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Abstract—In 3D-ICs, TSV-induced thermal residual stress im-
pacts several transistor electrical parameters – low-field mobility,
saturation velocity, and threshold voltage. These thermal-stress-
related shifts are coupled with other temperature effects on
transistor parameters that are seen even in the absence of TSVs.
In this paper, analytical models are developed to holistically
represent the effect of thermally-induced variations on circuit
timing. A biaxial stress model is built, based on a superposition
of 2D axisymmetric and Boussinesq-type elasticity models. The
computed stresses and strains are then employed to evaluate
transistor mobility, saturation velocity and threshold voltage.
The electrical variations are translated into gate-level delay and
leakage power calculations, which are then elevated to circuit-
level analysis to thoroughly evaluate the variations in circuit
performance induced by TSV stress.

Key Terms : 3D-IC, Through Silicon Via, Static Timing
Analysis, Finite Element Method

I. INTRODUCTION

3D-IC technology, which allows vertical scaling by stacking
chips together, provides significant benefits over conventional
2D-ICs, including reductions in critical wire lengths, higher
transistor density per unit footprint, and heterogenous inte-
gration. However, a major issue with 3D-ICs is that on-chip
temperature variations can be significant. On-chip tempera-
tures can affect the behavior of a 3D-IC in several ways. First,
thermal effects can change the threshold voltage and carrier
mobilities in a transistor. The former serves to speed up the cir-
cuit while the latter slows it down: one or the other effect may
dominate at a specific temperature. As a result, a circuit may
show either positive temperature dependence (PTD) where the
delay decreases monotonically with temperature, negative tem-
perature dependence (NTD) where it increases monotonically,
or mixed temperature dependence (MTD), where it changes
nonmonotonically [1]. Second, through-silicon-vias (TSVs),
which connect different wafers/dies in a 3D-IC, induce a
thermal residual stress in silicon, and cause changes in device
electrical parameters. The transistor mobilities are affected by
stress due to piezoresistivity; threshold voltages are impacted
by stress-induced shifts in electronic band potentials; carrier
saturation velocities are altered due to stress-induced quantum
mechanical effective mass of charge carriers in transistor
channels (these are shown to be correlated with the changes
in low-field mobility [2]). The magnitude of stress-induced
electrical variations in 3D-IC transistors is dependent upon
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Fig. 1. Delay dependence of benchmarks (a) ac97_ctrl and (b) usb_funct for
the cases where TSV effects are ignored and taken into account.

the distance of the devices from the TSVs and the transistor
channel orientation with the crystallographic axis.
To understand the delay variation with temperature in 3D

circuits, a holistic analysis must be conducted, considering
both the above effects. This variation of delay with temperature
is shown for two sample benchmark circuits in Fig. 1. In each
plot, the solid curve shows the trend without TSV effects,
which shows MTD effects similar to those reported in [1]
in both cases. Under TSV stress effects, the delays change
and the temperature dependence is altered, as shown by the
dotted curve. While the circuit ac97_ctrl shows MTD effects,
PTD effects dominate for usb_funct. Moreover, in one case the
delays decrease, while in another, they increase. However, the
relative deviation between dotted and solid curves diminishes
with temperature. Prior approaches [3]–[5] have considered
TSV stress effects ignoring the inherent effects of temperature
on mobility and threshold voltage, and have assumed that the
worst-case delay occurs at the lowest temperature: as seen
above, this is not always true.
The TSVs may be made of copper, tungsten, or polysilicon:

copper is the primary choice owing to its low resistivity.
During manufacturing, the TSV is embedded in silicon after
several thermal cycles and a final annealing process. During
annealing and subsequent cooling, the structure undergoes a
thermal ramp from about 250◦C down to room temperature.
Because of the difference in the coefficient of thermal ex-
pansion (CTE) of the copper TSV and the silicon, a residual
thermal stress is induced in the region surrounding the TSV.
Often a thin dielectric liner layer is grown between the

sidewalls of the copper TSV and silicon. Two primary choices
of the liner material are silicon dioxide (SiO2) and benzo-



cyclobutene (BCB). The liner layer improves the mechanical
reliability of the copper TSV and reduces the magnitude of
stress in silicon. Thus the amount of stress in silicon also
depends upon the mechanical properties of the liner layer.
Stress in 3D-IC structures has been studied using the finite

element method (FEM) and through analytical methods [4],
[6], although these works did not consider the impact on
circuit delays. FEM simulations can capture the finite ge-
ometries of the TSV structure (TSV+liner+silicon), and the
differences in the material properties. Thus, they yield accurate
estimates of stress levels around a TSV, but the computational
cost of evaluating this stress data at different temperature
corners for a given layout becomes quite prohibitive. FEM-
based precharacterization approaches [7] are faster, but need
significant storage to store the results of simulation on a grid
with large number of points, and the fact that PTD/NTD/MTD
requires such stresses to be stored at multiple temperature
points. In contrast, an analytical approach lends to faster
computation with no additional storage requirement since the
stress at any point in the layout can be computed on-line.
The analytical model in this work uses a 2D axisymmetric

model to obtain the thermal stresses in silicon taking into
account the material property differences. However, the 2D
approach does not mimic the traction-free surface condition
(zero normal and tangential stress components) over the TSV
and the liner as observed in the FEM. Thus a compensating
pressure is applied over the TSV and the liner regions to
recover the traction-free condition at the surface. The resultant
stress distributions in silicon can be obtained using classical
Boussinesq problem technique in elasticity [8]. This approach
was used in [9] to study the copper TSV interfacial reliability
but relies upon a numerical approach. In this work, a compact
analytical model for stresses in silicon is developed using a
combination of 2D and Boussinesq-type solutions. Further-
more, we show that TSV-induced stress is biaxial in nature.
Prior work in [5] uses a uniaxial model for TSV-stress which
incurs significant errors in mobility computations [10].
Based on the stress models, we derive a complete analytical

model for delay and leakage power variations under stress. Our
contributions are as follows:

• We incorporate both sets of thermal effects into a single
analysis, capturing TSV stress effects, and thermally-
driven low-field mobility and threshold voltage variations.
The variations in saturation velocity can be empirically
expressed in terms of low-field mobility variations. In
contrast, prior works [4]–[6], [11] perform this analysis
only at the lowest temperature in the range, ignoring
NTD/MTD effects.

• We model the biaxial nature of the TSV stress considering
the differences in material properties of TSV, liner, and
silicon along with the traction free condition on the
respective surfaces. This leads to a better comparison with
FEM, in the useful range from and beyond the Keep-Out
Zone (KOZ).1

1The KOZ is the (often rectangular) region around the TSV within which
no transistor is allowed to be placed, since the stresses are very high and can
adversely affect transistor performance and reliability.

• On benchmark circuits, we demonstrate how the path
delays in a circuit can change, depending on the relative
locations of gates on the path and the TSVs. We show
the magnitude of these changes and their impact on the
critical path in a circuit. Furthermore, we show the circuit
leakage power variations due to TSVs in the layout.

II. STRESS MODELING

A. Notation and definitions

The stress field is represented as a tensor that comprises
six unique stress components: three normal stresses (σ11, σ22,
σ33) and three shearing stresses (τ12, τ23, τ31), where the
subscripts 1, 2, and 3 correspond to the three orthogonal
axes in any spatial coordinate system. Similarly, the six strain
[three displacement] fields are represented by ǫij [ui] where
i, j ∈ {1, 2, 3}. In Cartesian coordinates, these correspond to
the x, y, and z directions, while in cylindrical coordinates
the axes are along radial (r), circumferential (θ), and axial
(z) directions. In the rest of the paper, a superscript M ∈
{Cu, Si, Liner = SiO2/BCB} represents the corresponding
elastic fields in the corresponding materials. The physical
constants used in this work are given in Table I.
In cylindrical coordinates where the z-axis is perpendicular

to the TSV and silicon surface, a traction-free condition
corresponds to σzz = τrz = 0.

TABLE I
PHYSICAL CONSTANTS FOR STRESS COMPUTATION

E (GPa) CTE (ppm/oC) ν
Copper 111.5 17.7 0.343
Silicon 162.0 3.05 0.28
SiO2 71.7 0.51 0.16
BCB 3 40 0.34

A stress tensor that is defined by only one normal stress
component, the other components being zero, corresponds to
uniaxial stress; one defined by two normal stresses, the other
stresses being zero, is referred to as biaxial stress.

B. Overview of our TSV stress solution

The TSV structure is three-dimensional in nature, with the
TSV, liner and silicon having different material properties as
shown in Table I. Three-dimensional problems in elasticity
can often be reduced to 2D problems to simplify solution
procedures. These are known as plane problems, where dis-
placement and stress components can be treated independent
of one of the axis directions, based on the geometry. Here
we shall treat the z-axis as the independent axis direction and
use cylindrical coordinates to describe the approaches. These
plane problems can be solved in two ways [12]:

• A plane strain approach is used when the dimensions of
a body along the z-axis is much larger than the cross-
section along the orthogonal axes directions. This makes
the displacements and the stresses independent of the z-
direction. Furthermore, ǫiz = 0 with i ∈ {r, θ, z}, in the
plane strain approach. However, from Hooke’s law, even
when the z-dimensional strains are zero, it can be shown

2



that σzz can be nonzero in general due to the Poisson’s
effect of stresses in other directions.

• A plane stress condition exists when the thickness along
the z-axis is smaller compared to the other dimensions.
Here, the stresses and displacements almost remain the
same through the thickness and hence are independent of
the z-direction. Furthermore, in plane stress problems,
σzz = 0 and τiz = 0 with i ∈ {r, θ}. Analogous to
the plain strain approach, from Hooke’s Law, ǫzz can be
nonzero in general for a plane stress analysis.

Based on the TSV geometry and the resultant stress distri-
butions, we choose to solve the problem using a superposition
of two solutions. First, we apply 2D plane strain techniques
to obtain the thermal residual stress distributions in the TSV
structure, considering the material property differences. How-
ever, as pointed out above, the σzz stress component is nonzero
on the surfaces of the TSV and the liner. Thus the surface of
the TSV structure is not traction-free in the 2D solution.
To recover the traction-free condition on the TSV and the

liner surfaces, a compensating pressure, equal in magnitude
but opposite in direction as that of the 2D solution, is applied
on the respective surfaces. This corresponds to a Boussinesq
problem in elasticity and deals with stress distributions in a
3D half-space, when surface normal pressure is applied over a
region [8], [13]. For simplicity, we assume the 3D half-space
is entirely homogeneous and is made up of silicon. It will
be shown later that the error due this assumption is minor in
practice, and that the analytical stress closely matches with
that of the FEA. The rationale behind this approach is that the
compensatory pressure is a second-order effect, and a slight
inaccuracy in its computation is tolerable.
The complete stress solution is then a linear superposition

of the stresses from the 2D problem and the surface stress
distributions of the Boussinesq type problems. Let [σSi]axi
denote the stress tensor from the axisymmetric 2D solution
and let [σSi]Bou1 and [σSi]Bou2 denote the Boussinesq type
solutions due to normal pressure over TSV and the liner
surfaces, respectively. The total stress response σSi can be
obtained as:

σSi =
[

σSi
]

axi
+
[

σSi
]

Bou1
+
[

σSi
]

Bou2
(1)

C. 2D-axisymmetric solution

The TSV is modeled as a long copper cylinder surrounded
by a thin liner layer and encompassed by infinite silicon.
This assumption is valid since the TSV diameter is typically
smaller compared to its height, which is taken along the z-
axis. Furthermore, TSV-induced stress vanishes after a short
finite distance in silicon and thus the assumption of infinite
silicon. We apply the 2D plane strain techniques to obtain the
stress state of this mechanical system.
Fig. 2 shows the 2D view of an isolated TSV in silicon

with a liner layer. The z-axis is normal to the plane of the
paper. Let O denote the origin of the cylindrical coordinate
axes. Let a and b denote the radii of the inner and outer
circles, respectively. Thus, if RCu [tLiner] represent the radius
[thickness] of the TSV [Liner], then a = RCu and b =

TABLE II
ANALYTICAL STRESS COMPONENTS

Stress components due to 2D axisymmetric thermal stress solution

Stress in Copper TSV:

σ
Cu
rr = σ

Cu
θθ = C

Cu
[

A
Cu

− (1 + ν
Cu

)α
Cu

∆T
]

σ
Cu
zz = ν

Cu
(

σ
Cu
rr + σ

Cu
θθ

)

6= 0

Stress in liner (SiO2/BCB):

σ
Liner
rr = C

Liner

[

A
Liner

−
BLiner

r2

(

1 − 2ν
Liner

)

−(1 + ν
Liner

)α
Liner

∆T

]

σ
Liner
θθ = C

Liner

[

A
Liner

+
BLiner

r2

(

1 − 2ν
Liner

)

−(1 + ν
Liner

)α
Liner

∆T

]

σ
Cu
zz = ν

Liner
(

σ
Liner
rr + σ

Liner
θθ

)

6= 0

Stress in silicon:

[

σ
Si
rr

]

axi
= −

[

σ
Si
θθ

]

axi
= (1 − 2ν

Si
)C

Si
B

Si 1

r2
[

σ
Si
zz

]

axi
= ν

Si
([

σ
Si
rr

]

axi
+

[

σ
Si
θθ

]

axi

)

= 0

Stress components due to Boussinesq type solution

[

σ
Si
rr

]

Bou1

= −
[

σ
Si
θθ

]

Bou1

= (1 − 2ν
Si

)

[

σ
Cu
zz

a2

2

]

1

r2

[

σ
Si
rr

]

Bou2

= −
[

σ
Si
θθ

]

Bou2

= (1 − 2ν
Si

)

[

σ
Liner
zz

b2 − a2

2

]

1

r2

[

σ
Si
zz

]

Bou1

=
[

σ
Si
zz

]

Bou2

= 0

Constants

C
M

=
EM

(1 + νM )(1 − 2νM )
forM ∈ {Cu, Si, Liner}

A
Cu

= A
Liner

+
BLiner

a2

B
Cu

= 0

A
Liner

=
mh − ng

h(1 + c2) − g(1 − c4)
∆T

B
Liner

=
n(1 + c2) − m(1 − c4)

h(1 + c2) − g(1 − c4)
∆T

A
Si

= (1 + ν
Si

)α
Si

∆T

B
Si

= c2A
Liner

b
2
− c1B

Liner
− c2b

2
(1 + ν

Liner
)α

Liner
∆T

m = (1 + ν
Si

)α
Si

+ c2(1 + ν
Liner

)α
Liner

n = (1 + ν
Cu

)α
Cu

− c4α
Liner

g =
1 − c1

b2
; h =

1 + c3

a2

c1 =
ELiner(1 + νSi)

ESi(1 + νLiner)
; c2 =

c1

1 − 2νLiner

c3 =
ELiner(1 + νCu)

ECu(1 + νLiner)
; c4 =

c3

1 − 2νLiner

a = R
Cu

; b = R
Cu

+ t
Liner

∆T = T − Tref
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RCu+ tLiner. The stress tensor at the point P (r, θ) in silicon
is computed using 2D plane strain techniques. Appendix A
provides the governing equation and the general solution for
this 2D axisymmetric problem.

Fig. 2. Axisymmetric geometry of TSV (blue) surrounded by thin liner
(yellow) and encompassed by infinite silicon (green). The z-axis is normal to
the plane of the paper.

The complete solution, for the 2D thermal stress problem in
copper, liner (SiO2/BCB), and silicon is listed in Table II. The
terms AM and BM for M ∈ {Cu, Si, Liner = SiO2/BCB}
represent the coefficients of the general solution of equa-
tion (A.18) which are determined by the boundary conditions
given in the Appendix A. In Table II, the terms EM , νM , and
αM denote, respectively, the Young’s modulus, Poisson’s ratio,
and the CTE of the material M . The temperature differential
∆T is the difference between operating temperature T and the
initial copper annealing temperature, Tref (250◦C).
In Table II, the terms m and n contribute to the CTE

mismatch between copper/liner, and liner/silicon materials,
respectively. In addition, the terms c1, c2, c3, c4, g, and h factor
in the other mechanical property differences. From Table II, it
can observed that the non-zero coefficients of the general stress
solution in equation (A.18): ACu, ALiner, BLiner, ASi, and
BSi, are all proportional to the temperature differential ∆T .
Consequently, the resultant stress components in copper TSV,
liner, and silicon shown in Table II, are also proportional to
∆T ; they vary linearly with the operating temperature T .

(a) (b)
Fig. 3. Boussinesq problem for surface uniform normal pressure acting on
(a) circular region (TSV region) of area πa2 (b) circular ring-shaped region
(liner region) of area π(b2 − a2).

D. Solving the Boussinesq problem

From Table II, it can be seen that σCu
zz and σLiner

zz are
nonzero and thus the surface is not traction-free under the 2D
plane strain solution. Since σCu

zz and σLiner
zz are independent

of the distance r, they are uniform over the surfaces of the
TSV and the liner regions, respectively. To recover to the
traction-free condition, a compensating normal pressure equal

in magnitude but opposite in direction are applied over the
respective surfaces and the Boussinesq type problems are
solved. As stated earlier, the 3D half-space is treated as
entirely made up of silicon, by ignoring material property
differences. Furthermore, in integrated circuits, since devices
are located near the surface, we need to determine the 3D
stress distributions only on a single plane at the surface of
the silicon. For a general Boussinesq problem in cylindrical
coordinates, the elastic fields at the surface depend purely upon
the distance r and not upon z as shown in the Appendix B.
The general solution of the resultant stress components in the
silicon region for a pressure P applied over circular region
is given in equation (A.19). Fig. 3 shows the application
of the Boussinesq technique applied to the TSV structure.
The following two subproblems are evaluated to recover the
traction-free condition over the TSV and the liner:

• A uniform pressure equal to σCu
zz is applied on a circular

region of area πa2 (TSV region) of a half-space (silicon)
as shown in Fig. 3(a). The resultant normal stress com-
ponents in silicon are denoted by [σSi

ij ]Bou1 in Table II.
• A uniform pressure equal to σLiner

zz applied on a ring-
shaped circular region of area π(b2 − a2) (liner region)
of a half-space (silicon) as shown in Fig. 3(b). The
resultant normal stress components in silicon are denoted
by [σSi

ij ]Bou2 in Table II.

III. APPLICATION TO INTEGRATED CIRCUITS

Since our goal is to predict stress distributions in silicon due
to TSV-induced thermal stress, we shall focus on the stress
components in silicon alone and ignore the superscript M in
the rest of the paper. Using 2D plane strain and Boussinesq
approaches together with equation (1), the stress in silicon in
cylindrical coordinates is given by:

σrr = −σθθ =
K

r2

σzz = τrz = τθz = 0 (2)

where,

K = (1− 2νSi)

[

CSiBSi + σCu
zz

a2

2
+ σLiner

zz

b2 − a2

2

]

Here K is a constant that takes into account the difference
in mechanical properties, the temperature differential and the
effect of the surface normal pressure on top of TSV and the
liner. From the terms in Table II it can be deduced that K is
directly proportional to ∆T . Thus at a fixed distance r, the
stress components vary linearly with operating temperature T .
Furthermore, from equation (2), for a fixed temperature the
stress decreases quadratically with distance r. Moreover, the
presence of two non-zero stress components in equation (2),
shows that the TSV-induced stress is biaxial in nature.

A. Stress in Cartesian coordinate systems

Although the stress equations (2) have been expressed in
the cylindrical coordinate system, IC design uses Manhattan
geometries and it is convenient to transform these to the Carte-
sian coordinate system. This will facilitate the piezoresistivity
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calculations described in Section IV. Using the transformations
x = r cos θ and y = r sin θ, as in [6], and with cylindrical-
to-Cartesian tensor transformations, the following expressions
are obtained from equation (2):

σxx = −σyy = K
x2 − y2

(x2 + y2)
2 = σrr cos 2θ

τxy = K
2xy

(x2 + y2)
2 = σrr sin 2θ

σzz = τyz = τzx = 0. (3)

As defined earlier, σxx, σyy, and σzz are the three normal
stresses in Cartesian coordinate axis, and τxy , τyz , τxz are the
shearing stress components. The angle θ corresponds to the
angle made by the transistor with the TSV.

B. Impact of the crystal orientation

The crystal orientation refers to the Miller index of the
silicon crystal. The principal crystallographic axes create a
coordinate system that corresponds to the [100], [010], and
[001] directions. Within this system, the orientation of a
wafer is defined as the direction normal to the plane of the
silicon wafer. The (100) orientation is the dominant paradigm
(although other orientations such as (111) may also be used)
and our exposition will focus on this case. Due to symmetry,
the (100), (010), and (001) orientations are equivalent.

Fig. 4. Coordinate axes in (100) Si with a wafer flat orthogonal to the [110].
The transistor channel here is perpendicular to the [110] axis i.e., φ′ = π/2.

The orientation of transistors on a wafer is determined
relative to the wafer flat, as shown in Fig. 4: transistors may be
parallel or perpendicular to this feature. Therefore, a rotated
coordinate space with a new x′-axis that is perpendicular to
the wafer flat is a convenient frame of reference. This x′-axis
is in the [110] direction, and therefore, the [100]–[010] axes
must be rotated by 45◦ [14], [15].
By examination, a rotation by 45◦ causes the axial direction

to move along the transverse direction. We can thus easily
deduce the biaxial stress tensors in these coordinates from
equations (3) to be:

σx′x′ = −σy′y′ = τxy; τx′y′ = −σxx (4)

The Fig. 5 shows the stress contours of σx′x′ and τx′y′ .
The stress patterns are seen to be tensile and compressive in
mutually perpendicular directions. This results from the cos 2θ
[sin 2θ] term in σxx [τxy] in equation (3).

(a) (b)

Fig. 5. Stress contour fields in the [110]-[110] axes. (a) σx′x′ stress contour
field. (b) τx′y′ stress contour field.

C. Comparison with finite element simulation

To validate the effectiveness of the closed-form 2D analyti-
cal solution in equation (2), we perform 3D FEA simulations
using the ABAQUS [16] tool with realistic TSV structures. As
stated earlier, since we are interested in modeling the degra-
dation of the devices, our region of interest lies outside the
KOZ. In our experiments, we define the KOZ to be 1µm from
the edge of the TSV or 3.5µm from the center of the TSV, and
is chosen to ensure that there is no more than 33% mobility
variation in any transistor around an isolated TSV. In practice,
the KOZ constraint is driven by the mobility degradation of
PMOS transistors, which exceeds that of NMOS devices. The
effect of the copper landing pad is ignored in this analysis,
since the landing pad size is always within the KOZ boundary
and its main influence is felt only at the edge of the TSV.
All materials (TSV, liner, silicon) are assumed to be linear,

elastic, and isotropic. The annealing process is modeled in
FEA by applying a temperature load with an initial temper-
ature of 250◦C and final temperature of 25◦C. For the 3D
FEA simulations, the copper TSV diameter is 5µm, height is
30µm, and the liner thickness is 125nm [17]. The mechanical
properties of the materials are listed in Table I.
The analytical solution is compared against actual FEA

stress with BCB and SiO2 liners, respectively. Fig. 6 shows
the comparison of the corresponding models against σrr and
σθθ components. It can be observed that the analytical models
closely follow their FEA counterparts outside the KOZ. The
small errors between the analytical solution and FEA can be
attributed to the assumption of a homogeneous TSV structure
(silicon) in the Boussinesq subproblems.
It will be shown in Section VI that the worst case error in

actual gate delay computations, using the analytical models as
compared to the FEA models, is less than 1ps for a two input
NAND gate in the library.

IV. EFFECTS OF STRESS ON ELECTRICAL PARAMETERS

Applied mechanical strain alters the band structure of semi-
conductors [18] and causes changes in electrical parameters –
low-field mobility, threshold voltage, and saturation velocity.
This section deals with modeling the changes in electrical
parameters under TSV-induced stress effects.
In an unstrained silicon, according to many valley theory,

there are six degenerate conduction band valleys, with a pair
along each of the three Cartesian coordinate axes. On the other
hand, the valence band consists of two degenerate electronic
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(a)

(b)

Fig. 6. Comparison of (a) σrr and (b) σθθ between the analytical and the FEA
models. The TSV edge, liner edge, and KOZ edge are at 2.5µm, 2.625µm
and 3.5µm respectively.

bands – heavy hole and light hole, and one split-off band
lower in energy. Applied strain lifts the degeneracies of the
conduction and valence band valleys and causes shifts and
splits in the electronic band potentials. The changes in the
mobility and saturation velocity can be attributed to the strain-
induced carrier effective mass changes and reduction in inter-
valley scattering [18]. The threshold voltage changes are due
to the strain-induced shifts in conduction and valence band
electronic band potentials [19], [20].
Strictly speaking, the complete electronic band structure

needs to be evaluated to compute changes in electrical param-
eters. However, for the small strains such as those induced by
the TSV, piezoresistivity [deformation potential theory] can
be applied to evaluate changes in mobility [threshold voltage]
as a function of stress [strain] components. The changes in
saturation velocity can be expressed in terms of the changes
in low-field mobility [2], [21].
The electronic band potentials in silicon are defined along

the <100> directions in Miller notation [18]. The energy band
gap is typically measured along this direction. Thus, we need
the strain tensors in the Cartesian system for evaluating strain-
induced threshold voltage variations. However, the transistor
channel orientation with the crystallographic axes determines
the carrier transport properties, hence the magnitude of mo-
bility variation. Thus, in piezoresistivity calculations we use
the stress components in the primed coordinate system which
is parallel and perpendicular to the wafer flat direction.

A. Transistor low-field mobility variation with stress

In quantum mechanics, the transistor mobility is related to
the effective mass of the carriers and scattering mechanisms

by the Drude’s approximate model as [18]:

µ = eτ/m∗ (5)

where e is the charge of the carrier, τ is the mean free time
between scattering or momentum relaxation time, and m∗

is the effective mass of the charge carrier. For the NMOS
[PMOS] transistors, the active charge carriers are electrons
[holes]. The reduction of scattering mechanisms due to band-
splitting increases τ and has a positive effect on mobility.
Similarly, the decrease [increase] in the effective mass m∗

increases [decreases] low-field mobility.
The scattering mechanisms dominant in silicon processes

are: quantum-mechanical acoustic (intra-valley) and optical
(inter-valley) phonon scattering, and process-induced surface
roughness scattering. The intra-valley scattering is dominant
at low temperatures, while at room temperature and above the
inter-valley scattering phenomenon dominates [18]. However,
the changes in the electronic transport parameters can be ac-
curately determined through full-band simulations alone [22],
[23]. For small strains, we can make use of piezoresistivity the-
ory where the changes in the low-field mobility are expressed
as a linear combination of stress tensor components.
From the basic axiom of the theory of conduction of

electrical charge, the current density vector is a function of
electric field vector. Alternatively, the electric field vector is
related to the current density vector by the resistivity tensor,
which can be related to mobility. According to piezoresistivity
theory, the resistivity tensor components vary with applied me-
chanical stress in piezoresistive materials such as silicon [24].
A complete mathematical model for piezoresistivity has been
presented and demonstrated in silicon in [15].
In the rotated (x′, y′) coordinate system described earlier,

the relative change in mobility is given by the expression:

∆µ′

µ′
=

[

π′

11σx′x′ + π′

12σy′y′

]

cos2 φ′

+
[

π′

11σy′y′ + π′

12σx′x′

]

sin2 φ′ +
[

π′

44τx′y′

]

sin 2φ′ (6)

Here, π′
11, π

′
12 and π′

44 are the three unique piezoresistivity
coefficients defined along the primed coordinate axes, and φ′

is the angle made by the transistor channel with the x′-axis,
i.e., the [110] axis. This implies that φ′ = 0 for the transistor
channels that are oriented along this direction, and φ′ = π/2
when they are orthogonal to this axis. As we will see, the
piezoresistivity coefficients and the stress tensor components
vary with the channel orientation, implying that the mobility
variation depends on the transistor channel orientation.
In practice, the piezoresistivity coefficients for silicon are

typically listed in databooks along the crystallographic axes.
Using standard techniques for coordinate rotation, the corre-
sponding coefficients in primed axes are obtained as [25]:

π′
11 = (π11 + π12 + π44) /2

π′
12 = (π11 + π12 − π44) /2

π′
44 = π11 − π12 (7)

Here, the terms π11, π12, and π44 are the primary piezore-
sistive coefficients along the crystallographic axes. Table III
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shows the values for the primary piezoresistivity coeffi-
cients [3] in both coordinates. The relative magnitudes of
the coefficients show the anisotropic nature of silicon where
PMOS [NMOS] transistors oriented along primed [crystallo-
graphic] axes show greater sensitivity to stress. This will be
reflected in the magnitude of mobility variations [18].

TABLE III
PIEZORESISTIVITY COEFFICIENTS (X10−12 Pa−1) IN (100) SI [3]

π11 π12 π44 π′

11
π′

12
π′

44

NMOS 1022.0 -537.0 136.0 310.5 174.5 1559.0
PMOS -66.0 11.0 -1381.0 -717.5 662.5 -77.0

For a transistor oriented along the [110] axis, φ′ = 0. From
equations (4), (6), and (7),

∆µ′

µ′
= π′

11σx′x′ + π′
12σy′y′ = π44σx′x′ = π44σrr sin 2θ. (8)

Recall that θ is the angle made by the vector from the origin to
the center of the transistor with the unprimed x-axis. Similarly,
for a transistor in the orthogonal direction, φ′ = π/2, and

∆µ′

µ′
= π′

11σy′y′ + π′
12σx′x′

= −π44σx′x′ = −π44σrr sin 2θ. (9)

Fig.7 shows the mobility variations in NMOS/PMOS tran-
sistors at room temperature (25◦C) based on equation (8).
Based on the above analysis, we can observe that:

• For the same stress and orientation, PMOS and NMOS
devices experience opposite mobility variation effects:
both depend on π44, which has a different sign for PMOS
and NMOS (Table III). In Fig. 7 along the x′-axis direc-
tion, where the stress is tensile, PMOS mobility degrades
while NMOS mobility improves; the opposite is true
along y′-axis direction where the stress is compressive.

• For the same stress, PMOS devices experience greater
mobility variation as compared to NMOS devices, since
the π44 value of PMOS is an order of magnitude greater
than that of the NMOS as seen in [26].

• The relative mobility variation depends on the operating
temperature since stress varies linearly with temperature
as pointed out in Section II.

Fig. 7. Mobility variation of PMOS/NMOS transistors with distance from
the TSV along x′ and y′ axis directions. Here edge of the TSV = 2.5µm.

B. Saturation velocity variation with mechanical stress

In short channel CMOS transistors, the high lateral electric
field in the channel causes velocity saturation, where charge
carriers acquire a nearly constant velocity known as saturation
velocity. The parameter critical length, denoted by l, is a short
distance from the source side which determines the onset of
velocity saturation [27]. Beyond this critical length, saturation
region drain current is entirely determined by saturation ve-
locity, while low-field mobility dominates within the critical
length and determines linear region current. However, the
variations in saturation velocity can be expressed in terms of
variations in the low-field mobility as shown in [2], [21].
The maximum velocity charge carriers can physically ac-

quire in the velocity saturation region is known as the ballistic
velocity denoted by vB , and it varies inversely with the square
root of the effective mass m∗ [27]. Thus, the ballistic velocity
can be related to the low-field mobility by an empirical power
law as vB ∝ µα. If scattering is ignored, α ≈ 0.5. In
reality, under different scattering mechanisms α < 0.5 [2],
and thus limits the maximum achievable velocity. The resultant
net saturation velocity at the source is also known as source
injection velocity vinj [28], which determines the saturation
drain current. The ratio of vinj to vB is known as ballistic
efficiency and is denote by B; B is typically less than 1.
Furthermore, the critical length parameter l decreases with
increased low-field mobility and can be empirically expressed
as l ∝ µ−β , where β ≈ 0.45 [2]. The relative changes
in injection velocity, which determines the drain saturation
current, can be expressed in terms of the relative changes in
the low-field mobility as [2]:

∆vinj
vinj

= [α+ (1−B)(1− α+ β)]
∆µ

µ
(10)

Experimental studies in [2] show that the correlation be-
tween changes in saturation velocity and changes in mobility
is about 0.85. From equation (10) it can be deduced that even
when ballistic efficiency approaches 1 in highly scaled devices,
the saturation velocity may still be related to low-field mobility
by the factor α [21], [29]. Furthermore, advantageous strain
improves the carrier effective mass and thus ballistic velocity
limit itself increases with such strain [2].

C. Threshold voltage variation due to mechanical stress

According to the deformation potential theory [18]–[20],
mechanical strain in the channel causes shifts and splits
(by lifting the degeneracy) in conduction and valence band
potentials. This results in corresponding shifts in the threshold
voltage of the transistors and can be attributed to changes in
silicon electron affinity, band gap, and valence band density-
of-states. As pointed out earlier, the strains in the Cartesian
coordinate system are employed to evaluate the changes in
conduction and valence band potentials as [18], [20]:

∆E
(i)
C (ǫ) = Ξd (ǫxx + ǫyy + ǫzz) + Ξuǫii, i ∈ {x, y, z}

∆E
(hh,lh)
V (ǫ) = a (ǫxx + ǫyy + ǫzz) (11)

±

√

b2

4
(ǫxx + ǫyy − 2ǫzz)2 +

3b2

4
(ǫxx − ǫyy)2 + d2ǫ2xy

7



Here, ∆E
(i)
C is the change in the conduction band potential

energy of the carrier band number i. The term Ehh
V (Elh

V )
denotes the heavy-hole (light-hole) valence band potential.
The positive (negative) sign is used for Ehh

V (Elh
V ). The terms

Ξd and a are the hydrostatic deformation potential constants,
and have the effect of shifting the conduction and valence
bands. On the other hand, the terms Ξu, b, and d are the
shear deformation potentials which have the effect of lifting
the degeneracy or splitting the conduction and valence bands.
The corresponding values of Ξd, Ξu, a, b, and d in eV are:
1.13, 9.16, 2.46, -2.35, and -5.08. The terms ǫxx, ǫyy , ǫzz , and
ǫxy denote the TSV-induced strains in Cartesian coordinate
system. The strains can be obtained from the stresses in
equation (3) as:

ǫxx =
1

ESi

(

σxx − νSi (σyy + σzz)
)

ǫyy =
1

ESi

(

σyy − νSi (σzz + σxx)
)

ǫxy =
1 + νSi

ESi
τxy

ǫzz = ǫyz = ǫzx = 0 (12)

From equations (3) and (12), it can be deduced that ǫxx =
−ǫyy , and ǫzz = 0. Thus, the hydrostatic contribution in
equation (11), ǫxx + ǫyy + ǫzz = 0. Hence, under TSV-
induced stress, there is only splitting of conduction and valence
bands without any hydrostatic shifts. This is unlike the process
induced strains in [30] where both hydrostatic shifts and shear
splits take place in electronic bands. The net effect is a smaller
variation in electronic band gap potential due to TSV-induced
stress. Regardless of the strain type, the energy band gap has
been shown to decrease [22], [31]. Thus threshold voltage is
also expected to decrease under TSV-induced stress.
The threshold voltage is a function of band-gap potential

and thus can be expressed as a function of the changes in
conduction band and valence band potentials. Ignoring the
changes in the densities of states whose contributions are
negligible [32], we have:

q∆Vtp = m∆EC − (m− 1)∆EV

q∆Vtn = m∆EV − (m− 1)∆EC (13)

where ∆Vtp and ∆Vtn are the changes in PMOS and NMOS
threshold voltages, respectively, q = 1.6 × 10−19C is the
electron charge, and m is the body-effect coefficient and takes
values 1.1−1.4. ∆EC is the minimum of the changes in
conduction band potentials, ∆Ei

C . Since conduction band is
lowered under TSV-induced stress, ∆EC is negative valued.
The term ∆EV denotes the maximum of the changes in
valence band potentials, ∆Ehh

V and ∆Elh
V , and is positive

valued. This leads to decrease in bandgap potential consistent
with [22], [31]. The work in [33] uses similar models to predict
TSV-induced threshold voltage variation of upto 8mV, but
uses the generalized process strain equations in [30] which
is not valid for TSV-induced strains. Furthermore, in the
same work, there is a sign error in the usage of ∆EC and
band gap potential. This leads to errors in threshold voltage
computations, although the actual changes in threshold voltage
are still within 15mV under TSV effects.

Based on the above analysis, the threshold voltage variations
of PMOS and NMOS transistors are plotted in Fig. 8 at
the room temperature (25oC). We can observe that threshold
voltage for the PMOS and NMOS have decreased; positive
[negative] shifts for PMOS [NMOS]. Furthermore, beyond
a short distance from the KOZ edge, the threshold voltage
variations are practically zero. The patterns can be explained
by the relations in equations 11 and 13. The threshold voltage
improvements suggest leakage power degradations.

(a) (b)

Fig. 8. TSV-induced threshold voltage variation in (a) PMOS transistor (b)
NMOS transistor. Here edge of the TSV = 2.5µm. KOZ edge = 3.5µm

V. TIMING ANALYSIS UNDER ELECTRICAL VARIATIONS

Our circuit-level input is a characterized cell library and a
placed netlist, based on which the stresses may be computed
using the techniques in Section II; this stress can be converted
to determine the transistor mobility, saturation velocity, and
threshold voltage variations, using the methods in Section IV.

A. Delay dependence on temperature

We first consider the effects of temperature on delay without
TSV stress and then add the TSV stress effects.
The traditional assumption that has guided timing analysis

is that the delays of library cells increase monotonically with
temperature, corresponding to the NTD case. However, with
technology scaling and the increased use of lower Vdd and Vt

values, PTD and MTD are also often seen. Gate delays change
with T in two ways:
(1) The mobility change for charge carriers, ∆µT , is given by:

∆µT = µ (T0) (T/T0)
−m (14)

Here T0 is the room temperature, and m > 0 is the mobility
temperature exponent, with a typical value of 1.7 in highly
doped silicon, and 1.4 in nanometer silicon layers, where
boundary scattering becomes important [34]. This reduction
in µ increases the delay.
(2) The threshold voltage change, ∆Vt, for a transistor is given
by:

∆Vt = −κ (T − T0) (15)

where κ > 0 has a typical value of 2.5mV/K [35]. Thus, the
delay decreases with T due to this effect.
The two phenomena above have opposite effects on gate

delays, and depending on which of the two is more dominant,
results in PTD, NTD, or MTD effects.
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B. Gate characterization

The variation in the low-field mobility, saturation velocity
and threshold voltage translates into variations in the gate de-
lay metric. Since changes in saturation velocity are correlated
to the changes in low-field mobility as seen from equation (10),
it suffices to express changes in gate delays in terms of changes
in low-field mobility and threshold voltage. The delay, Dstr,
of a gate under stress is given by:

Dstr = Dnom+

(

∂D

∂µ

)

(∆µTSV +∆µT )+

(

∂D

∂Vt

)

(

∆V TSV
t +∆Vt

)

(16)

where Dnom is the delay without temperature or TSV effects,
∂D/∂µ [∂D/∂Vt] is the sensitivity of the delay to mobility
[Vt] variation at the nominal point, and ∆µTSV [∆V TSV

t ]
is the mobility [threshold voltage] change due to TSV stress.
Note that the sensitivity ∂D/∂µ accounts for both low-field
mobility and saturation velocity. For the 45nm technology used
in our work, the changes in velocity saturation account for
less than 1% change in gate delays. In this work, the delay
variations are primarily due to the changes low-field mobility
and the threshold voltage.
The mobility sensitivity is a nonlinear function of the

nominal point, and is stored as a look-up table (LUT) rather
than a constant sensitivity value. On the other hand, the
threshold voltage sensitivity is a linear function of the nominal
point. During delay calculation, linear interpolation is used
between the stored points. This results in improved accuracy,
e.g., for a NAND2 gate in the library, the delay error using
our approach is less than 3%.
LUT characterization is a one-time exercise for a library.

The range of the LUT reflects the observed range of varia-
tions. For example, for mobility sensitivity, using HSPICE,
we characterize a 45nm gate library for five delay values
with corresponding PMOS mobility variations ranging from
±50%. For the NMOS mobility variations, we use a linear
approximation considering a range of ±5%. For threshold
voltage sensitivity, we characterize the gate library at the
nominal threshold voltage and with a shift of -20 mV [20 mV]
in NMOS [PMOS] transistors. The library characterization is
performed from −25◦C to 125◦C, along with different supply
voltages, load capacitances, and input slopes.
The leakage power of a transistor exponentially increases

(decreases) with its decreasing (increasing) threshold voltage.
However, for small changes in threshold voltage of a transistor,
the gate-level leakage power varies almost linearly. As seen
in Fig. 8, the TSV-induced threshold voltage variations in
transistors are typically few tens of millivolts not exceeding
15 mV. For the TSV-induced stress, all the transistors of the
same type (NMOS or PMOS) experience equal magnitude of
threshold voltage shifts. This is because TSV-stress spans an
area that is considerably larger than the individual layouts of
the logic gates. Thus, if there are n transistors in a gate, the
total leakage power of the gate is given by:

Lstr
gate = Lnom

gate +

n
∑

i=1

∂Lgate

∂Vti

∣

∣

∣

∣

0

∆V TSV
ti (17)

where Lstr
gate is the leakage power of a gate under TSV-

induced stress and Lnom
gate is the nominal leakage power of the

gate under no stress. The partial derivative of Lgate with Vti

represents the sensitivity of the leakage current of the gate to
changes in the threshold voltage of transistor i, evaluated at the
nominal point. ∆V TSV

ti denotes the threshold voltage shift in
the transistor i. Note that all the NMOS or PMOS transistors
in a gate correspondingly have the same ∆Vti. In our work,
the relative error in estimating the gate leakage power of the
standard cells with this approach is under 1%.

C. Timing analysis framework

For the placed netlist that is provided as an input to the
procedure, the left bottom coordinates and width and height
of each cell in the layout can be determined. The computation
then proceeds as follows: First, from the above placement
information, the centers of the TSV and the standard cells
are computed. Second, the equations in (4) and (12) are
used to calculate the stress and strain tensors, respectively,
from every TSV present in the circuit, capturing the transistor
channel orientation with respect to the wafer flat. The stress
tensor from different TSVs are added up. Third, the mobility
variations are calculated according to equations (8) for tran-
sistor channels oriented along the [110] axis. The TSV strain-
induced threshold voltages are computed using equation (13).
Fourth, the computed electrical variations are employed to
obtain accurate cell delays using LUT and linear interpolation
with the characterized delay values in conjunction with equa-
tion (16) during static timing analysis. Finally, the delay of
the circuit is computed at different temperature points ranging
from -25◦C to 125◦C in steps of 20◦C.

VI. RESULTS

A. Gate delay comparison: Analytical solution vs. FEA

In this section, we compare the errors in the gate delays
based on the analytical stress models as compared to the results
from true FEA stress simulations presented in Section III-C.
For this analysis, we employ the analytical stress [strain]
components σx′x′ and σy′y′ [ǫxx, ǫyy , and ǫxy] in the primed
[Cartesian] coordinate system and its corresponding FEA
counterparts to evaluate the mobility [threshold voltage] varia-
tions. Finally, gate delays are computed using equations (16).
Fig. 9(a) and Fig. 9(b) shows the errors in the gate delay

of a NAND2 gate in the library around a TSV with BCB and
SiO2 liner, respectively. From the legend it can be observed
that the error in using analytical models for computing the gate
delays is less than 1ps. This demonstrates the accuracy of the
analytical model for practical circuit performance evaluation,
and thus removes the need for storage overhead of store FEA
models, or the computational overhead of on-the-fly FEA.

B. Effect of TSV-induced stress on circuit path delays.

We apply our techniques on a set of IWLS 2005 bench-
marks [36] whose attributes are as shown in Table IV, where
#PO denotes the number of primary outputs in the design. The
parameters chosen in our experiments are listed below:

• The analytical stress and strain models for TSV with BCB
and SiO2 liners, respectively.
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(a) (b)

Fig. 9. Contours of rise time difference of NAND2 gate around a TSV with
(a) BCB liner and (b) SiO2 liner.

Fig. 10. FO4 rise delay variation of a NAND2 gate with different TSV
diameters. The NAND2 gate is at a distance d from the KOZ edge.

• A cell library characterized under the 45nm PTM [37].
• All transistor orientations parallel to the [110] axis.
• A TSV diameter of 5µm. The TSV is surrounded by

either BCB or SiO2 liner with a liner thickness of 125nm.
• Our KOZ is defined as the point where the mobility

variations are below 33%; this corresponds to a KOZ size
of 1µm from the TSV edge.

• For scaled technologies, a TSV diameter of 3µm [1µm]
with SiO2 liner and a KOZ size of 0.6µm [0.2µm].

The Fig. 10 shows the FO4 rise delay variation of a NAND2
gate in the library at 25◦C with TSV diameters of 5µm, 3µm,
and 1µm. In all the cases, the NAND2 gate is at a fixed
distance of 100nm/500nm/1µm from the KOZ edge of the
corresponding TSVs. Furthermore, the centers of the standard
cell and the respective TSVs are aligned along x′-axis. From
the figure, it can be seen that for a fixed distance from the TSV
the delay variation decreases as TSV diameter scales down,
consistent with observations in previous sections. Furthermore,
even for smaller TSV diameters such as 1µm, at shorter
distance from the TSV, the delay variation is significant.
However at the circuit level, the delay variations may get toned
down due to inherent cancellations in path delay computations.
We place TSVs in the layout with equal horizontal and

vertical spacing. The number of TSVs in a circuit depends
upon the size of the benchmark and the TSV spacing used. The
following layouts are generated using the Capo placer [38]:

• TSVless contains no TSVs.
• TSV_5_i, i ∈ {3, 7, 10} correspond to regularly-spaced

horizontal and vertical TSVs of diameter 5µm with a
spacing of 3, 7, and 10 µm, respectively, between the
edges of the KOZs for the TSVs.

• Layout TSV_3_3 [TSV_1_3] consists of identical number
of TSV’s as that of TSV_5_3 layout but with TSV
diameter of 3µm [1µm] spaced 3µm apart.

TABLE IV
IWLS 2005 [36] CIRCUITS

Circuit # Gates Dimension # POs #V1 #V2 #V3
H×W (µm×µm)

ac97_ctrl 11308 130×80 4204 70 54 35
aes_core 12223 87×85 12313 49 36 25

des 4647 68×85 332 35 24 15
ethernet 29739 104×170 32149 170 84 60
i2c 1221 16×74 204 6 5 4

mem_ctrl 10094 94×84 2522 49 36 25
pci_bridge32 11148 127×85 9025 70 48 35

spi 3632 48×87 564 21 18 10
systemcdes 2694 50×71 549 18 15 8
usb_funct 12987 76×113 3930 54 40 28

In Table IV, the corresponding number of TSVs in TSV_5_3,
TSV_5_7, and TSV_5_10 layouts are: #V1, #V2, and #V3.
Tables V and Table VI show how the critical path changes,

when TSV with corresponding BCB and SiO2 liners are taken
into account. In Table V, D0 represents the critical path delay
for the TSVless case, and the temperature at which this delay
is seen. The columns designated by D1, D2, and D3 represent
the critical path delays of TSV_5_3, TSV_5_7, and TSV_5_10
layouts with the TSV+BCB liner effects. The temperatures at
which the maximum occurs is shown alongside each delay.
Each circuit is seen to exhibit MTD as its worst case delay
occurs in the interior of the temperature range of [−25◦C,
125◦C]. We found that, the interconnect lengths were short in
the critical paths of the circuits considered here. Hence the gate
delay component dominates the interconnect delay component,
and addition of interconnect delays will not significantly alter
the timing results presented here.

TABLE V
COMPARISON OF CRITICAL PATH DELAY OF CIRCUITS WITHOUT AND

WITH {TSV + BCB LINER} EFFECTS
Circuit TSVless TSV_5_3 TSV_5_7 TSV_5_10

D0 T D1 T ∆D1 D2 T ∆D2 D3 T ∆D3
(ps) (◦C) (ps) (◦C) (%) (ps) (◦C) (%) (ps) (◦C) (%)

ac97_ctrl 505 55 501 35 -0.8% 500 35 -1.0% 504 35 -0.2%
aes_core 516 35 519 35 0.6% 538 15 4.3% 511 15 -1.0%

des 1024 35 1023 15 -0.1% 1024 15 0.0% 1022 35 -0.2%
ethernet 914 15 919 -5 0.5% 902 15 -1.3% 903 15 -1.2%
i2c 444 35 443 15 -0.2% 445 35 0.2% 445 15 0.2%

mem_ctrl 979 35 983 15 0.4% 988 15 0.9% 983 15 0.4%
pci_bridge32 738 35 737 35 -0.1% 739 35 0.1% 733 15 -0.7%

spi 954 15 957 15 0.3% 960 15 0.6% 951 15 -0.3%
systemcdes 855 15 859 -5 0.5% 865 -5 1.2% 855 15 0.0%
usb_funct 702 15 712 15 1.4% 704 15 0.3% 697 15 -0.7%

TSVs act as blockages for cell placement. When the TSV
pitch changes, the locations of these blockages change, and
therefore the circuit placement changes. Since the four layouts
in Table V are different, these delays should not be directly
compared. However, the portion of the delays, ∆Di, i ∈
{1, 2, 3}, can explicitly be attributed to the TSV+liner effects
(clearly, ∆D0 is zero in the TSVless layout). To compute each
∆Di, we first find the critical path delay for the corresponding
layout while ignoring TSV stress effects, then the critical path
delay when TSV stresses are added in, and we show the
percentage change. The liner effects are always considered
when the TSV is present. In Table VI, the columns∆D4,∆D5,
and ∆D6 represent the changes in delay of circuits TSV_5_3,
TSV_5_7, and TSV_5_10, respectively, with TSV+SiO2 liner.
The corresponding changes in circuits TSV_3_3 and TSV_1_3
are shown in columns denoted by ∆D7 and ∆D8. Note that
the critical path can (and often does) change with TSV stress.
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TABLE VI
CRITICAL PATH DELAY OF CIRCUITS WITH {TSV + SIO2 LINER} EFFECTS

Circuit TSV_5_3 TSV_5_7 TSV_5_10 TSV_3_3 TSV_1_3
T ∆D4 T ∆D5 T ∆D6 T ∆D7 T ∆D8

(◦C) (%) (◦C) (%) (◦C) (%) (◦C) (%) (◦C) (%)
ac97_ctrl 35 -0.8% 35 -1.4% 35 0.2% 35 0.2% 15 -0.2%
aes_core 35 1.0% 15 6.4% 35 -1.4% 15 1.4% 35 0.0%

des 15 0.9% 35 0.6% 35 -0.3% 15 0.6% 35 0.1%
ethernet 15 1.4% -5 -1.2% 15 -1.4% 15 -0.8% 15 -0.1%
i2c -125 0.5% 15 0.5% 15 0.5% 15 -0.2% 35 -0.2%

mem_ctrl 35 0.8% 15 1.3% 15 0.5% 15 0.6% 15 0.4%
pci_bridge32 35 -0.1% 35 0.1% 35 -0.8% 35 -0.4% 35 0.0%

spi 15 0.5% 15 1.2% 15 -0.4% 15 1.5% 15 0.1%
systemcdes -5 3.0% -5 1.8% 15 -0.1% -5 1.3% 15 0.0%
usb_funct -125 3.1% 15 1.6% 15 -0.9% 15 -0.4% 15 -0.1%

The improvements (negative changes) in critical path delays
indicate that even with the smaller, more aggressive KOZ used
here, we can mitigate the TSV effects on the critical path
delays to some extent by careful design choices during initial
circuit placement. Additionally, temperature dependence of the
circuits is also altered when TSV effects are taken into ac-
count. In Table VI, although circuits TSV_5_3, TSV_3_3, and
TSV_1_3 contain identical number of TSVs, the differences in
the changes in critical path delay of individual circuits can be
attributed to the difference in relative placement of the gates
with respect to the TSVs. The TSV_5_3 circuit shows a delay
variation of -0.8 to 3.1% while TSV_3_3 [TSV_1_3] circuit
shows a variation of -0.8 to 1.5% [-0.2 to 0.4%]. Thus, it can
be concluded that even with smaller dimensions of TSVs, the
stress effects on circuit timing cannot be ignored.
From Tables V and VI, it can be observed that there is a

wider range of delay variation in the TSV inserted layouts
with SiO2 liner as compared to the corresponding layouts
with BCB liner. For instance, in the TSV_5_7 layouts, the
critical path variations with SiO2 liner ranges from -1.4% to
6.4%. The corresponding variation within the same layout with
the BCB liner taken into account ranges from -1.3 to 4.3%.
Similar trends can be observed in the TSV_5_3 and TSV_5_10
layouts. The smaller magnitude of variations in using a BCB
liner indicates that the BCB liner is preferable over SiO2

liner from a circuit timing perspective. The improvement in
mechanical reliability in using BCB liner over SiO2 is already
shown in [7]. For these reasons, we shall focus on the layouts
with TSV+BCB liner for the rest of the discussion.

TABLE VII
DELAY CHANGES IN THE TSV_5_7 CIRCUITS WITH {TSV + BCB LINER}

Circuit DP1 ∆DP1 DP2 ∆DP2 DP3 ∆DP3 ∆TPS ∆TNS
(ps) (%) (ps) (%) (ps) (%) (ps) (ps)

ac97_ctrl 505 -1.0% 361 5.8% 347 -5.5% -1135 0
aes_core 513 4.9% 536 4.3% 423 -4.7% 13543 -269

des 1012 1.2% 783 4.0% 833 -3.1% 261 -10
ethernet 908 -0.7% 624 4.5% 596 -5.4% 23566 0
i2c 443 0.5% 344 4.4% 295 -5.1% 29 -2

mem_ctrl 979 0.9% 597 4.9% 573 -4.5% -327 -85
pci_bridge32 715 3.4% 566 4.8% 645 -4.2% -217 -1

spi 951 0.9% 800 3.5% 675 -4.0% -53 -26
systemcdes 837 3.3% 742 3.6% 485 -5.4% 1313 -13
usb_funct 684 2.9% 619 3.9% 360 -5.8% 4850 -22

In order to gain more insights into the circuit timing
behavior we further examine the TSV_5_7 circuits in detail.
Let P1 denote the critical path in the circuit with TSV effects.
Let P2 and P3 represent the paths that show maximum delay

degradation, and delay improvement, respectively, when TSV
effects are considered. For each circuit, Table VII describes
the extent of delay changes in these paths due TSV-induced
mobility variations. Here DP1, DP2 and DP3 denote the
nominal path delays of paths P1, P2, and P3, respectively,
and ∆DP1, ∆DP2, and ∆DP3, respectively, are the changes
in the delay of each of these paths due to TSV-stress-induced
variations. Note that DP1 and ∆DP1 together evaluate to the
actual critical path delay of the circuit show in column D2
of Table V. This table also shows the amount of change in
the circuit total positive slack (TPS) and the total negative
slack (TNS) when TSV effects are considered, are denoted by
∆TPS and ∆TNS, respectively. While computing slacks, we
consider the worst case path delay of the circuit without TSV
effects as the required time specification to be met. From the
table we can observe that:

• The actual change on the critical path denoted by ∆DP1

can be more than the change in the worst case path delay
observed at the circuit level shown in ∆D2 in Table V.

• A noncritical path can become timing-critical when TSV
effects are considered. This is observed by comparing
the delays in DP1 and its percentage change, ∆DP1 in
Table VII with the circuit critical path delay D2 and the
circuit level change, ∆D2 in Table V.

• The maximum delay degradation or improvement, given
by ∆DP2 and ∆DP3, respectively, among all paths
is significantly greater than the worst case path delay
changes observed at the circuit level.

• The negative [positive] changes in ∆TPS of the circuits
reveal that a majority of paths experience delay degra-
dation [improvement] and there is lower [more] positive
slack available in the circuit under TSV effects.

• The wide distribution in the ∆TNS indicates that many
non-critical paths in the circuit can violate timing con-
straints when TSV effects are taken into account.

Fig. 11 shows the color maps of the delay changes in PMOS
and NMOS transistors in the gates for the spi circuit. The
square white portions represent the TSV locations. Consistent
with Figure 5, we see that maximum delay changes are
observed in the horizontal and vertical regions between the
TSVs. Furthermore, it can be observed that minimum delay
variations occur in the regions diagonal to the TSVs. From
the scales, it can be noticed that PMOS transistors tend to
experience greater magnitude of delay variations than NMOS
transistors. The effect of threshold voltage improvements seen
in Fig. 8 suggests that for regions closer to the KOZ, mo-
bility degradations are attenuated to an extent while mobility
improvements are fortified. Since threshold voltage changes
vanish after a short distance beyond KOZ, mobility variations
are predominant at further distance from the KOZ. From
the Fig. 11, it can be concluded that path delay degradations
[improvements] are due to the gates placed in the horizontal
[vertical] regions of the TSV. The effects are opposite when
all the transistor channels are perpendicular to the [110] axis.
Short path variations: We examine the effects of TSV stress
on short paths and hold time constraints, since it is possible
for path delays to decrease under TSV effects, depending on

11



(a)

(b)
Fig. 11. spi (a) PMOS ∆Delay map (b) NMOS ∆Delay map.

TABLE VIII
MINIMUM PATH DELAY OF TSV_5_7 CIRCUITS WITH {TSV + BCB

LINER} EFFECTS
Circuit w/o TSV effects with TSV effects

Dmin(ps) # Violations Dmin(ps) # Violations
ac97_ctrl 22 998 22 984
aes_core 22 3802 22 3485

des 29 28 29 28
ethernet 22 2480 22 2448

i2c 22 80 22 73
mem_ctrl 22 500 22 449

pci_bridge32 22 4140 22 4045
spi 22 48 22 43

systemcdes 29 238 29 237
usb_funct 22 908 22 881

their placement relative to the TSVs. Table VIII shows the
minimum path delays and the number of violations observed
in the circuits without and with TSV effects. The minimum
path delay in each case is denoted by Dmin and we consider
a minimum path delay requirement of 50 ps to report the
number of path violations with and without TSV effects. We
can see that, although the minimum path delay Dmin remains
same in the two cases, the number of path violations under
TSV effects are reduced by different margins. Thus, during
sequential circuit design in the presence of TSVs, the impact
on minimum path delays should also be accounted for.
Layout guidelines: Based on this analysis, it has been demon-
strated that the delay changes within the circuit are very
significant, but their effects are attenuated at the outputs due
to the effect of the max operation in timing analysis, which
changes the critical path. This suggests that this freedom can
be exploited by layout tools to “hide” the delay increases.
Based on our analysis of stress patterns, we can draw the
following general layout strategies that optimize delay:

• In general, to minimize the variations in gate-delays, the
regions diagonal to the TSVs should be preferred.

• For paths that are timing-critical or near-critical, the gates
should be placed in the vertical [horizontal] regions be-

tween TSVs when transistors are parallel [perpendicular]
to the wafer flat.

• On paths with low minimum delay margins, the gates
should be placed in the horizontal [vertical] regions be-
tween TSVs when transistors are parallel [perpendicular]
to the wafer flat direction.

C. TSV-induced stress effects on leakage power

TSV-induced stress causes threshold voltage reductions in
NMOS/PMOS transistors as seen in Section IV-C. Thus, the
leakage power of the circuits are expected to degrade under
TSV effects. To evaluate TSV effects on leakage power, we
compare the leakage power of the TSV_7 layouts at room
temperature (25◦C), under TSV with SiO2/BCB liner effects,
with the TSVless layouts where the TSV-stress effects are not
present. In Table IX, L0 denotes the leakage power in the
TSVless layouts. Furthermore, the columns L1 and L2 [∆L1
and ∆L2] represent the actual leakage power [changes in the
leakage power] under TSV effects with SiO2 and BCB liners,
respectively. Obviously, here ∆L0 is zero.

In Table IX, the positive changes in ∆L1 and ∆L2 indicate
that leakage power is higher or degrades under TSV-induced
stress effects. This shows that if TSV-induced threshold volt-
age is not taken into account, leakage power of the circuit
is underestimated. The increase in leakage power when SiO2

[BCB] liner is taken into account varies from 3.7% to 5.7%
[2.5% to 3.8%]. Thus for the same TSV geometry and KOZ,
a TSV with SiO2 liner causes greater leakage degradations as
compared to the BCB liner case. Since the TSV-induced stress
with SiO2 liner has a greater magnitude than the BCB liner
case, the former liner case causes wider range of circuit timing
and leakage power variations than the latter case.

TABLE IX
LEAKAGE POWER OF TSV_5_7 CIRCUITS

Circuit w/o TSV {TSV + SiO2 liner} {TSV + BCB liner}
L0 (mW) L1 (mW) ∆L1 (%) L2 (mW) ∆L2 (%)

ac97_ctrl 14.04 14.75 5.1% 14.52 3.4%
aes_core 14.72 15.32 4.1% 15.13 2.8%

des 6.3 6.61 4.9% 6.51 3.3%
ethernet 31.8 32.97 3.7% 32.59 2.5%

i2c 1.58 1.67 5.7% 1.64 3.8%
mem_ctrl 12.44 12.95 4.1% 12.79 2.8%

pci_bridge32 15.82 16.503 4.3% 16.28 2.9%
spi 4.44 4.63 4.3% 4.57 2.9%

systemcdes 3.96 4.15 4.8% 4.09 3.3%
usb_funct 14.73 15.29 3.8% 15.11 2.6%

VII. CONCLUSION

Through silicon vias cause layout-dependent electrical vari-
ations in 3D-IC circuits. We have developed a holistic frame-
work that considers TSV-stress and other thermal effects on
transistor electrical parameters. The analytical stress model
presented in this work is shown to accurately capture the bi-
axial nature of the TSV-stress, with good agreement with FEA
models. The stresses and strains thus obtained are employed
to evaluate variations in gate and circuit level performance
metrics. A thorough analysis of path delays is presented and
the effects of TSV-stress on circuit leakage power is evaluated.
Finally layout guidelines are suggested for improving timing
performance in 3D-ICs.
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APPENDIX

The fundamental equations from which the stress distribu-
tions in Table II are derived are presented here.

A. Basic equations of 2D-axisymmetric formulation

The TSV is modeled as a long copper cylinder surrounded
by a thin liner and embedded in silicon at an annealing
temperature of 250oC. Under this scenario and due to the
underlying assumptions, only the radial displacement ur is
constrained (uθ = uz = 0) which under equilibrium satisfies
the following governing equation:

d2ur

dr2
+

1

r

dur

dr
−

ur

r2
= 0

where, r is the distance from the center of the TSV. Sub-
sequently, a general solution for the displacement can be
obtained and the strains [stresses] are obtain from strain-
displacement [Hooke’s Law] relationships. Thus, for a material
M ∈ [Cu, Si, Liner = SiO2/BCB] the axisymmetric stress
state in cylindrical coordinates in terms of a general solution
is given as:

• displacement:

uM
r = AMr +

BM

r
uM
θ = uM

z = const.

• strains:

ǫMrr =
∂uM

r

∂r
= AM −

BM

r2
;

ǫMθθ =
1

r

∂uM
θ

∂θ
+

ur

r
= AM +

BM

r2
;

ǫMzz =
∂uM

z

∂z
= 0

• stresses:

σM
rr = CM [AM −

BM (1− 2νM )

r2
− (1 + νM )αM∆T ];

σM
θθ = CM [AM +

BM (1− 2νM )

r2
− (1 + νM )αM∆T ];

σM
zz = νM (σM

rr + σM
θθ );C

M =
EM

(1 + νM )(1− 2νM )
.

(A.18)

Here, the terms AM , BM represent the constants that need to
be determined from the prescribed boundary conditions. The
term CM is a constant function of the mechanical parameters.
The terms EM , νM , and αM denote the Young’s modulus,
Poisson’s ratio, and the coefficient of thermal expansion (CTE)
of the material M , respectively. The term ∆T = T−Tref rep-
resents the temperature differential at an operating temperature
of T with respect to the copper annealing temperature Tref

(250oC). The values of physical constants used in this work
are given in Table I. The constants AM and BM are obtained
by satisfying the following boundary conditions:

I) at r = 0, uCu
r = 0.

II) at r = ∞, σSi
rr = 0 and σSi

θθ = 0.
III) at r = a, uCu

r = uLiner
r .

IV) at r = a, σCu
rr = σLiner

rr .
V) at r = b, uLiner

r = uSi
r .

VI) at r = b, σLiner
rr = σSi

rr .

B. Boussinesq problem

Consider a uniform normal pressure P applied on the sur-
face of a homogeneous half-space on a circular area of radius
a. We are interested in the stress distributions outside this
pressed area (silicon). For a material M the basic displacement
distributions are given by [8]:

ur = −
(1− 2νM )(1 + νM )

2EM
P
a2

r

uz =
4
(

1−
(

νM
)2
)

πEM
Pr

[

K1
(a

r

)

−

(

1−
a2

r2

)

K2
(a

r

)

]

Here r is the distance on the surface from the center
of the pressed area. The terms νM and EM represent the
Poisson’s ratio and the Young’s modulus of the material M
respectively. The terms K1(a/r) and K2(a/r) denote the
complete elliptical integrals of the first kind and the second
kind, respectively. They can expanded by an infinite series in
powers of the factor a/r. For a/r < 1, the elliptical integrals
and their derivatives tend to zero. The corresponding strain
components are given by:

ǫrr =
∂ur

∂r
=

(1− 2νM )(1 + νM )

2EM
P
a2

r2

ǫθθ =
ur

r
= −

(1− 2νM )(1 + νM )

2EM
P
a2

r2

ǫzz =
∂uz

∂z
= 0

ǫrz =
∂uz

∂r
+

∂ur

∂z
→ 0 for r > a

ǫrθ = ǫθz = 0

From Hooke’s Law, we obtain the stress components:

σrr =
1− 2νM

2
P (

a2

r2
)

σθθ = −
1− 2νM

2
P (

a2

r2
)

σzz = τrz = τrθ = τθz = 0 (A.19)
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