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1. Introduction.

This paper is concerned with a modern presentation of the basic theory of a�ne ge-
ometry in the plane and related questions of invariant approximations of a�ne di�erential

invariants. Although a�ne geometry does not have as long or distinguished a history as ei-

ther Euclidean or projective geometry, its recent importance in the rapidly developing area

of computer vision warrants a modern reassessment of the basics. A�ne geometry received
its �rst comprehensive treatment in the seminal work of Blaschke, [6], who was inspired by

Klein's general Erlanger Programm, that provided the foundational link between groups

and geometry, and Einstein's theory of relativity.(The latter motivation, though, is, to a
modern thinker, more mysterious.) A�ne geometry is based on the a�ne, or unimodular
a�ne group. In the plane, a�ne geometry is the \geometry of area", just as Euclidean
geometry is the geometry of distance. Besides the basic work of Blaschke, we refer the
reader to [22], and the more modern texts [14], [27] for a more comprehensive treatment
of the subject.

Even though our primary focus is mathematical, a key motivation for pursuing this
line of research comes from certain practical issues from computer vision. Indeed, certain
visually-based symmetry groups and their associated di�erential invariants have, in recent
years, assumed great signi�cance in the study of computer vision and image processing.
One such problem is that of �nding and recognizing a planar object (which may be oc-
cluded), whose shape has been transformed by a geometric viewing transformation (that
is, an element of the projective group acting on the plane). This common type of shape
recognition task naturally brings in the use of invariants under various groups of view-
ing transformations. Research in model based shape analysis and recognition has already
resulted in many useful products, such as optical character recognizers, handwriting recog-
nition systems for computers, and printed-circuit board visual inspection systems. Space
limitations preclude us from discussing direct applications of our results to computer vision,
which shall be dealt with in subsequent papers.

In the practical application of invariant theory to computer vision, a robust and ef-

�cient numerical computation is crucial. We are interested in numerical approximations
to di�erential invariants which are themselves invariant under the transformation group in

question. This will enable us to compute the \di�erential invariant signatures" for plane
curves in a manner which will be una�ected by group transformations. The ideal approxi-
mation will be geometric, in the sense that it can be computed by specifying a �nite number
of points, and hence its invariance means that it must be re-expressed in terms of the joint

invariants of the group in question. Thus our general question is how to systematically
utilize joint invariants to approximate di�erential invariants. One motivation comes from
the results of M. Green [11], generalized in [17], that relates the number of di�erential
invariants of curves to the number of joint invariants of the group action; the numerological

implications of Green's results are thus to be given an analytical justi�cation.
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The construction of e�cient and practical numerical approximations to di�erential in-

variants is a nontrivial problem in that the more important di�erential invariants, such as
the a�ne and projective curvatures, depend on high order derivatives of the parametrizing

functions of the curve. The theory of \noise resistant" di�erential invariants developed

by Weiss, [29], provides one approach to this problem. Weiss replaces the higher order

di�erential invariants by lower order derivatives, but, in our view, this is only a partial
resolution of the di�culty. In our approach, a fully noise resistant �nite di�erence ap-

proximation to the a�ne (and Euclidean) curvatures are proposed. Another approach to

invariant numerical schemes for solving partial di�erential equations having a prescribed

symmetry group appears in the work of Dorodnitsyn, [7], [8].

Our approach to approximating di�erential invariants and invariant di�erential equa-
tions is governed by the following philosophy. Consider a group G acting on a space E.

We are particularly interested in how the geometry, in the sense of Klein, induced by the

transformation group G applies to (smooth) curvesy � � E. A di�erential invariant I of G
is a real-valued function, depending on the curve and its derivatives, which is una�ected
by the action of G. The simplest example is the Euclidean curvature of a plane curve,
which is invariant under the Euclidean group consisting of translations and rotations. The
theory of di�erential invariants dates back to the original work of S. Lie, [16]; see [17]
for further historical remarks and a modern exposition. In order to construct a numerical
approximation to the di�erential invariant I, we use a �nite di�erence approach and use a
mesh or discrete sequence of points Pi 2 �, i = 0; 1; 2; : : :, to approximate the curve, and
use appropriate combinations of the coordinates of the mesh points in our approximation
scheme. The approximation will be invariant under the underlying group G, and hence its
numerical values will not depend on the group transformations, provided it depends on the
joint invariants of the mesh points. In general, a joint invariant of a group action on E is a
real valued function J(P1; : : : ; Pn) depending on several points Pi 2 E which is una�ected
by the simultaneous action of G on the points, so J(g�P1; : : : g�Pn) = J(P1; : : : ; Pn). Again,
the simplest example is provided by the Euclidean distance de(P;Q) between points in the
plane, which depends on two points. Thus, any G-invariant numerical approximation to

a di�erential invariant must be governed by a function of the joint invariants of G. For

instance, any Euclidean invariant approximation to the curvature of a plane curve must be
based on the distances between the mesh points. Such a formula is known | see Theorem
3.2 below. In this paper, we illustrate this general method by deriving a fully a�ne invari-
ant �nite di�erence approximation to the a�ne curvature of a plane curve. The resulting

Taylor series expansion leads us to a general conjecture on the approximation of group-
invariant curvatures for arbitrary regular transformation groups in the plane. We will also
indicate some methods for determining similar approximations to higher order invariants.

Motivated by such questions, in this paper we will give a detailed discussion of
equia�ne geometry, which includes new geometric approaches to the equia�ne normal

and curvature. We discuss �nite di�erence approximations of Euclidean and a�ne di�er-
ential invariants. Finally, we provide some new, remarkable solutions to the a�ne curvature

ow. Even though, this paper is essentially devoted to the derivation of a number of new

y More generally, we can develop the same theory for surfaces or arbitrary submanifolds of the

space E. In this work, just for simplicity, we restrict our attention to curves.
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results in the theory of a�ne invariants, we will also provide a number of background

results to make this work accessible to the largest possible audience and mathematicians
and researchers in computer vision, so that the paper will also have a tutorial avor.

2. Some Fundamental Concepts.

When one treats Euclidean or a�ne geometry from the analytic standpoint, one must

deal with two distinct spaces: the space of points (the Euclidean space proper), denoted

E, and the �nite-dimensional realy vector space TE consisting of translations (or displace-
ments) of E. Within the space of points, there is one main operation | subtraction:

Given two points P;Q 2 E, the object v = Q�P is the unique displacement vector in TE

mapping E onto itself that takes the point P to the point Q. The group of transformations

of E that preserve this structure is known as the a�ne group, denoted by A(n) or A(n; ),
where n is the dimension of E. An element of A(n) consists of a linear transformation

A 2 GL(n), which operates on TE, coupled with a displacement vector b 2 TE; the full
action on the point space takes the form P 7! AP + b. Note that this induces the purely
linear action v 7! Av on the displacement vector space, and thus underlies the necessity
of distinguishing between E and TE.

An a�ne coordinate system on E is prescribed by an a�nely independent set of points
(P0; P1; : : : ; Pn) in E, meaning that the displacment vectors ei = Pi � P0 form a basis of
E. A displacement vector v =

P
k y

kek 2 TE is identi�ed with the coordinate n-tuple
(y1; : : : ; yn), while we associate points P 2 E with their relative displacement vectors
vP = P �P0 =

P
i x

iei. In this way, we identify the a�ne group A(n) ' GL(n) n with
the semidirect product of the general linear group with the displacement or translation
subgroup.

If TE has dimension n, then the space
Vn

TE of volume forms on E is a one-
dimensional vector space. The a�ne transformations act on

Vn
TE according to the

determinantal representation (A; b) 7! detA. Given two sets of points (P0; P1; : : : ; Pn),
(Q0; Q1; : : : ; Qn), not necessarily distinct, such that (P0; P1; : : : ; Pn) is an a�nely inde-
pendent set, there is a unique a�ne endomorphism of E that maps Pi onto Qi for each
1 � i � n. Its homogeneous linear part, i.e., the linear endomorphism of TE taking each
vi = Pi � P0 to wi = Qi � Q0, has a determinant that, if nonzero, expresses the ratio

of (oriented) volumes of the n-parallelotope determined by the w's to that determined by

the v's, or, equivalently, the ratio of volumes of the n-simplex spanned by the Q's to that
spanned by the P 's. Thus the full a�ne group A(n) preserves the ratios between volumes
of subsets of E, or of TE, while volumes themselves are relative invariants of the group.

An orientation on TE is prescribed by the choice of one of the two connected com-
ponents of

Vn
TE n f0g; the orientation-preserving a�ne transformations are those having

positive determinant. The notion of volume on E is �xed by specifying what constitutes
a \unit volume", which is represented by a �xed form 
0 = e1 ^ e2 ^ � � � ^ en 2 Vn

TE,
where fe1; : : : ; eng form a basis of TE, and the volume of the n-paralleltope spanned by

the ei's is normalized to be 1. In this case, the the oriented volume of the parallelotope

y One can, of course, develop much of the general theory over the complex numbers or other

�elds. Again, for simplicity, we restrict our attention to real geometry throughout.
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determined by the displacement vectors vi =
P

k y
k
i ek, i = 1; : : : ; n, is calculated by the

fundamental determinantal bracket expression

[v1; : : : ; vn] = det

��������
y11 y21 � � � yn1
y12 y22 � � � yn2
...

...
. . .

...

y1n y2n � � � ynn

��������
: (2:1)

Similarly, the volume of the n-simplex having vertices P0; P1; : : : ; Pn in E, with Pi having
coordinates (x1i ; : : : ; x

n
i ) with respect to some a�ne coordinate system is given by

�(P0; P1; : : : ; Pn) =
1

2n
[P0; P1; : : : ; Pn]; (2:2)

where

[P0;P1; : : : ; Pn] = [P1 � P0; P2 � P0; : : : ; Pn � P0] =

= det

��������
x11 � x10 x21 � x20 � � � xn1 � xn0
x12 � x10 x22 � x20 � � � xn2 � xn0

...
...

. . .
...

x1n � x10 x2n � x20 � � � xnn � xn0

��������
= det

����������

x10 x20 � � � xn0 1
x11 x21 � � � xn1 1
x12 x22 � � � xn2 1
...

...
. . .

...
...

x1n x2n � � � xnn 1

����������
:

(2:3)

Note particularly that, in an n-dimensional a�ne space, the respective bracket expressions
(2.1), (2.3), depend on n displacement vectors, but n+ 1 points. Restricting the group of
a�ne transformations to those that preserve volume produces the so-called equia�ne, or
unimodular a�ne transformation group, denoted by SA(n) ' SL(n) n, consisting of all
pairs (A; b) where detA = 1, and b 2 TE. The associated equia�ne geometry in E and
TE will form the principle subject of this paper.

In Euclidean geometry, one endows the displacement vector space TE with the addi-
tional structure, determined by a norm v 7! jvj. The geometric properties of the Euclidean

norm come from the fact that it is characterized as the square root, jvj = p
v � v, of a posi-

tive de�nite quadratic form, associated to a symmetric, bilinear, scalar product v �w. The
norm on the displacement space TE induces the Euclidean distancey de(P;Q) = jQ � P j
between pairs of points in E. The group of Euclidean motions is the set of all transfor-
mations of E that preserve the norm in TE. It has the form E(n) ' O(n) n, being a

semidirect prodcut between the orthogonal group, consisting of rotations and reections,
along with the translations. Choosing an orientation, which amounts to a choice of an or-
thonormal basis fe1; : : : ; eng of TE, restricts us to the proper (or unimodular) Euclidean
motions of E, which excludes the reections, and so is given by SE(n) ' SO(n) n.

In general, given a group G acting on a space M , by an invariant of G we mean a
real-valued function I:M ! which is una�ected by the group action: I(g � x) = I(x)

y We shall consistently employ the subscript e for Euclidean invariant quantities, so as to

distinguish them from the a�ne and equia�ne invariants that are the primary focus of this paper.

5



for all x 2 M , g 2 G. For example, the norm jvj de�nes an invariant for the Euclidean

group action on the displacement space TE. On the other hand, since the action on space
of points includes the translations, there are no (non-constant) invariants of the Euclidean

group action on E itself. In this case, we must look at invariants depending on more

than one point. In general, a joint invariant of a group action is an invariant of the

product action of G on the m-fold Cartesian product M � � � � �M . Thus I(x1; : : : ; xm)
is a joint invariant if and only if I(g � x1; : : : ; g � xm) = I(x1; : : : ; xm) for all g 2 G.

The simplest joint invariant of the Euclidean group acting on E is the distance function

de(P;Q). In fact, according to [30], every joint invariant of the Euclidean group can be

written in terms of the distances between pairs of points. For example, the inner product

v � w = (P � P 0) � (Q �Q0) between two displacement vectors can be re-expressed via the

Law of Cosines: v � w = 1
2

�jv �wj2 � jvj2 � jwj2	. Further, since the Euclidean group
is a subgroup of the a�ne group, any (equi-)a�ne invariant is automatically a Euclidean

invariant, and hence can also be rewritten in terms of Euclidean distances. Thus, the
volume j�(w1; : : : ; wn)j of the parallelotope �(w1; : : : ; wn) spanned by n displacement
vectors fw1; : : : ; wng 2 TE has its square rationally determined by the mutual scalar
products:

j�(w1; : : : ; wn)j2 = det(wi �wj): (2:4)

In the case of the unimodular a�ne group, there are no non-constant invariants on
either E or TE. The simplest joint invariant associated with the equia�ne group action on
TE is the fundamental bracket (2.1) governing the volume element. See Weyl [30], for a
proof that the brackets constitute a complete set of joint a�ne invariants for displacement
vectors, meaning that any equia�ne joint invariant can be written as a function of the
various brackets between sets of n displacement vectors. We note that the brackets are
not algebraically independent; their functional inter-relationships are completely governed
by the fundamental system of syzygies

nX
i=0

(�1)k[v0; : : : ; bvk; : : : ; vn] [vk; w1; : : : ; wn�1] = 0; (2:5)

valid for any set of displacement vectors v0; : : : ; vn, w1; : : : ; wn�1. Similarly, the funda-
mental joint invariants of the action of SA(n) on E itself are the simplex volumes (2.2)
prescribed by n+1 points in E. Besides the syzygies induced by the displacement bracket

syzygies (2.5), the point bracket expressions are subject to an additional linear syzygy

[P0; P1; : : : ; Pn] =

nX
i=0

[P0; : : : ; Pk�1; Q; Pk+1; : : : ; Pn]; (2:6)

valid for any n + 2 points P0; P1; : : : ; Pn; Q. Finally, in the case of the full a�ne group
A(n), relative ratios of brackets (or volumes) provide the required joint invariants.

3. Euclidean Curvature and Curve Flows.

We now specialize to Euclidean geometry of the plane, so that E denotes the two-
dimensional Euclidean space, with displacement space TE. If we introduce coordinates on
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E via the choice of an originO 2 E and orthonormal basis e1; e2 of TE, then each point A 2
E can be identi�ed with its coordinates (xA; yA) 2 2, such that A�O = xAe1+yAe2. The
basic equi-a�ne invariant geometric quantity is the area of a displacement parallelogram

[v;w] = v ^ w = det

���� xv yv
xw yw

���� : (3:1)

We note that, in accordance with the general theory, the a�ne-invariant area of the triangle

having vertices A;B;C, which is

�(A;B;C) = 1
2
[A;B;C] = 1

2
(B �A) ^ (C �A) =

1

2
det

������
xA yA 1
xB yB 1

xC yC 1

������ ; (3:2)

cf. equations (2.3), (2.2), can be written in terms of their Euclidean distances a = de(A;B),
b = de(B;C), b = de(C;A), via the well-known semi-perimeter formula:

[A;B;C] =
p
s(s � a)(s � b)(s � c); where s = 1

2
(a+ b + c): (3:3)

Consider a regular, smooth plane curve � � E of class C2. The Euclidean curvature
of � at a point B 2 � is de�ned as the reciprocal �e = 1=r of the radius of the osculating
circle to � at B. Let us choose an a�ne coordinate system (x; y) on E, and parametrize
the curve by a pair of smooth functions x(r) = (x(r); y(r)), where the parameter r ranges
over an interval I � . In terms of the parametrization, then, the Euclidean curvature
has the well-known formula

�e =
xr ^ xrr
jxrj3

; (3:4)

in which subscripts denote derivatives. In particular, if we choose a coordinate system
such that the part of � near B is represented by the graph of a function y = u(x), then

�e =
uxx

(1 + u2x)
3=2

: (3:5)

In this form, �e describes the simplest di�erential invariant of the Euclidean group in the
plane, [17]. The Euclidean arc length parameter is de�ned as dse =

p
1 + u2x dx, the right

hand side representing the simplest invariant one-form for the Euclidean group. The arc
length integral

R
�
ds determines the Euclidean distance traversed along the curve. Higher

order di�erential invariants are provided by the successive derivatives of curvature with
respect to arc length. In fact, the functions

�e;
d�e
dse

;
d2�e
ds2e

;
d3�e
ds3e

; : : : ; (3:6)

provide a complete list of di�erential invariants for the Euclidean group, in the sense that
any other di�erential invariant can be (locally) expressed as a function of the fundamental

di�erential invariants (3.6).
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Figure 1. Euclidean Curvature Approximation.

As a �rst illustration of our general philosophy of approximating di�erential invariants
by joint invariants, we describe how to use standard geometrical constructions to obtain a
numerical approximation to the Euclidean curvature that is una�ected by rigid motions,
so that any translated or rotated version of the curve will provide precisely the same
numerical approximation for its curvature. We �rst approximate the parametrized curve
x(r) = (x(r); y(r)) by a sequence of mesh points Pi = x(ri), not necessarily equally spaced.
Our goal is to approximate the Euclidean curvature of � by a Euclidean invariant numerical
approximation based on the mesh points. Clearly, because the curvature is a second order
di�erential function, the simplest approximation will require three mesh points. (A deeper,
but related reason for this is because the joint invariants of the Euclidean group are the
distances between two points, so that one can only produce numerical joint invariant
approximations by comparing the joint invariants involving three or more points.)

With this in mind, we now derive the basic approximation formula for the Euclidean

curvature. Let A;B;C be three successive points on the curve � such that the Euclidean
distances are a = de(A;B), b = de(B;C), c = de(A;C), which are assumed to be small;
see Figure 1. The key idea is to use the circle passing through the points A;B;C as our
approximation to the osculating circle to the curve at B. Therefore, the reciprocal of its

radius r = r(A;B;C) will serve as an approximation to the curvature of the curve at B.

We can apply Heron's formula to compute the radius of the circle passing through the
points A, B, C, leading to the exact formula

e�e(A;B;C) = 4
�

abc
= 4

p
s(s � a)(s � b)(s � c)

abc
; (3:7)

cf. (3.3), for its curvature. Since formula (3.7) only depends on the Euclidean distances

between the three points, it provides us with a completely Euclidean invariant numerical
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approximation to the curvature of � at the middle point B. In other words, the approxi-

mation for two curves related by a Euclidean motion will be identical .

We now need to analyze how closely the numerical approximation e�e(A;B;C) is to
the true curvature �e(B) at the point B. Our analysis is based on the following series

expansion of the distance c in terms of the other two distances a and b, which are assumed

small.

Theorem 3.1. Let A;B;C be three successive points on the curve �, and let

a = de(A;B), b = de(B;C), c = de(A;C) be their Euclidean distances. Let �e = �e(B)

denote the Euclidean curvature of � at the middle point B. Then the following expansion

is valid:

c2 = (a + b)2 � 1

4
ab(a + b)2�2e +

1

6
ab(a + b)2(a � b)�e

d�e
dse

�

� 1

24
ab(a + b)(a3 + b3)�e

d2�e
ds2e

� 1

36
ab(a + b)2(a� b)2

�
d�e
dse

�2

�

� 1

64
ab(a + b)2(a � b)2�4e + � � � :

(3:8)

The omitted terms involve powers of the distances a, b of order � 7.

Proof : This is found by a direct, albeit complicated, Taylor series expansion. We
represent the curve between A and C as the graph of y = u(x), which, assuming the three
points are su�ciently close, can always be arranged via a Euclidean motion. The points
can be assumed to be A = (h; u(h)), B = (0; 0 = u(0)), and C = (k; u(k)), with h < 0 < k

if B is the middle point. We then expand c =
p
(k � h)2 + (u(k)� u(h))2 as a Taylor

series in powers of h, k. Then we substitute for h and k their expansions in powers of a, b,
obtained by inverting the Taylor series for a =

p
h2 + u(h)2, and b =

p
k2 + u(k)2. (The

computations are quite complicated, and were done with the aid of the computer algebra
system Mathematica.) Q.E.D.

Remark : Since a, b, and c are Euclidean invariants, every coe�cient of the powers
ambn in the full expansion of c must be a Euclidean di�erential invariant, and hence a
function of �e and its arc length derivatives. The precise formulas for the coe�cients were

found by inspection | we do not know the general term in the expansion (3.8).

We now substitute the expansion (3.8) into Heron's fomula (3.7) to obtain the following
expansion for the numerical approximation.

Theorem 3.2. Let A;B;C be three successive points on the curve �, and let a,

b, c be their Euclidean distances. Let �e = �e(B) denote the Euclidean curvature at B.

Let e�e = e�e(A;B;C) denote the curvature of the circle passing through the three points.
Then the following expansion is valid:

e�e = �e +
1

3
(b � a)

d�e
dse

+
1

12
(b2 � ab + a2)

d2�e
ds2e

+ � � � : (3:9)

In particular, if we choose the points to be equally spaced, meaning that a = b (not
that their x coordinates are equally spaced), then the �rst error term in the approximation

(3.9) is of second order.
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Remark : The same general method can also be used to �nd Euclidean-invariant nu-

merical approximations for computing the higher order di�erential invariants d�e=dse, etc.,
using more points and more distances, as needed.

In recent years, the analysis and geometrical and image processing applications of

curve ows based on curvature has received a lot of attention. We consider a one-parameter

family of curves x(�; t) that satisfy a geometric evolution equation. Here t represents either

the time, or, in computer vision applications, a scale parameter. The partial di�erential
equation governing the time evolution of the curve family is assumed to be geometric,

meaning that it does not depend on the precise mode of parametrizing the family of curves,

but, rather, on purely intrinsic geometric quantities associated with the curve at a give

time. The most fundamental of these geometric ows is the Euclidean curve shortening

ow, in which one moves in the normal direction to the curve according to its Euclidean
curvature:

dx

dt
= �ene: (3:10)

Here ne denotes the Euclidean inward normal. When the curve is given as the graph of a
function y = u(x; t), the Euclidean curve ow takes the form:

ut =
uxx

1 + u2x
: (3:11)

This ow has the e�ect of shrinking the Euclidean arc length of the curve as rapidly as
possible, cf. [10]. The Euclidean curve shortening ow is of great interest in di�erential
geometry, computer vision, and other �elds, and has been studied by many authors. See
[3] for applications to image enhancement, and [13] for applications to the theory of shape
in computer vision. Clearly the ow (3.10) is invariant under the Euclidean group acting
on the plane, and so a fully invariant numerical integration must rely on Euclidean joint
invariants, meaning intermesh distances.

Two particular types of solutions are of immediate interest. First, if the initial curve
is a circle, with contstant curvature, then it remains circular, with its radius satisfying
rt = 1=r, so that the curve shrinks to a point in a �nite time. The results of Gage and
Hamilton [9], and Grayson [10] show that any smooth, embedded, closed curve converges

to a round point when deforming according to the ow (3.10). This means that, �rst, if the
intial curve is not convex, it becomes convex, and then the resulting convex curve shrinks
to a point, asymptotically becoming circular before disappearing.

A second class of solutions are the \grim reapers" which are found by assuming that
the curve has constant velocity. Taking the velocity to be in the vertical direction and

using the graphical form (3.11) means that we assume that ut = c where c is a constant.
The resulting Euclidean-invariant ordinary di�erential equation

uxx
1 + u2x

= c

can be readily integrated, leading to the general form

u(x; t) = �1

c
log[cos c(x � x0)] + c(t� t0);

for constants x0 and t0, for the grim reaper. At this point, we conclude our brief survey
of Euclidean curve ows, and turn to our main subject of interest.

10



A

B

P

Figure 2. Support Point and Support Triangle.

4. The Equia�ne Length Integral.

We now turn to our primary focus: the a�ne geometry of curves in the plane. A�ne
invariants are not suited for the study of curves with inection points; therefore we shall
deal only with strongly locally convex curves. In this section, all curves will be assumed
to have not only no inection points, but to be continuously di�erentiable with respect to
suitable parameters of order up to 5, although in the next few paragraphs derivatives of
orders at most 3 will appear. Many of our constructions will refer to a su�ciently short
piece of the convex curve, in the following precise sense.

De�nition 4.1. Let � be a smooth plane curve without inection points. A compact
arc �(A;B) � �, i.e., with both end points A;B included, will be called a short arc if no
two tangent lines to �(A;B) are mutually parallel, including the tangents at the end points.

This condition, in Euclidean geometry, is equivalent to the statement that the total
turning angle of the tangential direction of �(A;B) is less than half a revolution; in terms
of purely a�ne invariants of �, the property means that the arc �(A;B) may be inscribed

in a support triangle, which is bounded by the segment joining the endpoints A;B, and by
the tangent lines at the two endpoints.

De�nition 4.2. Let � a strongly convex curve, and let �(A;B) be a short arc of

� with end points A and B. The support point of �(A;B) is the point P where the two
end-point tangent lines intersect. The support triangle of �(A;B) is de�ned as the triangle
T(A;B) = APB; see Figure 2.

Note that, by convexity, the support triangle circumscribes the short arc �. We regard
the (positive) area of the support triangle,

A(A;B) = j�(A;P;B)j = 1
2
j [A;P;B] j ;

cf. (3.2), as an equia�nely invariant \indicator" of the distance between the (non-oriented)
tangent line elements (A;AP ) and (B;BP ). More precisely, we want to introduce an

11
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Figure 3. The A�ne Anti-Triangle Inequality.

equia�nely invariant distance function between the two line segments, so that, if we break
the arc �(A;B) in two at any intermediate point C and compare the distance from the
tangent line element at A to the one at C, with the distance from the tangent line element
at C to the one at B, we obtain, asymptotically for very short smooth arcs, the original
distance de�ned fromA(A;B). It is obvious that the areaA(A;B) itself does not have this
asymptotic property. However, its cube root does, as the following theorem of Blaschke
[6], shows.

Theorem 4.3. Let �(A;B) be a short arc of a strongly convex curve �, joining a
point A to a point B, and let C 2 � be another point, interior to the arc �(A;B). Draw
tangent lines to � at each of the three points, as well as the three chords joining them, as
shown in Figure 3. We let P denote the support point for the arc �(A;B), and PA, PB, the
respective support points for the respective sub-arcs �(A;C), �(C;B); thus PA, PB, are the

points where the tangent line at C intersects the tangents AP and BP . Each of the three
support triangles T(A;B) = APB, T(A;C) = APAC, T(C;B) = CPBB circumscribes

the corresponding arc of �. Let d(A;B) = 2 3

p
A(A;B), d(A;C) = 2 3

p
A(A;C), d(C;B) =

2 3

p
A(C;B), denote twice the cube roots of their respective areas. (The factor of 2 is merely

included for later convenience.) Then the following anti-triangle inequality is true:

d(A;B) � d(A;C) + d(C;B): (4:1)

Equality is achieved if and only if the following a�nely invariant length relations (length

ratios among pairs of segments in the same line) hold:

APA
AP

=
PPB
PB

=
PAC

PAPB
: (4:2)

12



Furthermore, if one �xes the two boundary line elements (A;AP ) and (B;BP ), then

the set of line elements (C;CPB) that satisfy (4.2), with C in the interior of the triangle
T(A;B), constitute a one-parameter family of tangent line elements of the unique arc of

the parabola having the prescribed tangent elements at the end points.

Proof : Since any two (non-degenerate) triangles, with their vertices in a given order,

are a�nely equivalent in a unique way, we may �x the two boundary line elements (A;AP )
and (B;BP ) in such a way that the area of the resulting triangle T(A;B) equals unity.

Then the set of line elements (C;CPB) that may occur as tangent line elements of any

strongly convex, short arc joining the given boundary elements is in a natural correspon-

dence with the triple of real numbers (u; v;w) with 0 < u < 1, 0 < v < 1, 0 < w < 1,

according to the following recipe.

First, choose the point PA on the line segment AP according to the vector relation

A � PA = u(A � P ). Then choose PB on the segment PB so that PB � P = v(B � P ),

and, �nally, C on the segment PAPB so that C � PA = w(PB � PA). One readily veri�es
that

A(A;C) = j�(A;PA; C)j = u j�(A;P;C)j ;
j�(A;P;C)j = w j�(A;P;PB )j ; j�(A;P;PB)j = v j�(A;P;B)j = v;

whence A(A;C) = uvw. Similarly,

A(C;B) = j�(C;PB; B)j = (1 � v) j�(C;P;B)j
= (1� v)(1 �w) j�(PA; P;B)j = (1� v)(1 �w)(1 � u):

Thus the \distances" between the line elements in question satisfy the relations

d(A;C) = 3

p
uvw d(A;B); d(C;B) = 3

p
(1� u)(1� v)(1 �w) d(A;B):

It is well known that the geometric mean of any �nite family of positive real numbers
is strictly smaller than their arithmetic mean; applying this to the identities above, and
adding, one sees that

d(A;C)+d(C;B) � 1
3
(u+v+w)d(A;B)+ 1

3
[(1�u)+(1�v)+(1�w)]d(A;B) = d(A;B);

with equality achieved only when u = v = w. This proves the �rst part of our assertion.

In order to constructively verify the second assertion, we take the circumscribed tri-
angle T(A;B) as before and adapt an a�ne coordinate system (x; y) to it with origin

at P , so that the points A and B have respective coordinates (0; 1) and (1; 0). Set-
ting u = v = w = r, where 0 < r < 1 is a parameter, the line PAPB has equation
(1� r)x+ ry = 1, and the point C on that line is de�ned parametrically by its coordinates

C = x(r) = (x(r); y(r)) =
�
1
2
r2; 1

2
(1� r)2

�
: (4:3)

This shows that the point x(r) traces the arc of the parabola y = x + 1
2
�p

2x bounded

between the points PA =
�
0; 1

2

�
and PB =

�
1
2
; 0
�
, with the corresponding axes as tangents.

This completes the proof of the theorem. Q.E.D.
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The construction of the parametric equation (4.3) of the parabola and the statement

of Theorem 4.3 show, in addition, that for any two values r1 < r2 of the parameter r, the
area of the triangle circumscribed to the arc corresponding to [r1; r2] equals

1
8
(r2 � r1)

3.

We recall here that the usual, formal de�nition of the equia�nely invariant arc length for

locally convex smooth curves x(r) is expressed by the invariant integral

s =

Z
3

s����
�
dx

dr

d2x

dr2

����� dr; (4:4)

where we are considering the derivatives of x(r) as displacement vectors in TE, and using

the notation of (3.1). In the case of the parametric representation (4.3) of a parabola, the

parameter r describes a�ne arc length.

More generally, let � be a convex curve of class C2 traced by x(r) for r in a closed
interval I = [r0; r1]. Subdivide I into a �nite sequence of n small subintervals using a mesh
r0 < r1 < � � � < rn�1 < rn, and let Pk = x(rk) be the corresponding points on �. Inscribe
each subarc k = �(Pk�1; Pk) in a corresponding support triangle Tk = T(Pk�1; Pk). Let
dk equal twice the cube root of the area of Tk. Then, on the one hand, the sum of the
quantities dk is non-increasing under successive re�nements of the subdivision, while, on
the other hand, the sum converges downward to the value of the integral (4.4). With
this observation, we make the following de�nition of the pseudo-distance between any two
(non-oriented) line elements in general position in the equia�ne plane.

De�nition 4.4. Suppose the two line elements (A;AX) and (B;BY ) are in general
position, meaning that the lines AX andBY are not parallel, intersecting at a point P , and
that the three points A, B, and P are distinct. Then the distance (or pseudo-distance)
between (A;AX) and (B;BY ) is de�ned to be twice the cube root of the area of the
triangle T = APB.

There are two easy, alternative geometrical interpretations of the equia�ne arc length
of a convex curve. One can replace the cube root of eight times the area of the small
triangles by either the cube root of twelve times the area of the region between the small
arcs of the subdivision of � and the corresponding chords, or that of 24 times the area

between the small arcs and their endpoint tangents. Either of these two de�nitions are
easier to adapt to the case of convex hypersurfaces in n than the one presented here;
however, the approximation of the true a�ne length by subdivision is no longer monotone

in either of the two modi�ed cases.

The geometric interpretation of the equia�ne arc length just described admits two

natural generalizations to higher dimensions. One generalization pertains to curves in
n-dimensional space. Here the equia�nely invariant arc length of an arc of class Cn

parametrized by x(r) is formally de�ned by the integral

s =

Z ����
�
dx

dr
;
d2x

dr2
; : : : ;

dnx

drn

�����
2

n(n+1)
dr:

The other generalization deals with hypersurfaces (mainly in the strongly locally convex

case) of class C2 in n. In this case, the easiest description of the formally equia�nely
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invariant metric structure is in terms of a Euclidean structure on n de�ned by a positive

de�nite quadratic form h� ; �i, inducing the familiar Euclidean invariants: the �rst funda-
mental form ds2e, the element of surface area dAe, the unit normal vector Ne, the second

fundamental form IIe = hNe ; d
2Xi, assumed to be positive de�nite, and the Gaussian

curvature Ke > 0. Then the positive de�nite quadratic form ds2 = K
�1=(n+1)
e IIe and the

corresponding (n�1)-dimensional area form dA = K
1=(n+1)
e dAe may easily be shown to be

invariant under the equia�ne group. The content of the geometrization of these formulas

is to enable us to \see", from the shape of the surface, the length of paths and areas of
subdomains.

5. The Equia�ne Structure Equations.

Having introduced the element of equia�ne arc length for a smooth curve � without

inection points, the remaining equia�ne invariants are best described, analytically, in
terms of the derivatives of the parametric representation of the curve, when the oriented,
equia�ne arc length s itself is used as a parameter. However, one should observe that the
existence and continuity of dkx(s)=dsk for any k � 1 require existence and continuity of
the (k + 1)st derivative of x with respect to a general parameter. The formal de�nition of
s implies that the �rst two derivatives xs = dx(s)=ds and xss = d2x(s)=ds2 are linearly
independent and, indeed, satisfy the identity

[xs;xss] = �1: (5:1)

If necessary, one may replace the parameter s by�s in order to reduce the right hand side of
(5.1) to +1. Either way, xss points toward the concave side of the curve �, while the positive
sign in (5.1) indicates that, as s increases, the curve turns towards the left. For each point
x(s0) one de�nes what

�E. Cartan called the \moving frame" (rep�ere mobile) of �, namely
the a�ne coordinate system with origin at x(s0), such that the coordinate pair (u; v)
corresponds to the point x(s0) + uxs(s0) + vxss(s0). The two \unit" coordinate vectors
xs(s0), xss(s0) are then called the (a�ne) unit tangent and unit normal respectively, and
accordingly denoted by t(s0) and n(s0) respectively.

Di�erentiating both sides of (5.1) with respect to to s, we see that [xs;xsss] = 0,
implying that dn(s)=ds is a scalar multiple of t(s). One is thus led to the formal de�nition
of the (equi-)a�ne curvature �(s) via the equation

dn(s)

ds
= ��(s) t(s): (5:2)

The seemingly capricious choice of sign in the above equation is contrived so that, in
the case of non-singular conic sections (in which case � is constant), � is positive, zero,
or negative, according to whether the conic is, respectively, an ellipse, a parabola, or a

hyperbola. See Theorem 6.4 below.

The data consisting of the equia�ne arc length parameter s and the a�ne curvature
� furnish the total generating system of equia�ne invariants of a curve �. In fact, the
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structure equations for � may be deduced from (5.1), (5.2), and can be written in Cartan's

notation as the evolution of the moving frame (x(s); t(s);n(s)) as follows:

d

0
@x(s)

t(s)
n(s)

1
A =

0
@ 1 0

0 1
��(s) 0

1
A� t(s)

n(s)

�
ds: (5:3)

The initial conditions (x(s0); t(s0);n(s0)) consist of an arbitrary unimodular a�ne coor-

dinate frame, and the solution (x(s); t(s);n(s)) is unique, meaning that the frame corre-

sponding to any s to which the solution of (5.3) may be extended is related to the initial

frame by a unique equia�ne motion. However, since the system reduces to a scalar third

order equation, namely
d3x(s)

ds3
+ �(s)

dx(s)

ds
= 0; (5:4)

it is not easy to estimate the geometric shape of the solution. For instance, when does a
periodic curvature function �(s) produce a closed curve solution?

A suggested exercise at this point is to compute the equia�ne arc length, the moving
frame, and the a�ne curvature for the closed, convex curve de�ned as follows:

x(s) = (cos t� 1
10
cos 3t; sin t+ 1

10
sin 3t):

6. Local Coordinates.

Let � be a short, compact arc of a convex curve. One can choose, in many ways, an
equia�ne coordinate system (x; y) such that � is the graph of a convex function y = u(x),
with x ranging over a compact interval [x0; x1]. We now rewrite the a�ne arc length,
normal, and curvature in the given coordinate system. First, the element of equia�ne arc
length of � is given by ds = 3

p
uxx dx, where the subscripts indicate successive di�erentia-

tions with respect to x. It follows that the a�ne tangent and normal vectors at the point
corresponding to x are

t = (uxx)
�1=3(1; ux); n = 1

3
(uxx)

�5=3(�uxxx; 3u2xx � uxuxxx): (6:1)

In particular, we have

Lemma 6.1. The y-axis is parallel to the a�ne normal at a point (x; u(x)) if and
only if uxxx = 0.

Finally, one deduces the formula

� =
3uxxuxxxx � 5u2xxx

9(uxx)
8=3

(6:2)

from the structure equations (5.3). As in the Euclidean case, the element of equia�ne arc

length
ds = 3

p
uxx dx (6:3)

is the simplest invariant one-form, and the curvature � the simplest di�erential invariant

for the equia�ne group in the plane. Every other di�erential invariant can be expressed
as a function of � and its successive derivatives with respect to to arc length. Since the

equia�ne curvature is a fourth order di�erential invariant, the following equia�ne version
of the de�nition of the Euclidean curvature via an osculating circle is immediate.
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De�nition 6.2. Let � be a smooth, convex curve, and let A 2 �. The osculating

conic to � at A is the unique conic passing through A having fourth order contact with �
at A.

Theorem 6.3. Two smooth, convex curves passing through a common point A

have the same equia�ne curvature at A if and only if they have fourth order contact at
A. In particular, the curvature to a curve � at A equals the (constant) curvature of its

osculating conic at A.

In particular, we need to know the explicit formula for the curvature of a general
conic.

Theorem 6.4. Consider a nondegenerate conic C de�ned by the quadratic equation

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0: (6:4)

The equia�ne curvature of C is given by

� =
S

T 2=3
; (6:5)

where

S = AC �B2 = det

����A B

B C

���� ; T = det

������
A B D

B C E

D E F

������ : (6:6)

Both S and T are equi-a�ne invariants of the conic. The invariant S vanishes if and
only if the �ve points lie on a parabola. The invariant T vanishes if and only if the conic
degenerates to a pair of lines, and hence fails our convexity hypothesis.

Corollary 6.5. The equia�ne curvature of an ellipse in the plane is given by
� = (�=A)2=3, where A is the area of the ellipse.

7. The A�ne Normal.

We now begin our discussion of geometric approximations to the a�ne geometric
quantities associated with a convex plane curve. Let � be, as before, a short arc, with end
points A, B. Let M be the midpoint of the chord AB. Let the tangents to � at A and B

intersect at a point P , so that � is inscribed in the support triangle T = APB.

Theorem 7.1. The direction of the median PM of the triangle T is a mean a�ne
normal direction of �, in the sense that if � is of class C3, then there exists at least one
point of � where the a�ne normal is parallel to PM .

Proof : Choose an equia�ne coordinate system (x; y) such that the y-axis includes the
median PM in the direction indicated. Then � is the graph of a convex function y = u(x)

and, since M lies on the y-axis, u is de�ned over a symmetric interval �a � x � a for
some a > 0. At the same time, since P also lies on the y-axis, u satis�es the boundary
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condition aux(a) � u(a) = (�a)ux(�a) � u(�a), which may be translated by integration
by parts as follows:

0 =

Z a

�a

d[xux � u] =

Z a

�a

xuxx dx =

Z a

�a

1
2
(a2 � x2)uxxx dx:

Since the \weight" function a2 � x2 is positive in the interior of the interval, the third
derivative uxxx has a weighted mean value of zero. Lemma 6.1 completes the proof. Q.E.D.

There are several analogous statements, giving alternative geometric interpretations
of some mean direction of the a�ne normal, but none are as simple to state or prove as
the one just shown. However, we shall present some of these alternatives, because they
may be better suited for generalizations to locally convex hypersurfaces in n. All of them
deal with the support triangle APB, the midpointM of the chord AB and various choices
of an interior point C 2 �, so that both CM and PC represent mean directions of the
a�ne normal. We shall deal �rst with the case where C is the unique point of � where the
tangent line is parallel to the line AB.

Theorem 7.2. Let � be a short, strongly convex arc, inscribed in the triangle

T = APB, where A, B are the end points of � and the corresponding tangent lines
intersect at P . Let M be the midpoint of the chord AB, and C 2 � where the tangent
line is parallel to the line AB. Then there exist a) a point C 0 2 � where the a�ne normal

is in the same direction as the directed line PC, and b) a point C 00 2 � where the a�ne

normal is in the same direction as the directed line CM .

Proof : We �rst prove the existence of C 0. Let (x; y) be an a�ne coordinate system
such that the y-axis contains the segment PC with the same orientation. Then � is the
graph of a convex function y = u(x) de�ned over a closed interval a � x � b with a < 0 < b.

The assumptions on PC correspond, in this coordinate system, to the following conditions:
a) the point C = (0; u(0)) satis�es ux(0) = (u(b) � u(a))=(b � a), corresponding to the
boundary condition

buxx(0) � u(b) = aux(0) � u(a); (7:1)
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b) the point P = (0; y0) lying on the y-axis corresponds to the boundary condition

�y0 = bux(b) � u(b) = aux(a) � u(a): (7:2)

The two boundary conditions (7.1), (7.2) can, in turn, be expressed in integral form,

respectively, as follows:

0 =

Z b

a

d[xux(0) � u(x)] =

Z b

a

[ux(0)� ux(x)] dx = �
Z b

a

Z �

0

uxx(x) dx d�

= �
Z b

0

(b � x)uxx dx+

Z 0

a

(x � a)uxx dx;

0 =

Z b

a

d[xux(x) � u(x)] =

Z b

a

xuxx(x) dx:

Adding the two equations and integrating by parts once more, we obtain:

0 = �
Z b

0

(b� 2x)uxx(x) dx +

Z 0

a

(2x � a)uxx(x) dx

= �
Z b

0

x(b � x)uxxx(x) dx +

Z 0

a

(�x)(x � a)uxxx(x) dx:

The last expression expresses the vanishing of the integral of a continuous third derivative
uxxx, weighted by a positive function, over the interval [a; b]. Therefore, we deduce the
existence of an interior point C 0 = (x0; u(x0)) such that uxxx(x

0) = 0, meaning that the
a�ne normal at C 0 is vertical.

In order to prove assertion b), we choose an a�ne coordinate system (x; y) such that
the y-axis contains the segment CM . We prove the assertion, at �rst, under the additional
assumption that � is the graph of a convex function y = u(x). In this case, the assumptions
translate into the following two statements: i) sinceM lies on the y-axis, u is de�ned on a
symmetric interval [�a; a] for some a > 0; ii) since the tangent to � at C is parallel to AB,

ux(0) = (u(a) � u(�a))=(2a), leading to the following argument, similar to the previous

ones:

0 =

Z a

�a

d[xux(0) � u(x)] =

Z a

�a

[ux(0) � ux(x)] dx = �
Z a

�a

Z �

0

uxx(x) dx d�

= �
Z a

0

(x � a)uxx dx +

Z 0

�a

(a + x)uxx dx =

Z a

�a

1
2
(a � jxj)2uxxx dx:

Once more, the vanishing of the last integral implies the existence of a point C 00 where the
a�ne normal is vertical | under the extra condition that � is a graph over [�a; a].

Assume now that � is no longer a graph, and let A and B have coordinates (�a; y0)
and (a; y1) respectively. Then � includes either a point A0 = (�a; y00) with y00 < y0, in

which case the subarc from A0 to B is the graph of a function, or else there exists a
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point B0 = (a; y01) with y01 < y1, in which case the subarc from A to B0 is the graph of a
function (but not both, since � is a short arc). Without loss of generality, we assume the
former case, as in Figure 5. In this case, a vertical line drawn downwards (i.e., in the same
direction as MC) from A meets � at another point A0, and a line from A0 in the direction
of AB (i.e., to the right) meets � at a point B0. It is clear that the midpoint M 0 of the
segment A0B0 is to the left of the segment CM . Therefore, replacing � by the subarc �0

from A0 to B0, one may apply the previous argument, whereby there is a point in �0 where
the a�ne normal is in the same direction as CM 0, that is to say to the left of CM . On
the other hand, the arc of � from A to A0, by a similar argument, contains a point where
the a�ne normal points to the right of the direction of A0A, or, equivalently, CM . By
continuity, there exists a point C 00 in the subarc of � from A to B0 where the a�ne normal
is in the same direction as CM . This concludes the proof of Theorem 7.2. Q.E.D.

A somewhat di�erent geometrical construction of mean a�ne normals for a short
convex arc is described by the following theorem.

Theorem 7.3. Let � be a short, smooth, convex arc, inscribed in the triangle

T = APB, as above, and let M be the midpoint of the chord AB. For any point C 2 �,
not an end point, denote by PA and PB the points of intersection of the tangent to � at C
with the segments PA and PB, respectively. Then there exists at least one point C 2 �

which is the midpoint of the associated segment PAPB. Furthermore, for any such point,

there exist points C 0; C 00 2 � where the a�ne normal is in the same direction as PC or
CM , respectively.

Proof : To show the existence of the point C, consider the area of the triangle PAPPB
as C varies between A and B. The area is always positive, continuously dependent on C,
and approaches zero as C approaches either A or B. The desired point C occurs when
this area attains a (local) maximum value. Note that if � were to include a sub-arc �0 of
a hyperbola having PA and PB as asymptotes, then each point C 2 �0 would have the

desired property.
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Assuming, then that C is the midpoint of its associated segment PAPB, we proceed to

prove, �rst, that the direction PC occurs as a direction of an a�ne normal to �. Let (x; y)
be an a�ne coordinate system such that the y-axis contains the segment PC with the same

orientation. The assumptions imply, �rst of all, that � is the graph of a convex function

y = u(x) de�ned over a closed interval a � x � b withe a < 0 < b. The assumptions that

P lies on the y-axis is equivalent to the boundary condition (7.2). It is now convenient to
choose the direction of the x-axis to be parallel to PAPB, which means that ux(a) = �ux(b)
and ux(0) = 0. Our assumption that C is the midpoint of PAPB means that

ux(b) � 2ux(0) + ux(a) = 0: (7:3)

We now introduce a Legendre transform of the function u: choose the strictly mono-

tone function ux(x) � ux(0) of x as the new independent variable x̂ and the transformed

function ŷ = û(x̂) = xux(x) � u(x) as the new dependent variable. Then

dx̂ = uxx dx; dŷ = xuxx dx = xdx̂:

Therefore
d2û

dx̂2
=

1

uxx
> 0:

The boundary condition (7.3), in terms of the transformed function, sets the interval of
de�nition of û to be [�â; â], where â = ux(b)�ux(0) = ux(0)�ux(a), while (7.2) becomes
û(�â) = û(â). In addition, we have ûx̂(0) = 0. These conditions on the transformed
variables and the function û include the properties of the function u in the proof of assertion
b) of Theorem 7.2, namely the graph b� of û, with end points bA = (�â; û(�â)), bB =

(â; û(â)), and the point bC = (0; û(0)) such that 2âû(0) = û(â) � û(�â) (both sides here
being zero). Therefore there exists an intermediate value x̂0 corresponding to x0 = ûx̂(x̂

0) 2
[a; b], for which ûx̂x̂x̂(x̂

0) = �uxxx(x0)=[uxx(x0)]2 = 0. This shows the existence of C 0 =
(x0; u(x0)) 2 � where the a�ne normal is in the same direction as PCy.

To show the existence of a point C 00 2 � whose a�ne normal is in the same direction
as CM , we arrange the y axis of our equia�ne coordinate system to include the segment
CM in the positive direction, as in Figure 6. Introduce the chords AC and CB, and let

MA andMB be their respective midpoints, such that the corresponding a�ne normals are
positive scalar multiples of the vectors MA �PA and MB �PB respectively. On the other
hand, taking into account the identities

MA � PA = 1
2
(A� PA) +

1
4
(PB � PA); MB � PB = 1

2
(B � PB) +

1
4
(PA � PB);

y It is possible, of course, to give the same proof without using Legendre transforms; however
the steps to deduce, by two integrations by parts, from the assumptions on u the corresponding
identity

0 =

Z b

a
du(x) =

1

2

Z b

a

h
ux(b) � ux(0)� jux(x)� ux(0)j

i2 uxxx

(uxx)2
dx

would seem much more opaque than the proof presented here.
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Figure 6. Mean A�ne Normal.

we see that the vector

M � C = 1
2
(A+B) � 1

2
(PA + PB) = (MA � PA) + (MB � PB):

It follows that the direction of M � C is intermediate between those of MA � PA and
MB � PB . Therefore, by continuity, there exists a point C 00 2 � between C 00

A and C 00
B

where the a�ne normal is a positive scalar multiple of the vector M �C. This completes
the proof of Theorem 7.3. Q.E.D.

Having shown various ways to represent an \average" direction of the a�ne normal,
one naturally seeks a corresponding \average" normalization in agreement with the formal

de�nition of the equia�ne invariants. Recalling the de�nition of the equia�ne length of a
short arc �(A;B), cf. De�nition 4.4, we denote by d(A;B) the equia�ne distance between
the line elements (A;AP ) and (B;PB). Then the vector B � A on the one hand is the

\average" direction of the oriented tangents over �; on the other hand it represents the

integral
RB
A
t ds, where t is the equia�ne tangent vector and ds is the element of equia�ne

arc length. The estimation of the average value of t by (B �A)=d(A;B) is then obvious.

We choose now the average direction of the a�ne normal of the arc � according to

Theorem 7.1, represented by the median vector M � P of the support triangle APB.

Observe that the alternating product [B � A;M � P ] is twice the area of the triangle
APB, which is 1

4
d(A;B)3. Since B�A is approximately equal to d(A;B)t, and, from the

structure equations [t;n] = 1, it follows that the equia�ne normal vector n should, in the

mean, be represented by 4d(A;B)�2(M � P ). We formally summarize these estimates in
the following theorem.
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Theorem 7.4. Let � be a short arc and let d(A;B) be the equia�ne distance

between its endpoints A and B, i.e., twice the cube root of the area of its support triangle
APB. Let M be the midpoint of the chord AB. Then a mean value for the equia�ne

frame (t;n), consisting of the tangent and normal to �, is represented by

tav =
B �A

d(A;B)
; nav = 4

M � P

d(A;B)2
:

8. The A�ne Curvature.

The structure equation (6.2) has two obvious consequences that serve to interpret

it in geometrical terms. In the �rst place, under in�nitesimal displacements of a point
on the curve, the equia�ne normal shifts parallel to the tangent. Secondly, the sign of

the equia�ne curvature � tells us which way the a�ne normal varies over small arcs of

a convex curve. More precisely, if � is everywhere positive in a short arc, then the a�ne
normals at its endpoints, both pointing into the concave side of the curve, lean towards
each other, like the Euclidean normals of a convex arc, while if � < 0 everywhere, then the
a�ne normals lean away from each other. One can apply the results of the last section to
make these statements more precise.

Proposition 8.1. Let � be a short arc of a smooth, convex curve, and let APB
be its support triangle. Let C 2 � be the point whose tangent line is parallel to the
chord AB, and let the tangent line at C intersect the segments PA and PB at PA and
PB respectively. Let t = tA;B be the real number, 0 < t < 1 de�ned by the equivalent
vector relations PA � P = t(A � P ) or PB � P = t(B � P ). Then there exists a point on
� where the equia�ne curvature � is positive, negative, or zero according to whether t is,
respectively, > 1

2
, or < 1

2
, or = 1

2
.

Proof : We refer to Figure 7. Draw the chords of � from A to C and from C to B, and
let MA andMB be their respective midpoints. It follows that the vector MB �MA equals
1
2
(B � A). Since the tangent at C is parallel to the line AB, it follows that PB � PA =

t(B �A), where t is as in the statement of the proposition. From Theorem 7.1 we known
that the directed half-lines PAMA and PBMB represent mean directions of the equia�ne

normal in the respective portions of �. To compare these two directions, one immediately

veri�es that

(MB � PB) � (MA � PA) = (MB �MA) � (PB � PA) = (1
2
� t)(B �A):

The required conclusion now follows. Q.E.D.

Corollary 8.2. Let � be a smooth, closed, convex curve without inection points in
the a�ne plane. Let B denote the convex body bounded by �. Let B� denote the convex
body neighborhood of B, obtained as the Minkowski sum B

� = 2B+ (�B).y Then, from

every point on the boundary of B� (and, a fortiori from every exterior point of B�) one
can \see" at least one point on � where the equia�ne curvature is positive.

y In other words, B� is the set of points P for which one can �nd points M;Q 2 B such that

M is the midpoint of the segment PQ.
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Figure 7. A�ne Curvature Construction.

Remark : This statement is considerably stronger than one found in various textbooks,
asserting the existence of a point with positive equia�ne curvature on any \half-oval", i.e.,
on any locally convex, smooth bounded arc whose tangents at the endpoints are parallel,
and with no other pair of parallel tangents.

Proof : Let P be any point on the boundary of B�, and let PA and PB be the two
tangent lines to � from P , where A and B are the respective points of contact with �. Let
A0 and B0 be the midpoints of the respective segments PA and PB. It follows from the
de�nition of B� that the line A0B0 cannot meet B. Consequently, if one draws the tangent
line to the short arc of � between A and B, i.e., the set of points of � that are visible from

P , then the ratio tA;B de�ned in Proposition 8.1 is strictly greater than 1
2
. Q.E.D.

To conclude this section, we shall re�ne the last proposition to yield a numerical
approximation to the actual value of the equia�ne curvature of a short arc.

Theorem 8.3. Let � be a short arc of a smooth, convex curve, with end points

A, B, and the same construction as in Proposition 8.1. Let d(A;B) denote the equia�ne
distance from A to B. In Figure 6, prolong the lines PAMA and PBMB to their intersection

point Y (if necessary, in the projective completion of the plane), as depicted in Figure 8.
The three points P , C, and Y lie on a common line. Let QC denote the intersection of

that line with the chord AB, and consider the (negatively valued) cross ratio

�(A;B) = [QC ; P : Y;C] =
(QCY : PY )

(QCC : PC)
:
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Figure 8. Equia�ne Curvature Approximation.

Then a mean value of the equia�ne curvature � over � is represented by

�� = 8
1 + �(A;B)

d(A;B)2
: (8:1)

Proof : The collinearity of the three points P , C, and Y follows from Desargues'
Theorem. From the perspective point A, the four points P , C, QC , Y , de�ning the cross
ratio �, may be projected to the corresponding points PA, MA, QA, Y in the line PAMA.

(Equivalently, we can project from B to obtain PB, MB , QB , Y in the line PBMB .) Since
MA is the midpoint of PAQA, the cross ratio � reduces to the scalar coe�cient in the linear
vector relation Y �QA = ��(Y � PA), whence

MA � PA = 1
2
(1 + �)(Y � PA): (8:2)

According to Theorem 7.4,

MA � PA = 1
4
d(A;C)2n(A;C); (8:3)

where d(A;C) is twice the cube root of the area of the triangle APAC (and asymptot-
ically the a�ne length of the arc AC in �) and n(A;C) is a mean vector value of the

equia�ne normal over the same arc. Furthermore, the point Y , marking the intersection
of two neighboring a�ne normal lines, approximates, as the arc � is shortened to a point
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X 2 �, the corresponding point X + ��1n of the a�ne evolute of � at X. Combining the

approximate relations Y �PA � ��1n(A;C) with (8.3), we see from (8.2) that an approx-
imate value � of the equia�ne curvature is given by 1

8
(1 + �)d(A;C)�2. Interchanging A

and B, we have another approximation � � 1
2
(1 + �)d(C;B)�2. Recalling Theorem 4.3,

the equia�ne length of � is approximated by d(A;B), or, alternatively, by 2d(A;C) or

2d(C;B). Combining these formulas completes the proof of (8.1). Q.E.D.

Although (8.1) can in principle be used as a method for approximating the a�ne

curvature, it has several numerical di�culties that preclude its direct use. First, the

construction relies on the introduction of the tangent lines at the point A and B, and hence

we need to introduce an additional numerical approximation. Moreover, the approximation
needs to incorporate a�ne invariances, and so the standard di�erence quotient is not

satisfactory for this purpose. More serious is the instability in the computation of the

intersection point Y , which can be at in�nity (and indeed is if the curve is a parabola),
and is thus highly unstable from a numerical point of view. Presumably, one can overcome
the latter di�culty by mutliplying the numerator and denominator in the ratio (8.1) by
an appropriate factor, although we have not thoroughly investigated this as of yet.

9. Finite Di�erence Approximations of A�ne Invariants.

In this section, we discuss a fully a�ne-invariant �nite di�erence approximation to the
a�ne curvature of a convex curve in the plane. The starting point is the result that one
can approximate the (positive) a�ne curvature at a point of a plane curve by the a�ne
curvature of the conic section passing through �ve nearby points. We will explicitly show
how this may be used to produce an a�ne-invariant �nite di�erence approximation to the
a�ne curvature. The �rst item is to determine the formula for the a�ne curvature of a
conic passing through �ve points.

Given a numbered set of points Pi, i = 0; 1; 2; : : :, we let

[ijk] = [Pi; Pj ; Pk] = (Pi � Pj) ^ (Pi � Pk)

denote twice the (signed) area of the triangle with vertices Pi; Pj ; Pk, cf. (3.2). See [23],
[28], for a proof of the following elementary fact.

Theorem 9.1. Let P0; : : : ; P4 be �ve points in general position in the plane. There
is then a unique conic section C passing through them, whose quadratic equation has the
a�ne-invariant form

[013][024][x12][x34] = [012][034][x13][x24]; (9:1)

where x = (x; y) is an arbitrary point on C.
In order to compute the a�ne curvature of the conic (9.1), we use formula (6.5), and

thus need to compute the two equia�ne invariants S, T , as given in (6.6), in equia�ne

invariant form. In other words, the resulting formula should be written in terms of the
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Figure 9. The A�ne Pentagram.

areas of the
�
5

3

�
= 10 triangles determined by the points taken three at a time; see Figure

9. (Of course, only 5 of these areas are independent, due to the syzygies listed below.)
Substituting the formulas for the coe�cients, we �nd a particularly nice a�ne-invariant
expression for our �rst a�ne invariant

4T =
Y

0�i<j<k�4

[ijk]; (9:2)

in other words, to compute T , multiply together all 10 triangular areas in the pentagram
described by the 5 points. The fact that T has such a form is not so surprising, since T
vanishes if and only if the conic degenerates to a pair of lines, which requires that three of

the �ve points lie on a line, meaning that [ijk] = 0 for some i < j < k.

One a�ne-invariant formula for S is found directly:

4S = [013]2[024]2[1234]2 �
� 2[012][034][013][024]

�
[123][234] + [124][134]

�
+ [012]2[034]2[1324]2:

(9:3)

where

[ijkl] = (Pi � Pk) ^ (Pj � Pl) = [ijl]� [ijk]:

Formula (9.3) is not nearly as pleasant as (9.2), particularly because the right hand side

appears to be unsymmetrical with respect to permuations of the �ve points. However, S
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must clearly be symmetrical with respect to these permutations. Of course, the explanation

lies in the syzygies among the triangular areas: these are

[123] = [012] + [023] + [031]; (9:4)

[012][034]� [013][024] + [014][023] = 0; (9:5)

and the analogous formulas obtained by permutation of the symbols 0; : : : ; 4, cf. (2.5), (2.6).

A judicious application of (9.4), (9.5), will su�ce to demonstrate that (9.3) is symmetrical
under permutation. A completely symmetrical formula for S can, of course, be obtained

by symmetrizing (9.3), i.e., summing over all possible permutations of the set f0; 1; 2; 3; 4g
and dividing by 5! = 120, although the result is much more complicated than (9.3). We

have been unable to �nd a simple yet symmetrical version of the formula for S.

As in the Euclidean case, we are interested in numerical approximations to the a�ne
curvature of a strongly convex plane curve � which are invariant under the special a�ne
group. As before, we approximate the parametrized curve x(r) = (x(r); y(r)) by a sequence
of mesh points Pi = x(ri). Any a�ne-invariant numerical approximation to the a�ne
curvature � (as well as any other a�ne di�erential invariant dn�=dsn) must be a function
of the joint a�ne invariants of the mesh points, which means that it must be a function
of the areas [ijk] = [PiPjPk] of the parallelograms (or triangles) described by the mesh
points. Because the a�ne curvature is a fourth order di�erential function, the simplest
approximation will require �ve mesh points, so that the approximation will depend on
the ten triangular areas (or, more basically, the �ve independent areas) in the pentagram
whose vertices are the �ve mesh points; see Figure 9.

With this in mind, let us number the �ve successive mesh points as P0; P1; P2; P3; P4.
(This is just for simplicity of exposition; of course, in general, one should replace the
indices 0; : : : ; 4 by i; i + 1; i + 2; i + 3; i + 4.) Since we are assuming that � is convex,
the mesh points are in general position. Let C = C(P0; P1; P2; P3; P4) be the unique conic
passing through the mesh points. Let e� = e�(P0; P1; P2; P3; P4) denote the a�ne curvature
of the conic C, which we evaluate via the basic formula (6.5), where the invariants S, T

are computed in terms of the triangular areas according to (9.3), (9.2). We regard e� as a
numerical approximation to the a�ne curvature � = �(P2) of � at the middle point P2. We
now need to analyze how closely the numerical approximation e� is to the true curvature
� at the point P2. Assuming the points are close together (see the discussion below), we

need to compute a Taylor series expansion of the distance e�. An extensive Mathematica

computation produces the desired result

Theorem 9.2. Let P0; P1; P2; P3; P4 be �ve successive points on the convex curve

�. Let � be the a�ne curvature of � at P2, and let e� denote the a�ne curvature of the

conic section passing through the �ve points. Let

Li =

Z Pi

P2

ds; i = 0; : : : ; 4; (9:6)
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denote the signed a�ne arc length of the conic from P2 to Pi; in particular L2 = 0. We

assume that each Li is small. Then the following expansion is valid:

e� = �+
1

5

 
4X
i=0

Li

!
d�

ds
+

1

30

0
@ X

0�i�j�4

LiLj

1
A d2�

ds2
+ � � � : (9:7)

The higher order terms are cubic in the distances Li.

Remark : The property of \being close" is therefore expressed in a�ne-invariant form

as the statement that all the arc lengths L0; : : : ; L4 are small. In this way, we are able to

introduce a fully a�ne-invariant notion of \distance", albeit one that requires knowledge
of �ve, rather than two, points.

Proof : This is found by a direct Taylor series expansion of the a�ne-invariant expres-
sions (9.3), (9.2), for the a�ne invariants S, T , and then substitution into the formula (6.5)
for the curvature of the conic section. We represent the curve as the graph of y = u(x),
which, assuming the three points are su�ciently close, can always be arranged. The points
can be assumed to be P0 = (h; u(h)), P1 = (i; u(i)), P2 = (0; 0) = (0; u(0)), P3 = (j; u(j)),
P4 = (k; u(k)), where h; i; j; k are small. The areas are then given, for example, by

[013] = (h � i)(u(h) � u(j))� (h� j)(u(h)� u(i)) = hu(i)� iu(h)� hu(j) + ju(h);

with elementary Taylor series expansion. The result is a Taylor series expansion for e� in
terms of h; i; j; k, with leading term �, as given in (6.2), the derivatives being evaluated
at 0. However, h; i; j; k, being the di�erences of the x coordinates of the mesh points, are
not a�ne invariant, and hence the coe�cients of the expansion are not a�ne di�erential
invariants. To remedy this, we must introduce the a�ne arc lengths (9.6) as our basic
a�ne-invariant paramaters. Using the formula (6.3) for the a�ne-invariant arc length
element, the expansion

L0 =

Z h

0

3

p
uxx dx = h 3

p
uxx +

1
6
h2

uxxx
(uxx)

2=3
+ � � � ; (9:8)

can be inverted to produce a Taylor series expressing h in terms of L0. Plugging this,
and the analogous series for i; j; k into the previous Taylor series produces the �nal re-
sult. Q.E.D.

Remark : An a�ne invariant �nite di�erence approximation to the a�ne normal can
also be found by computing the a�ne normal to the approximating conic C at the middle
point P2, and expressing this in terms of the triangular areas. The method can also produce
invariant numerical methods for computing d�=ds, etc., using more points.

10. A General Conjecture.

The reader has probably already noticed that the Euclidean and a�ne curvature ap-

proximation series (3.9), (9.7), bear a remarkable similarity. This suggests a generalization
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which we indicate here, albeit as a conjecture without proof. We begin by surveying the

general theory of di�erential invariants of �nite-dimensional Lie groups of transformations
in the plane; see [17] for a detailed presentation. Let G be an r-dimensional Lie group

acting on E = 2, with coordinates x; y, and let g denote its Lie algebra of in�nitesimal

generators, which are vector �elds v = �(x; y)@x + �(x; y)@y on E. Curves in the plane

are then (locally) represented as functions y = u(x). Let Jn denote the nth jet space of
E, which has coordinates (x; u(n)) = (x; u; ux; uxx; : : : ; un). There exists a G-invariant arc

length element dsG = P (x; u(n)) dx represented by the simplest (lowest order) G-invariant

one-form, and a G-invariant curvature �G, which is the simplest (lowest order) di�erential

invariant. We also assume that G determines an \ordinary" action, meaning that it acts

transitively and locally e�ectively on E, and, moreover, its prolonged actions G(n)are also
locally transitive on a dense open subset of Jn for all 0 � n � r� 2, where r is the dimen-

sion of G. (In the language of [17], G admits no pseudo-stabilization of the prolonged orbit

dimensions.) Indeed, Lie's complete classi�cation of all �nite-dimensional transformation
groups on the plane, [15], [17], shows that, of the transitive groups, only the elementary
similarity group (x; u) 7! (�x + c; �u + d) and some minor variants thereof fail this hy-
pothesis. Under these assumptions, the G-invariant arc length has order n � r�2 and the
G-invariant curvature �(x; u(r�1)) has order exactly r � 1. The solutions to the ordinary
di�erential equation

�(x; u(r�1)) = c; (10:1)

for c constant determine the curves of constant curvature for the group action. In fact,
one does not need to integrate the ordinary di�erential equation (10.1), since these curves
can be found directly from the group action.

Proposition 10.1. A curve � �M has constant G-invariant curvature if and only
if it is the orbit, � = exp(tv)P0, of some point P0 2 M under a one-parameter subgroup
exp(tv) � G determined by an in�nitesimal generator v 2 g.

Thus, for the Euclidean group, we recover the circles and straight lines as the constant
curvature curves, while for the special a�ne group, these are the conic sections. Since (10.1)
has order r � 1, given r points P1; : : : ; Pr 2 E in \general position", there exists a unique

constant curvature curve �0(P1; : : : ; Pr) passing through them. Let �0(P1; : : : ; Pr) denote
its curvature. Since (10:1) is a G-invariant ordinary di�erential equation, �0(P1; : : : ; Pr)
is a joint invariant of the r points.

Let � � M be an arbitrary curve in the plane. We are interested in constructing a
G-invariant �nite di�erence approximation to its G-invariant curvature �(P1) at a given

point P1 2 � in the curve. Choose r� 1 nearby points P2; : : : ; Pr 2 �. Then the curvature
�0 = �0(P1; : : : ; Pr) of the constant curvature curve �0 = �0(P1; : : : ; Pr) passing through

the points determines our approximation to �(P1).

Conjecture: The following series expansion holds:

�0 = �+
1

r

 
rX
i=1

Li

!
d�

ds
+

1

r(r + 1)

0
@ X

1�i�j�r

LiLj

1
A d2�

ds2
+ � � � ; (10:2)
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where �, d�=ds, etc. are evaluated at P1, and

Li =

Z Pj

P1

ds; (10:3)

denotes the G-invariant \distance" from the point P1 to Pj, measured as the G-invariant

arc length along the constant curvature curve �0. (In particular, L1 = 0.) The expansion

assumes that all the arc lengths Li are small.

Example 10.2. Consider the translation group (x; u) 7! (x+ c; u+d). In this case,
� = du=dx, and the constant curvature curves are the straight lines. Then �0(p1; p2) =

(u2 � u1)=(x2 � x1). Therefore, the expansion (10.2) is merely the Taylor series, and so

is valid to general order! (Note that since dx is the translation-invariant arc length, the

\length" of a straight line segment is
R P2
P1

dx = x2 � x1.)

Thus, the conjectured series expansion (10.2) is valid up to order 2 for the translation
group, the Euclidean group, and the special a�ne group. Direct veri�cation for other
planar groups appears to be problematic because the formulas for the �nite di�erence
approximation �0 are not so easy to come by, because the constant curvature curves involve
transcendental functions. Moreover, preliminary computations with the Euclidean group
indicate that the natural generalization of (10.2) is not valid to order 3. Thus, the series
should be viewed perhaps more as an interesting speculation rather than a �rm conjecture.

11. A�ne Curvature Flow.

In this section, we will present several new solutions to an a�ne invariant nonlinear
heat equation which arose out of certain problems in vision and image processing. Indeed,
invariant theory has recently become a major topic of study in computer vision. Since
the same object may be seen from a number of points of view, one is motivated to look
for shape invariants under various transformations. A closely related topic that has been
receiving much attention from the image analysis community is the theory of scale-spaces

or multiscale representations of shapes for object recognition and representation; see [12]
for an extensive list of references on the subject. Initially, most of the work was devoted
to linear scale-spaces derived �ltering using a Gaussian kernel or equivalently running the

shapes through the linear heat equation. Here the variance of the �lter (or equivalently

the time of the heat equation) plays the role of a scale-space parameter. The greater the
variance (or time), the more the given shape is smoothed. Of course, the di�usion being
isotropic, the shape will be blurred as well. To remedy such problems, in the last few
years, a number of non-linear and geometric scale-spaces have been investigated as well.

The idea is to introduce a nonlinear smoothing which preserves edges while smoothing on
either side of the edge. Such nonlinear smoothing methods may be found in [21], [4], and

[13]. See also the references in [12]. The combination of invariant theory and geometric
multiscale analysis was investigated in [24] and [25]. There, the authors introduced an

a�ne invariant geometric scale-space. Part of this work was extended to other groups
as well in [18], [19]; see also [4]. The shape representations which we derive allow us
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to compute invariant signatures at di�erent scales and in a robust way. These ows are

already being used with satisfactory results in various applications [12].

The a�ne curvature ow was introduced precisely to give an a�ne invariant multiscale

representation of planar shape. For closed convex curves, the a�ne curvature ow is

found by evolving the curve in the direction of its a�ne normal, proportional to the a�ne

curvature, and so has the form

xt = �n; (11:1)

where � is the a�ne curvature and n the a�ne normal. Interestingly, although the a�ne
curvature depends on fourth order derivatives of the parametrized curve, we can replace

(11.1) by a much simpler ow whose image curves are the same, di�ering only by an

inessential reparametrization. Speci�cally, we rewrite the a�ne normal n in terms of the

tangential and Euclidean normal directions to the curve, leading to an evolutionary ow
of the form

xt =
3

p
�e ne + F t; (11:2)

where �e is the Euclidean curvature, ne the Euclidean (inward) normal, and F is some
function of the curvature and its derivatives whose precise form is irrelevant. Indeed,
since the tangential component F t in (11.2) only a�ects the reparametrization of the
image curve, this term can be safely omitted (or even replaced by any other convenient

tangential term eF t if desired). As a result, the ow (11.1) can be written in the equivalent
(but non-a�ne-invariant) form

xt =
3

p
�e ne: (11:3)

Note that, in the form (11.3), the ow can be extended to nonconvex curves | inection
points have zero Euclidean curvature, but that does not cause any di�culties for either
the Euclidean normal or curvature, even though the a�ne curvature is not well de�ned at
such points. In particular, if the curve is given as the graph of a function y = u(x), then
the normal version (11.3) of the a�ne curvature ow has the particularly simple form

ut =
3

p
uxx : (11:4)

An alternative, useful formulation of the a�ne ow is obtained by taking the cross

product of (11.2) with the tangent vector xr to the parametrized curve x(r; t) at time
t. Using the formula (3.4) for the Euclidean curvature of a parametrized curve x(r) =
(x(r); y(r)), and the fact that xr ^ ne = jxrj2, we �nd that the components x(r), y(r) of

x must satisfy the underdetermined second order partial di�erential equation

(xr ^ xt)3 = xr ^ xrr ; or (xryt � xtyr)
3 = xryrr � xrryr : (11:5)

Conversely, since xr is parallel to the unit tangent vector t, given a solution to (11.5),
it must also satisfy (11.2) for some choice of tangential component F t, and hence the
individual image curves for each value of t will describe solution to the a�ne curvature

ow (11.1) (although they will not necessarily have the correct parametrization to satisfy

the normal version (11.3)).
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Figure 10. Quintic Fan.

Very few nontrivial particular solutions to the a�ne curvature ow are known. First,
the curves of constant a�ne curvature will evolve analogously to the Euclidean circles.
Thus, an initial ellipse will remain elliptical, having the same eccentricity and orientation,
while collapsing to a point. Moreover, recent results of Angenent, Sapiro, Tannenbaum,
[5], demonstrate a smooth closed embedded curve remains regular, eventually shrinking to
a point.

There is an a�ne analogue of the grim reaper. If we choose the vertical axis to

translate along, the solution is obtained by setting ut = c, for constant c in (11.4). The
result is a vertically translating parabolic solution

y = u(x; t) = 1
2
c3(x� x0)

2 + c(t� t0): (11:6)

We have also constructed some examples of solutions having inection points. The
simplest example is found by assuming ut = cx in (11.4). Omitting an inessential integra-

tion constant, the resulting solution is

y = u(x; t) = 1
20
c3x5 + ctx;

which, at each value of t, has a stationary inection point at the origin. The successive
image curves of the \quintic fan" are depicted in Figure 10.

To produce explicit solutions with non-stationary inection point is more di�cult.

The following procedure allows us to describe another solution having a moving inection
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Figure 11. Parabolic Scooper with Inection Point Locus.

point. In fact the whole curve precesses under the one-parameter a�ne ow (x; y) 7!
(x+ s; y+ sx+ 1

2
s2+ cs), with in�nitesimal generator @x+(x+ c)@y, where c is a constant.

With this in mind, we consider the parametrized family of curves

x(r; t) = (w(r) + t; 1
2
(w(r) + t)2 + br + ct); (11:7)

where w(r) is to be determined. Substituting into (11.5), we �nd that w must satisfy the
reduced ordinary di�erential equation

bwrr = bw3
r � (cwr � b); (11:8)

which can clearly be integrated by quadrature. Let us specialize to the case b = c = 1,

whereby (11.8) reduces to the �rst order di�erential equation

dz

dr
= 1� 3z + 3z2 (11:9)

in z = wr. Solving (11.9) (and ignoring integration constants), we �nd

z(r) =
1

2
+

1

2
p
3
tan

p
3

2
r; w(r) = 1

2
r � 1

3
log cos

p
3

2
r; (11:10)

which, upon substitution into the de�ning equation

x(r; t) = (w(r) + t; 1
2
(w(r) + t)2 + r + t); (11:11)
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Figure 12. Parabolic Scooper.

produces the desired solution. The curve looks like a version of the Euclidean grim reaper,
but bent around a parabola. It has a triple inection point on the interior half of the
curve, close to the point of maximum curvature. Since xr ^xrr = 0 at the inection point,
it is explicitly given by solving z = wr = 1, so that r = 2�=3

p
3. Thus, the inection point

traces out a parabola

y = 1
2
x2 + x +

�

3
p
3
� 1

3
log 2;

see Figure 11 for a picture of the curve (at t = 0) and the parabolic locus traced out by

the inection points. The actual curve evolution, which we propose to call the \parabolic
scooper" is depicted in Figure 12; notice the inection parabola reappearing as an envelope
to the curve family.

An important point of interest of this example is that it describes the asymptotic be-
havior in the small of any (triple) inection point that is precessing. Indeed, translating the
inection point for t = 0 to the origin, one �nds the following convenient reparametrization

x(r) = �
Z

dr

1 + r3
= �r + 1

4
r4 � � � � ;

y(r) =
1

2
x(r)2 �

Z
rdr

1 + r3
= � 1

20
r5 +

11

112
r8 � � � � ;

clearly demonstrating the nature of the inection point.

Finally, for numerical implementations of the a�ne ow based on the Osher-Sethian

level curve algorithm [20] as well as explicit applications to invariant planar curve rep-
resentation, see [25]. Implementations based on the applications of our a�ne-invariant
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�nite di�erence approximations are under development, and will form the subject of a

subsequent work.
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