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Graphene

 Graphene is single atomic sheet of sp2 bonded carbon 

that has many unique and remarkable properties:

 One of the most interesting applications for graphene is for use 

in sensors  nearly all of these properties can be useful.

High mobility (> 100,000 cm2/Vs)

Zero band gap – symmetric band 

structure

Transparent  (97.7% transmitting for 

single layer)

High mechanical strength (> 10x 

stronger than steel)

High surface sensitivity
Source: AlexanderAlUS, Wikimedia Commons.
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 Different transduction mechanisms for graphene sensors:

Resistance change Noise spectrum change

Heterodyne mixing
 Despite the variety of sensor 

concepts, nearly all previous 

sensor demonstrations have 

required wired connections to 

the graphene.

 Is there a way to realize a truly 

wireless sensor using graphene?

S. Rumyantsev, et al., Nano Lett. 12, 2294 (2012).R. Pierce, et al., Sens. & Act. B (2011).

Graphene Sensors

G. S. Kulkarni, et al., Nature Commun. 5, 4376 (2014).
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Quantum Capacitance in Graphene

E

DOS

E

CQ

 When the Fermi-level is near the Dirac point, the quantum 

capacitance is low.

EF

 Quantum capacitance changes when electron or hole 

concentration in graphene is changes:

CQ ~ q2DOS
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Quantum Capacitance in Graphene

E

DOS

E

CQ

EF

 When Fermi-level moves away from the Dirac point, quantum 

capacitance increases.

 Quantum capacitance changes when electron or hole 

concentration in graphene is changes:

CQ ~ q2DOS
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Quantum Capacitance in Graphene

Metal

SiO2

graphene

Cox

CQ

 Capacitance in a metal-oxide-graphene capacitor is the 

series combination of oxide and quantum capacitances:

EOT = 4 nm

CQCOX

CTOT

TR = 2.1
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Quantum Capacitance in Graphene
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 Capacitance in a metal-oxide-graphene capacitor is the 

series combination of oxide and quantum capacitances:

S. J. Koester, Appl. Phys. Lett. 99, 165105 (2011).
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111   oxQtot CCC

Quantum Capacitance in Graphene
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EOT = 0.5 nm
CQCOX

CTOT

TR = 7.5

 Capacitance in a metal-oxide-graphene capacitor is the 

series combination of oxide and quantum capacitances:

S. J. Koester, Appl. Phys. Lett. 99, 165105 (2011).

 Metal-oxide-graphene capacitors should act as variable capacitors 

(varactors). Can this be observed experimentally?
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Graphene Varactor Wireless Sensors

 Adsorbed molecules can modulate the carrier concentration 

and thus the quantum capacitance in graphene varactors:

 Advantages: 
− Passive, wireless operation.

− Small size due to high capacitance density.

− Adaptability  can be functionalized to sense different targets.

M. Lei, et al., Diabetes Tech. & Therapeutics (2006).

Graphene varactor

S. J. Koester, Appl. Phys. Lett. 99, 165105 (2011).
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 Fabrication process for graphene varactors:

Graphene Varactors

(1) Gate recess etch (2) Gate metal deposition + HFO2 ALD

(3) Graphene transfer and etch (4) Graphene contact metallization
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 Fabricated devices using optical 

lithography and transfer of CVD 

graphene:

Gate contact
Graphene 
contactGrapheneGate contact

SiO2

(a)

Graphene

Graphene

(b)

 Typical devices typically, have Lg

= 2-5 m, RC = 1-2 W-µm, tHfO2 = 7-

20 nm, Area = 500-10,000 m2.

Gate contact
Graphene 
contactGrapheneGate contact

SiO2

(a)

Graphene

Graphene

(b)

M. A. Ebrish, et al., Appl. Phys. Lett. 100, 143102 (2012).

Ti/Pt Ti/Au

SiO2

50 m

M. A. Ebrish, et al., EMC, 2013. 
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 Tuning range (TR) improves with decreasing oxide thickness.    

TR values as high as ~ 1.6-to-1 achieved.  Limited by disorder.

 Performed oxide-thickness scaling experiments:
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Graphene Varactor C-V Characteristics

2.7 nm

EOT = 4.1 nm

EOT = 4.1 nm

EOT = 2.7 nm

EOT = 1.9 nm

ModelExperiment
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 Effective temperature model provides excellent agreement 

with experimental data. T0 values as low as 283 K obtained, 

corresponding to potential fluctuations as low as 42 mV.

 Results of fitting to effective temperature model for disorder:

Model Fitting
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M. A. Ebrish, et al., ACS Appl. M & I, 6, 10296 (2014).
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Graphene Varactor Uniformity

 Fabricated and tested > 100 graphene varactors in a single 

device run.  Measured capacitance vs. voltage and 

determined capacitance tuning range and Dirac voltage:
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 Over 97% yield observed.  Tight distribution observed for tuning 

range and Dirac voltage values.  Results show graphene varactors 

can be made with high yield and uniformity.
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Wireless H2O Sensing

 Variable capacitance can readily be observed, but can we 

really make a wireless sensor?

 Constructed a simple H2O 

vapor sensing system 

known to cause positive 

Dirac-point shift in graphene.

 Wire-bonded graphene 

varactors and connected in 

series with a an inductor to 

form an LC resonator.

D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).
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 Measured varactors before inductor integration to determine 

capacitance characteristics:

D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).

16

 Tuning range 1.18-to-1.

 Large amount of variability 

due to very large size of 

device.

Wireless H2O Sensing

Dry
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 Expectation is to see p-

type shift with H2O.

 C ↑, frequency ↓.
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D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).

Wireless H2O Sensing

 Measured varactors before inductor integration to determine 

capacitance characteristics:
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 Resonant frequency 

initially about 18 MHz 

in dry air.

 In humid air (~ 95% 

RH), resonant 

frequency shifts 

lower by ~ 1 MHz.

 Resonant frequency 

recovers upon re-

exposure to dry air.
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Impedance 

Analyzer 

Read inductor Sensor inductor

 Utilized “phase dip” technique to determine 

resonant frequency of sensor circuit:

fres

D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).

Wireless H2O Sensing
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 Measured frequency shift for different humidity sequences:
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 Random humidity 

sequence also 

performed.  Baseline 

drift observed to 

saturate.  

19

D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).

Wireless H2O Sensing

 Similar dependence 

found for up / down 

humidity sequences.   

Small baseline drift 

observed.
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 Summary of concentration dependence of frequency shift:

 Results indicate that reliable wireless humidity sensing can 

be achieved. 

20

D. A. Deen, et al., IEEE Sensors J. 14, 1459 (2014).

Wireless H2O Sensing
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Agilent B1500A

Thermocouple

humidity 
readout

Air or N2

desiccant

flow 

valve

s

rotameters

condensation 

trap

H2O 

bubbler

DUT

Commercial RH sensor

 Used wired C-V measurements as a function of relative 

humidity (RH) of carrier gas:

Flow chamber

 Wired sensing 

measurements 

provide more 

information about 

sensing mechanism 

that wireless 

measurements.

Direct H2O Capacitive Sensing

21

E. J. Olson, et al., ACS Appl. M & I 7, 25804 (2015).
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Direct H2O Capacitive Sensing

 Summary of C-V measurements for varying RH in air:
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 Capacitance change not only 

due to “horizontal” shift, but 

also “vertical” shift.

E. J. Olson, et al., ACS Appl. M & I 7, 25804 (2015).

22

1

2 3

4

1

2
3

4

1

2 3

4



© 2016 University of Minnesota                                                         S. J. Koester, May, 2016 

AFM Characterization
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CVD graphene

 Humidity increases separation between graphene and HfO2, by 

about ~ 0.1 nm for 60% RH.

 Humidity-dependent atomic force microscopy (AFM):

23

E. J. Olson, et al., ACS Appl. M & I 7, 25804 (2015).
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Understanding H2O Effects

 Explanation of mechanism provided by DFT calculations:

 Higher dielectric constant of H2O compared to vacuum 

reduces EOT, despite larger separation, leading to higher 

capacitance.

Dry Humid

E. J. Olson, et al., ACS Appl. M & I 7, 25804 (2015).

24



© 2016 University of Minnesota                                                         S. J. Koester, May, 2016 

GOx Functionalization

 AFM on graphene surface before functionalization:

Graphene

M. A. Ebrish, et al., ACS Appl. M & I, 6, 10296 (2014).
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GOx Functionalization

 AFM on graphene surface after functionalization:

 Topography consistent with published size of glucose oxidase.

 Do the graphene varactors still work after functionalization?

M. A. Ebrish, et al., ACS Appl. M & I, 6, 10296 (2014).

Graphene

Linker

GOx

26
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Effect of Surface Functionalization

 Studied effect of surface functionalization on graphene 

varactor properties:

 Functionalization increases maximum capacitance and also 

increases the tuning range.

Vacuum – Before 

Functionalization

In Air - Before 

Functionalization

In Air – Fully 

Functionalized

M. A. Ebrish, et al., ACS Appl. M & I, 6, 10296 (2014).
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 Modeling used to extract EOT and disorder parameter, T0:

 After functionalization, intercalated H2O remains  EOT unchanged.

 After functionalization, linker displaces surface H2O  reduced disorder.

28

M. A. Ebrish, et al., ACS Appl. M & I, 6, 10296 (2014).
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Wireless Sensor Applications

29

Embedded passive 
dosimeter

Implantable biosensors:

- Glucose 

- Bacteria

- Dopamine

- Cancer biomarkers 

- Oxidative stress biomarkers 

Food safety Structural monitoring

Source: E. L. Tan, IEEE Sens. Conf., (2007).

Personal chemical / radiation monitoring

Sensor

Image source: 

www.saheart.com.au

Artificial Pancreas

 Wide range of applications in healthcare and beyond 

where ultra-small size and wireless readout needed:
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 Graphene-based variable capacitors (varactors) using the 

quantum capacitance effect can readily be achieved 

experimentally with high yield and uniformity.

 Demonstrated wireless vapor sensors using water as a test 

analyte.  Also studied effect of water intercalation on 

varactor properties.

 Characterized functionalization of graphene for glucose 

sensing and demonstrated improved varactor operation 

compared to devices in air or vacuum.

 Graphene wireless sensors are a powerful platform for 

a wide range of sensing applications in healthcare and 

beyond.

Conclusions

30
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