide the values ofWe propose a simple method for avoiding these problems,
IZ andQZ, the values of resultant? andQZ are also small. based on the observation that for these sensitivity paemsiet
Hence, any change relative to this small value becomes lagyeh outliers are few in number and have relatively large-mag
and is reflected as a large sensitivity value. nitudes. We therefore tabulate and save the outliers deara

In principle, since thesépZ and Qf values are small, we As can be observed from Figure 4(a) and (b), the number
may consider setting the corresponding sensitivities tm.zeof outliers is quite small compared to the total number of
This, however, has been observed to create inaccuracied@ta points. Thus, a separate tabulation of outliers wawddri
waveform evaluations (the waveform evaluation technicares negligible overhead.
described in Sections IV and V) for when such changes areln order to tabulate the outliers separately, given the get o
multiplied by other quantities with relatively higher maigiles  all points, we find the mean and variance over all entries. Any
(temperature offset for instance), the net contributioonfr entry that is overk variances from the mean is found to be
these small changes, to the computed valueg, ¢f) or of the an outlier; in practice, we finé = 2 to be an adequate value.
waveform sensitivities, becomes significant, and hencaeatan The removed entry at table locatigm, y) is then replaced by
be neglected. a dummy point, the error contribution (to the total errognfr

For such data, it can easily be shown that the approachvifiich is zero. The modified table is then compacted using the
[22], which depends on gridding the table in the coordinagdgorithm in Section IlI-A.
directions, is poorly compacted, i.e., the interpolatiomes in ~~ When a table entry is requested, we first determine whether
the reduced table are large. Such errors are demonstratedhf accessed point is an outlier: if so, we fetch it from the

be easily visible in the output response, where they appearcaltiiers list; else, we find it using the compacted look-upda
With the outliers separated, the variations in remaining

!Similar behavior is seen faty, by, bg, 1, cg, andrq. lookup table become more uniform. Table | shows the list of
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tables at zero body bias and zero temperature offset, and the

L2 compressed CSM sensitivity parameter tables for the body
| bias _cpefﬁcients{a;,bl,aQ,bQ} and the temperature offset
v coefficients{cs, 1, cq,rg}-
0.8} _v; (HSPICE) ) .
% . V. (Original Scheume) A. Using the Macromodel in a $9Iver _ | _
> V' (Our Approach) To solve t.he case of a gatg driving an mterconr]e_ct, inclydin
04l “ cases that involve coupled lines and crosstalk, it is endagh

consider the situation where a gate drives a load descriped b
02k an RCr-model as shown in Figure 6. Standard techniques such
as the O’Brien-Savarino approach [23] are used in our work
0 e e s0 00 I 140 to.r_educe. an arblltrary mtgrconnect load tmanodgl .at the.
Time (ps) driving point. We first obtain the waveform at the driving pbi

Fig. 5: The presence of outliers yields poor compaction ef tIpOdeVO’ and then we evaluate the waveform at any sink node

lookup tables when the original scheme from [22] is useds THI" the RC network by solving a linear system using standard

results in incorrectly evaluated output waveforms withkisimat model order reduction methods.
some time points. Our approach however, with a mechanism for

V )
separation of outliers, results in the correctly evaluatetput <] " I R 1
. . ; -
waveform with minimal errors. I W 2
_ <5 ¢, Y1, l(,‘, ICQ
separately tabulated outliers for a lookup tabledgt Further, T
Figure 4(c) shows the remaining entries fap in the 2-D < Vin

lookup table indexed by}, V,. As is clearly seen, the removal )
of outliers make the variation in the lookup table more umfp Fig- 6: A CSM for a gate, under zero body bias and zero
allowing for a high compaction using the original algorithm t@mperature offset, driving a load.
TABLE [: The outlier table forag
[V index [V, index [ ag ] We analyze the case of a gate output driving-pad in the
absence of body bias and at zero temperature offset, as shown

10 25 42.6
13 22 18.9 in Figure 6. Finding the output voltage waveform involves
16 16 155 solving the equation:
: - : 17 +15, = I, + Icy (18)
22 7 60.7 ! 107
z _ p
This method of separating the outliers removes the kinks wherely, = —,

present in thel,(t) waveforms. As shown in Figure 5, the s o dv,
Cl = 1

smooth waveform obtained from the solver using our approach dt
is no longer characterized by kinks, as compared to the . —C dVe,
waveform which had kinks due to the errors caused by original C2 = 2

compaction scheme. The waveform using our approach further ]pZ = F(V;,V,,0,0,0)
has negligible slew and delay errors. z

A potential alternative for dealing with such outliers is to @ = G(Vi, V,,0,0,0)
decrease the size ¢V}, V,) voltages steps at whichpz and Equation (18) is a nonlinear differential equationVip(t),
Qf are characterized, making the variation of sensitivitiend the input voltageV;(¢), is known. This equation can be
more uniform. We observe that this requires us to increaselved using routine circuit simulation methods. We apply t
the value ofn by about 6-% for different tables, resulting Backward Euler formula ta@,, V, and V¢, with a time step
in a large increase in the storage space required. For a snalboing from timen to time n + 1 (the superscript + 1 is
number of outliers, this posed as a significant increase dnopped for notational simplicity) to get:
the memory requirements for a library with different cells.

It also prohibitively increases the computational time loé t Q=@ tMQP (19)
compression algorithmo( n*). Therefore, an intermediate CiVo = C1V" + b, (20)
approach of saving outliers separately keeps both thegstora CoVe, = CoVE, + hic, (21)

space and the compression time tractable. .
P P Moreover, using Ohm’s Law, we havé-, = V, — Riq,.

IV. THE MACROMODEL SOLVER SubstitutingV, from this in equation (21), we have:

Using the approaches described so far, the cell library is _ Co(Vo - VE,)

, = 22
characterized to determine thg, and @, characterization e h + RCs (2)
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We then obtain the values df,, from equation (19), of corresponds to a perturbation to a base case, such as the zero
I, from equation (20) and of, from equation (22), and body bias and zero temperature offset case, and it should

substitute them in equation (18) to obtain: be possible to compute the waveform at nonzero body bias
_ n _n and temperature offset based on the zero body bias and zero
I, + @ W @ = Cl(v"h_ ve') OQ}EVO ey temperature offset case, with some consideration of body bi
+ ROy and temperature sensitivities, much more cheaply than the
Solving this forV,, we arrive at the following expressions: above procedure. Second, as discussed and shown before in
1 Section Il, the effects of changes in body bias and temperatu
Vo= A [hC2VCT‘L2 + B(CLVy' + by + Qp — QZ)] (23)  on CSM can be decoupled. Thus it should be possible to de-
where A = (hCy + hCy + RC1Cs) (24) couple and independently compute the effects of body bids an

_ temperature changes on the output waveforms too. Third, in
B = (h+ RC) (25) most cases, designers are interested not in the entire ovavef
Obtaining V,,, we substitutel, from equation (22) in equa- but specific properties of the gate output, such as its delay

tion (21) to solve forVc,: and output transition time. In this section, we demonstilage
1 efficient computation of such metrics under changing bodg bi
Ve, = B [hV, + RC2VE, | (26) and temperature without the need for numerous table look-up

. . operations.
Thus we have obtained the expressions for both the unknown

port voltages in terms of known quantities. However, such ex

. S . . Waveform Sensitivity M I
pressions are still implicit, and hence must be solvedtitey. aveform Sensitivity Models

Consider the case when we have the cell maintained at zero
temperature offsetX7 = 0°C), but with a nonzero applied
B. Newton-Raphson Solver body bias (vy,, vp,). For various values of(vy,,vy,), the
The approach conventionally employed in CSM solvers #blution of the waveform under the framework of equatior) (27
to solve the nonlinear equation (23), through iterative M&w entails multiple accesses to the look-up tablesfipand Q.
Raphson linearization. This approach is hereby termed @s tthe entries that are accessed in these tables change aggordi
Newton-Raphson Solver, and referred as such in the resttgfthe applied body bias. However, since body bias is a small
the sections. In thék + 1) iteration, we use thé'" iteration perturbation, in practice, the accessed entries in eadh &b
value, shown by the additional subscrigtto obtain: each step of the algorithm are relatively close to each pther
oI and can be viewed as perturbations to a nominal case.
AV, = BC1V}' + hC, Ve, + hB (Ip,k + =2 (V,— Vo,k)> Therefore, we propose to capture the output waveform

oV, .
P otk at zero temperature offset for nonzero body bias case as a
+B <Qp,k + 99y (Vo = Vo) — Q;) perturbation to the waveform with zero body bias and zero
o |y temperature offset as follows:
Ve V. AVOJc - hC2VéLQ - B(Clvon + hlp,k + Qp,k - QZ) Vo(t) = VoZ(t) + a(vbpa Vbn s t) * Ubp + ﬂ(vbpv Ubn, t) * Ubn (28)
o= Vo,k — .
A= B(h 08Iy [0V, + 0Qp/0Voly) whereV,/Z (t) represents the output waveforii,(t), with zero

@7 body bias and zero temperature offset, arn@,, vy,,t) and

This computation is carried out by references to the |00k'lmvbp,vbn,t) are time-varying body bias perturbation parame-
tables forl, and@,, with the appropriate use of interpolationters that are precisely defined as:

as necessary, and the use of finite differences to compute

derivatives. (Vo Vo t) = AV, (t)
8vbp

V. FORMULATION OF WAVEFORM SENSITIVITY B(vyp, Voms 1) = IVo(t) (29)
MODEL O

The Newton-Raphson solver in Section IV-B forms the Similarly, if we consider the variation in temperature of
basis for a procedure for computing the waveform under aHje Cell. the cell being maintained at zero body bias, we can
body bias and temperature condition using conventional cgfmulate a linear model as above for capturing the output

solvers. However, evaluation of the delays and slews of théveform at any temperature (with a nonzero temperature

gates under numerous body bias and temperature offset-cofifel: A7) as perturbation to the output waveform at nominal

tions entails multiple simulations of thentire output voltage [€MPerature (with zero temperature offekl’):
waveform at each combination of body bias and temperature Vo(t) = VZ(t) + o(AT,t) - AT (30)

value. Applications that require timing analysis at muéip P ] o
body biases and at multiple temperature values include [2{hereV,”(¢) is as as described above, anAT, ) is time-

3], [17], [19]. varying temperature perturbation parameter that is pecis
Intuitively, the repeated computation of full waveformerfy defined as:
. . (t
scratch seems unnecessarily excessive, for several season o(AT,t) = IVol(t) (31)

First, the application of body bias or a variation in temper@ OAT
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The following two results provide a precise formula for 1) The variation inV,(t) over (vy,, vsy,) is Nearly linear at
a(Vpp, Vo t), B(Vbp, von,t) and o(AT,t). We first present each time point of the waveform. Empirically, this can
the results (proved in the Appendix), and then discuss how be seen in Figure 7, which shows typical cases for the
the computational cost of evaluating these quantities @n b variation of V,(t) over (v, vy, for various time points
significantly reduced. of simulation. This behavior is observed for multiple test

cases, and indicates thatvy,, vin, t), 8(Vep, Von, t) are

Theorem 1 The waveform sensitivity parameters from equa- actually independent of the applied body bias, and are
tion (28), a(vpyp, Vbn,t) and B(vep, ven, t), are given by: only dependent on.

a(vbp; Von,t) = Na/Dap (32) 2) Figure 8 shows the variations i (vyp, vpn,t) and
B(vbp, von,t) = Ng/Dag (33) B(Vpp, o, t) With (vpp, vpn). The magnitude of these
[ 4 2 omozm zm 090 variations were observed to be a maximun?ddf for all
No= BlaCrt harly +aqQp —ag@y™ — @y avna vop test cases. Since these parameters are further multiplied
i b, aQZn T vy by vy, or v, € [—0.3V,0.3V] in equation (28), their
—QEm S a™ vy, — Do L& (Vbp, von) | + hCo2 oo effects onV,(t) are expected to be negligible. This is
- : - o further validated in Section VI.
Ny = B|B"Cy +hb1ff +bqQf — b3 — Q" =2 8w
Z_n 865 . Qg "o 1 8(\)/& V variation with body bias at selected time points
,va ﬁﬁ Vpn — LQ(przvbn) + hC> 8Ubn7 == 0.9
E)_IZ 0.8
Dy,g = (—=B) {hfpz (g?/l Vpp + gi)/] vzm) +hT‘2LI(pr7vbn) 2-;
Yo Y4
+QZ (?9?/9 + ZbTvan) * %LQ(”W’UM) +A 2'5
4
where terms using the superscriptare understood to corre- 0.3
spond to their values at the previous{) time step, and the 0.2
superscriptZ refers to the case wherg, = v, = 0V, and 0.1

AT = 0°C.
02y 0 02 -02 0y 02
bn bp

?rgﬁore%mua%ignh%‘g);‘,‘(’if%f?},t?Smgﬁ’%?,“gj sensitivity paramet%ig. 7: Typical surface plots fo,, showing the linear nature of
V, variations with(wy,, v, ), With each surface corresponding

7(AT.t) = No/Ds @) t0a randomly selected time point during the simulation.

N, =B [ancl + hlcr +2r] ATVIZ + (cq + 2rq AT)QF

Z,n
_ (66 + 27«’& AT)Qg,n _ BBQAPT Sg (AT) 0\-/Oa5riati0n ofa, with body bias for falling input Vgrziation ofa, with body bias for arbitrary inpt
_QZnan o AT — QZVLag? nATQ
ovpy ovpe 8AT Ok
Ocy dcq oLy -0.05
Dy =A—-B| (hi? Z AT +h—2 S (AT
7 (p8V+QPdV) +hoar1(AT)
-0.1
or or Q%
+(hpZ =L +Qf Q)AT2+ <7 SQ(AT)
v, v, oA o018 o2
0 50 100 150 200 0 50 100 150 200
Time(ps) Time(ps)

where the terms have the notations as described above. @ )
Theorems 1 and 2 enable the efficient computalip(t) at

any body bias value and temperature offset using a closed forig. 8: Simulations showing the variation oft) and 3(t) at
expression, dependent only on the value'pht previous time g range of body biases from the minimum to the maximum,

steps and the values in the waveform at zero body bias gRgluding zero. Two such test cases are shown in Figure (a)
nominal temperature. As a result, the waveform at arbitragng (b).

body bias and temperature values can be reproduced if the

values ofa(t), B(t) ando(t) are computed.
This leads to the following approximation, which provides

accurate waveforms with very low errors, as demonstrated in

e . _ Section VI:
Further simplifications are possible with both the models

discussed above. Consider first the body bias model. On Vs, Voms 1) = 0 () = vy = 0, 0y = 0, 1)
investigating dependency of the output waveform(og,, vy, ) bp> omy ) = E0RE) 7 AT = T Bon
and ona(vyy, Vbn, t), B(Vbp, Ven,t) , We observe that: B(Vbp; Von, t) = Bo(t) = B(vsp = 0,05n = 0,1) (39)

B. Simplified Waveform Sensitivity Models
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The simplified body bias waveform sensitivity model is thu@escribed through equation (38)) serves this purpose. &s w
given as follows: will show in Section VI, such a choice still preserves thehhig
accuracy. The gain in storage and waveform evaluation ed
Vo(t) = V' (8) + ao(t) - vop + Bo(t) - von (36)  on the ciher hgnd, is signi?icant. o
Note that this dramatically reduces the storage requirésnen In other words, instead of computing and saving\7',¢)
for the lookup table. At each time point, this method recmiirédt just one temperature point (as in the linear case in equa-
just two additional parameters, and 3o. tion (37)), we now save the values of(AT,t) at three
In order to develop a simplified model with changes in tenglistinct values of temperature to provide a better appreion
perature as was done in the body bias case, we investigatedtfi@t captures thermal nonlinearities. The simplified terapee
possibility of being able to generate a simplified tempemtuvaveform sensitivity model is thus given as follows:
waveform sensitivity model too. We however find that unlike Vo(t) = VZ(t) + 0,(AT,t) - AT (39)

the body bias case, the following approximation: o i .
whereo, (AT, t) is given by equation (38). As will be shown

o(AT,t) = oo(t) = o(AT = 0,1) (37) in Section VI, the above model yields accurate waveforms for

does not work very well with the temperature waveforn‘:jl1II temperature points.

sensitivity model. The inaccuracies in the resultant dekayd

slews, as compared to HSPICE, reach upif. This can be i
attributed to the nonlinear effects of temperature on theuiti V€ NOW propose the complete body bias and temperature

responses, which lead to reduced accuracy when a linear matjgveform sensitivity model as follows:

is used. V,(t) = VOZ(t)

Therefore, we apply_a more accurate piecewise Ilne.ar modfél +ag(t) - vep + Bo(t) - ven + 0p(AT,t) - AT (40)
to address the above inaccuracies. We observe that inogeasi _ _ : o o
the value of |AT]| increases the inaccuracies in waveform This model is a linear combination of the simplified wave-
evaluation, and that the magnitude of such errors are nge laform sensitivity models as given in equations (36) and (39).
for smaller values of AT)|. Thus, instead of the very simplistic NOte that such a linear combination is possible since treetsf
linear approximation as in equation (37), we propose a mdpk body bias and temperature are independent of each other,
accurate and less approximate linear simplified temperat@s has been discussed in Section Il. Equation (40) predhiats t

C. Complete Waveform Sensitivity Model

sensitivity model as follows: the effects of perturbations inside a cell caused due togewan
in body bias and temperature, can be captured through aesimpl
#(AT, 1) ~ 0, (AT, 1) linear modgl of the output voltage in terms of the changes in
AT the body bias and temperature.
=o(AT = ATy, 1), ATyiny S AT < ATyy + [TW To summarize, evaluating the outputtabody bias points

2ATR1 each foruvy, andwv,,, and atr temperature offset points, using

ATx
=0o(AT = ATy, t), ATuin + [ 3 w S AT <ATmiN + [ 5| an enumerative approach would solve f8r-  waveforms,

— (AT = ATy 1), ATaix + PATR" < AT < AT 38) involving the extensive use of lookup tables. In contrasi, 0
Tl T A, SIMIN 3 | =77 = oiMax approach reduces the solution to finding just six waveforms:
where, one for the zero body bia$Z (¢), and one each faty(¢) and
ATy = Minimum value of temperature offset in the rangest” Bo(t), and three fow, (AT, t). The net result is a large savings
ATy ax = Maximum value of temperature offset in the range/of’ in the storage and computation. Thus, the steps involved
ATr = ATyax — ATvIN in computing the waveform at anyu,,v,,) and AT are
AT, i :
ATy = ATy 1w + [ 63} summarized below:
ATs— A 3ATR )
To = ATviN + | —5 1) Apply equation (27) to generate the waveform

5ATR V.Z(t) at zero-body bias and zero temperature offsgt.
6 ] 2) Compute and savey(t), fy(t) at every timestep
from equations (32), (33), and (35).

ATs = ATy N + ’V

As stated in Section I, the values ATy, 4x and ATy N 3) Compute and sawe, (AT, t) at every timestep from
are taken to be50°C and 100°C, respectively. The above equations (34) and (38).
formulation in equation (38) states that this temperatarge 4) Use the computedo(t), So(t) and o,(AT,¢) in
is divided into three ranges of nearly equal size. The wameso equation (40) to directly generate the waveform for
of o,(AT,t), with AT chosen as the central value in each any value of(vy,, vpn) and AT

of these intervals, are then evaluated and saved. Althongh
principle, a waveform corresponding to each of the A%
values can be saved (giving us the lowest error in the model), VI. EXPERIMENTAL RESULTS

a designer would like to save and work with minimal number Our results are based on standard library cells using the
of waveforms, without losing much in accuracy. We have fourdbnm PTM [24], and our accuracy is measured through com-
through simulations that a choice of 3 different waveforrparisons with the results of HSPICE [25] simulations.
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A. Reduction in CSM Sensitivity Table Size steps of 5-10ps), various RC interconnects from the ChigA-1
We apply our table reduction algorithm for the sensitivit§-niPB-1K and the ChipB-5K family [26] as load benchmarks
parameters{as, b, ag, bo} and {cs, r1, co, ro} for a set re_duced tor-models, multiple pody bias pointd @9 points
of standard cells characterized using 45nm PTM [24], af¥th (vep,vsn) € [-0.3V, 0.3V], in steps of0.05V for each
demonstrate our results in Table Il for a typical table, dpr Parameter), and multiple temperature points (13 point wit
Columns 2 through 4 show the number of entries in the reduced’ € [-50°C, 100°C], in steps 0f12.5°C).
table using the original compression approach (SectieA))l ~ First, we present the speedups with simplified body bias
and Columns 5 through 7 list the size of the reduced tablé@veform sensitivity model and those of simplified tempenet
using our approach (Section I1I-B). These comparisons aM@veform sensitivity model independently. Then we present
shown for various bounds (2%, 5%, 10%) on the allowabtBe speedups of the complete waveform sensitivity model. In
error, and in each case, the optimal table size corresportie t €ach case, we calculate the runtimes using HSPICE, Newton-
smallestm x m table, indexed byV;, V,), that meets the error Raphson solver and our simplified waveform sensitivity mod-
bound. In each casep = 30 for the original table size, i.e., €ls, and average these runtimes over all the test casesve arr
it has 900 entries. As is seen from the table, in each case, 8tfinal speedup results. For the test cases, we perfornidrans

approach yields much smaller tables than the prior approacgtimulations and report the speedups of our algorithm over
HSPICE and over the Newton-Raphson solver. Expectedly,
TABLE II: Results for sensitivity parameter table reductior the speedup over HSPICE is large, and is found to be about

tables with original size = 900 five orders of magnitude. More interestingly, our complete
Call Reduced Table Size with Error Bound3 Run waveform sensitivity model achieves an average speedup of
Type Original approach Our approach | Time 91.81x, and a maximum speedup of 99:650ver the Newton-
2% | 5% | 10% | 2% [ 5% [ 10% Raphson solver.

INV 529 | 484 | 324 | 225 169 | 100 | 115s . L
NANDZ 1T 576 T 484 | 289 | 196 [ 144 | 81 | 1i0s 1) Body Bias Waveform Sensitivity ModeWe eva_luate
NORZ || 900 | 784 | 576 | 324 | 256 | 169 | 168s the speedup achieved using the standalone body bias model
NAND3 || 625 [ 529 | 256 | 169 | 144 | 81 | 104s as presented in Section V-B. We perform evaluations at 169
NORS || 841 | /29 | 484 | 289 | 225 | 144 | 16/s body bias points within the rang@,, vs,) € [-0.3V, 0.3V].
AOI21 || 576 | 529 | 484 | 196 | 169 | 100 | 114s ! .

AOD2 1529 [ 484 1 361 | 225 | 169 | 81 | 1175 All evaluations are carried at the zero temperature offfet o

AT = (0°C. Table Il lists the speedups that are obtained by
The last column of Table Il shows the runtime of th&ur waveform sensitivity model over HSPICE and over the
algorithm for achieving reduced table sizes for the mobtewton-Raphson Solver, for standard library cells. As can
computationally-intensive solution, where t2& error bound be seen from the table, the body bias waveform sensitivity
must be satisfied. The runtimes are measured on a 3GMg@del achieves an average speedup of around five orders of

Intel Core2Duo CPU, and correspond to the average for tAtdgnitude over HSPICE and an average speeduf7cfx

{ar,aq,br,bo} and{cr, co, 1,7} sensitivity tables, and are Over the Newton-Raphson Solver.

very reasonable, especially considering that this cheriaet

tion computation must be performed only once for a givePABLE Ill: Speedups obtained by the Complete Waveform

library in a given technology. Sensitivity (WS) Model over HSPICE and Newton-Raphson
It is easy to explain why the original algorithm of Sec{NR) solver

tion 111-A does not lead to sufficient reduction in the tabiees

. . . . . . . Cell WS Model Speedups
This can primarily be related to outliers: ignoring thesénfs Body Bias Temperature Combined
causes substantial errors at these points when interpoléi Over [Over NR| Over [Over NR| Over TOver NR)

used to predict the values of missing entries. On the other HSPICE Solver [HSPICE Solver |HSPICEH Solver
INV | 8964 | 6536 | 4.663 | 4.374 | 1.1565] 8512

hand, if thgsg are mcl_uded, the large jumps at these POt ANDZT 96ea | 6629 | 2963 | 2352 | L2865 88 15
can result in interpolation errors at nearby points that db n [ NOR2 | 9.2e4 | 69.23 | 4.0e3 | 4.454 | 1.26e5| 95.02
correspond to outliers. These errors can only be diminislyed [NAND3| 9.6ed4 | 66.67 | 4.8e3 | 4.313 | 1.29e5| 89.50

inar I f larger sizes. NOR3 | 8.9e4 | 72.15 | 4.2e3 | 4.405 | 1.23e5| 99.55
using reduced tables of larger sizes AOI21 | 10.8e4| 66.80 | 4.8e3 | 4.389 | 1.45e5| 89.72

AOI22 | 10.0e4| 69.36 | 4.9e3 | 4.413 | 1.39e5| 95.60

B. Speedup Due to Waveform Sensitivity Models

We now present the speedup obtained using our various?) Temperature Waveform Sensitivity Modilext, we eval-
simplified body bias, temperature and the complete wavefoumate the speedup achieved using the standalone simplified
sensitivity (WS) models, as proposed in Sections V-B, and V-@mperature waveform sensitivity model as presented in Sec
respectively. tion V-B. We perform evaluations at 13 temperature points

We evaluate the speedup of our models over HSPICE awithin the rangeAT € [-50°C, 100°C] with zero body biasing.
over the Newton-Raphson solver (see Section 1V-B) that douTable 11l presents the average speedup attained over HSPICE
be used in a simple extension of existing CSMs. To calculaa@d the Newton-Raphson solver. Compared to body bias case,
the above speedup, we perform our tests with each circthiese speedups are lower since we are evaluating at a much
example under multiple combinations of the following paramesser number of temperature points (13 as compared to 169
eters: multiple rise/fall waveforms (1ps—100ps input rapip in the body bias case).
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Fig. 9: The result of our simplified body bias waveform
sensitivity (WS) method as compared with HSPICE, for severaid. 10: Similar results of output waveform at the output @od
body bias values: (a) output waveform from an Inverter, émhd Of @ gate (a) for a NAND2, modeling an input glitch, and (b)
with a 20/ benchmark RC interconnect, evaluated at sink nodier @ NAND3, with a nonmonotone input.
52, and (b) output waveform from a NAND2, loaded with a

451 benchmark RC interconnect, evaluated at sink node 103. 1) Body Bias Waveform Sensitivity Moddlhe temperature

offset in this part of evaluation is set to zero. Figures 9
3) Complete Waveform Sensitivity Mod&\le now present and 10 compare representative waveforms as generategjthrou
the speedup obtained with our complete body bias and tempdBPICE [25] and the simplified body bias waveform sensitivit
ature waveform sensitivity model as presented in Secti@h V-model, when the input waveform takes any arbitrary shape ei-
In this case, we perform evaluations at all combinations dfer due to glitches, noise or crosstalk. We evaluate acmsa
the 169 body bias and 13 temperature points within the ranigeth at the output node of the cell, and the sink nodes of the
(vbp, ven) € [-0.3V, 0.3V], and AT € [-50°C, 100°C] (thus a interconnects which load the cell output node. Figure 9 show
total of 169 x 13 evaluations). Table Il presents the averagbe typical response of the cell at the sink nodes of the RC
speedup attained by our complete model over HSPICE and thee interconnect loads. The waveform is first obtained at th
Newton-Raphson solver. Note that with the complete modeltput node of the cell, and then evaluated at sink node using
we are able to achieve an order of five magnitudes speedup dvatk-approximation of the RC interconnect circuit, and model
HSPICE. Our complete model is much faster as compareddaler reduction techniques [23]. Figure 10 shows the output
the Newton-Raphson solver, over which we are able to achievaveforms at the output node of the cells, with arbitraryuiisp
an average speedup @f.81 x, considering all temperature andThe waveforms in some cases are coincident to the naked eye,
body bias points. as our algorithm yields high accuracy. This also validakes t
idea that, 3 can be assumed to be independent:@f,, vy, ),
o as proposed in Section V-B. Note that the initial ringingoerr
C. Accuracy of the Waveform Sensitivity Models in these waveforms is due to the use of @agproximation,

In this subsection, we present the accuracy achieved &jd not due to the waveform sensitivity model.

our body bias and temperature models in both waveform2) Temperature Waveform Sensitivity Modé{s with the
generation and computation of slews and delays over meltigdody bias waveform sensitivity model, the simplified temper
combinations of body bias and temperature values. Througture sensitivity model as described in Section V-B yields
the accuracy of these waveforms and low errors in slews aaccurate waveforms for any temperature offset value. Note
delays, we also show that our assumptions of making wavefothat the body bias is kept at zero in all such evaluations.
sensitivity models simplified are justified. We present aata1 Figure 11 shows a set of waveforms obtained from a NOR3
waveform generation both at the output node of the cell asll, loaded with33] RC interconnect network. The waveform
well as the sink nodes of the RC interconnect loads, which asefirst obtained at the output node of the NOR3 cell, and the
connected to the output node of the cell. waveform shown is then evaluated at sink node 55. As shown in
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Fig. 11: The result of our simplified temperature Waveforrﬁ'g' 12: The result of our complete waveform sensitivity (WS)

sensitivity (WS) method as compared with HSPICE, for Vagodel as compared with HSPICE, for various temperature and

: ody bias values. Shown above are waveforms at the output
ious temperature values. Shown above are output wavefor

S ) )
from a NOR3, loaded witt83! benchmark RC interconnect,.nOde of an Inverter with (&35! as the interconnect load and an
evaluated at sink node 55: (a) for a falling step input, and (

put glitch due to crosstalk, and (Bpm as the interconnect
for a slower rising input. oad and an arbitrary input.

V.
i
— 1
__V.., (HSPICE) =
__V_ (WS MODEL) 0.8 )

sink

N
the figure, the temperature waveform sensitivity modeldgel 038
very accurate waveforms. This also validates the simpliioa £ 06
of o(AT,t) values, as proposed in Section V-B. > 04

3) Complete Waveform Sensitivity Moddtor presenting  *?
the results in this section, we generate waveforms for plalti 0
combinations of body bias or temperature offset values al 0 Time (ps)
compare the result with the corresponding waveforms obthin (@) (b)
from HSPICE. We find that the complete model as presented
in Section V-C, generates very accurate waveforms. As befofig. 13: Similar output waveforms from cells loaded witt
we evaluate accuracies both at the output node of the c&fnchmark RC interconnect, evaluated at farthest sink bade
and the sink nodes of the interconnects which load the c&¥) the output from an NAND2 for a rising input, and (b) the
output node. Figure 12 shows the accuracy obtained at @igput from a NOR2 for a falling input.
output node of an inverter loaded witth/ RC interconnect,

with inputs having glitches and arbitrary shapes. Figure k&nsitivity model and from HSPICE. We then obtain the rela-
shows the waveform evaluated at sink node 52@fRC load tive percentage error between de|ays and slews Corregm)ndi
interconnect for NAND2 and NOR2 cells. Our results shoy the complete simplified waveform sensitivity model and of
that a linear model foV, (¢) in both body bias and temperature4SpPICE. All such errors are tabulated. Table IV shows the
with simplifications as in equations (35) and (38), suffices f mean and standard deviation of these relative errors for a
generation of waveforms at any combination of body bias apAND2 cell, over all ©vp vsn, AT) points, presented for each
temperature, with sufficiently desired accuracy. combination of inputs slews and output load interconneltts.

4) Slew and Delay Errors:We now present some moreis seen that both the mean and standard deviations are small
descriptive tables for the errors in delays and slews that dor all test cases.
incurred in formulation of the complete waveform sendiyivi A more detailed view of these rise and fall delay/slew
model. For this tabulation, we work with the test cases thatrors is presented in Table V, for a particular test case:
were mentioned at the beginning of Section VI-B, and save thdth a NAND2 cell loaded with20! as the RC interconnect,
delay and slew values as obtained from our complete wavefowaveforms being evaluated at sink node 52. This table shows

v, =10 2 0.6
bp I

Von = —-0.3] pr =1.0 > 0.4

AT =75 Viu = 0.3

bn 0.2

AT =-25

—_V,. (HSPICE)

-V, (WS MODEL)_

50 100
Time (ps)
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TABLE IV: Mean and standard deviation (St. Dev.) of the petege errors over allv,, vy,, AT) points, incurred by our
complete waveform sensitivity model in the output rise dedad slew values for NAND2 cell, as compared to HSPICE for

different input slews and output RC interconnect loads

RC Interconnect Loads

Input 25m 33l 451
Slews|| Percent Delay ErrdrPercent Slew Errdf Percent Delay ErrdrPercent Slew Errojf Percent Delay ErrgrPercent Slew Error

Mean [ St. Dev.[ Mean [St. Dev.[ Mean [ St. Dev.| Mean [St. Dev]| Mean | St Dev.| Mean [St. Dev.
5ps 1.655 1.450 3.128 2.541 1.218 1.266 3.328 2.632 0.889 0.831 3.107 2.448
10ps|| 1.532 1.394 3.108 2.541 1.031 1.186 3.203 2.656 1.043 0.960 2.407 2.304
20ps| 1.328 1.376 3.095 2.552 0.883 0.950 2.832 2.596 1.557 1.338 2.045 2.156
50ps|| 1.030 1.164 2.826 | 2.568 1.397 1.090 2.353 | 2.530 || 4.026 3.992 1.876 | 2.167
100ps| 1.244 | 1.192 | 1.183 | 1.405 || 2.245 | 1.727 2.087 | 2331 | 1.785 | 1.813 | 1.869 | 2.347

TABLE V: Percent delay and slew errors for a NAND2 cell atmpyte waveforms at multiple combinations of body bias and

various temperature offsets, over aj},, v, points

temperature points with massive savings in computatio® Th
results demonstrate the effectiveness of our compactioense

and the waveform sensitivity model in achieving HSPICE
level accuracy with high speedups both over HSPICE and

AT Percent Delay Errors| Percent Slew Errors
(°C) Max. [ Min. [ Mean | Max. [ Min. | Mean
-50.0 1.43 | 0.06 | 0.47 4.63 | 0.09 1.75
-37.5 1.15 | 0.02 | 0.39 433 | 0.19 1.78
-25.0 1.23 | 0.03 | 0.40 3.71 | 0.16 1.64
-12.5 1.14 | 0.01 | 0.49 2.02 | 0.10 | 0.82
0.0 1.29 | 0.08 | 0.44 1.23 | 0.08 | 0.70
12.5 1.20 | 0.09 | 0.40 151 | 0.06 | 0.78
25.0 1.15 | 0.05 | 0.45 250 | 0.13 1.04 [1]
37.5 1.34 | 0.09 | 0.66 4.16 | 0.04 1.53
50.0 2.18 | 0.38 1.11 481 | 0.06 | 2.65
62.5 1.96 | 0.22 | 0.81 548 | 0.27 | 2.79
75.0 1.27 | 0.02 | 0.39 594 | 0.26 | 2.92
87.5 1.18 | 0.06 | 0.68 | 6.87 | 0.40 | 3.19
1000 |[ 216 | 0.63 | 1.41 | 893 | 0.35 | 3.74 [2]

the distribution of the delay/slew errors over all,{, vi.)
points, but at differenAT" values. Column 1 of the table lists 3l
the temperature offsets from the nominal temperatur>6€
at which the waveforms are evaluated. Columns 2 to 4 present,
for the value of AT listed in column 1, the maximum, the
minimum and the mean of the percentage delay errors obtained
over all vy, vy, points. Similarly, columns 5 to 7 present the [4]
maximum, the minimum and the mean percentage slew errof3
obtained over allu,, vy, points at that temperature offset.
Clearly, at all temperature offsets, both the mean delay and
slew errors over alby,, vy, points are contained within%. [6]
We thus observe from Tables IV and V that only a small
error is incurred in both delays and slews over all combinaf7]
tions of vy, vy, and AT points, validating the use of our
waveform sensitivity model in predicting the delay and sew (8]
over the entire range of body bias and temperature. Venjaimi
observations were made for other standard cells in therlibra o]
VIl. CONCLUSION

A simple extension of existing CSMs to incorporate thg_o]
effects of body bias and temperature in the CSM framework
results in excessive increase in library memory and solver
runtime. We present a novel approach to incorporate bow]
bias and temperature effects into current source models. We
develop sensitivity model for capturing variations in CSM!2]
components with body bias and temperature, with compaction
of the resulting tables of these model parameters. We incor-
porate this sensitivity model into the mainstream CSM solvé-3]
framework, and develop a new model for capturing waveform
sensitivity with body bias and temperature, which allowgais

conventional CSM solvers.
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