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1 Introduction

In this paper, we continue our work on �nding a suitable, implementable nonlinear

extension of the powerful linear H1 design methodology. In what follows, we will just

consider discrete-time systems, even though the techniques elucidated below carry over

to the continuous-time setting as well.

Our approach is based on previous work ([14], [15]) in which we considered systems

described by analytic input/output operators. A key idea here involved the expression of

each n-linear term of a suitable Taylor expansion of the given operator as an equivalent

linear operator acting on a certain associated tensor space which allowed us to iteratively

apply the classical commutant lifting theorem in designing a compensator. (Our class

of operators includes Volterra series [9].)
More precisely, in such an approach one is reduced to applying the classical (linear)

commutant lifting theorem to an H2-space de�ned on some Dn (where D denotes the
unit disc). Now when one applies the classical result to Dn (n � 2), even though
time-invariance is preserved (that is, commutation with the appropriate shift), causality

may be lost. Indeed, for systems described by analytic functions on the disc D (these
correspond to stable, discrete-time, 1-D systems), time-invariance (that is, commutation
with the unilateral shift) implies causality. For analytic functions on the n�disc (n > 1),
this is not necessarily the case. For dynamical system control design and for any physical
application, this is of course major drawback for such an approach. (The compensators

we obtained were \weakly causal" and causal approximations were discussed.)
Hence for a dilation result in H2(Dn) we need to include the causality constraint

explicitly in the set-up of the dilation problem. It is precisely this problem which mo-
tivated the mathematical operator-theoretic work of [16] and [13] which incorporated
Arveson theory [1] into the dilation, commutant lifting framework.

While, the general method explicated in this paper is based on a causal extension
of the commutant lifting theorem, for the purposes of the operators and spaces which
appear in control we will give a direct simple method for �nding the optimal causal

compensators. In fact, we will show that the computation of an optimal causal nonlinear

compensator may be reduced to a classical interpolation problem.

We now briey outline the contents of this paper. In Section 2, we de�ne causality

and time-invariance as applied to analytic mappings. We show in particular that while

in the linear case, time-invariance and boundedness imply causality, this is not true in
general in the nonlinear setting. In Section 3, we formulate the causal optimization

problem to be studied. In Section 4, we discuss the Fourier representation of certain
Hilbert spaces, a technique which we apply throughout the paper. In Section 5, we

prove the main theoretical result of this paper in which we show how to reduce a causal

optimization problem to a problem solvable via the classical commutant lifting theorem
[25]. This is summarized in a computational algorithm in Sections 6 and 7. Sections 8

and 9 are then concerned with our formulation of the nonlinear generalization of the H1

sensitivity minimization problem, which is then solved via a causal iterative commutant
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lifting method in Section 10. Section 11 is devoted to a natural control interpretation

of our optimization procedure, while Section 12 is connected to computational aspects

of our work, namely a nonlinear notion of rationality which reduces our work to �nite

dimensional skew Toeplitz calculations. We illustrate our methods with an example in

Section 13, and �nally in Section 14, we make some concluding remarks.

We conclude this section by noting that there have been other approaches to nonlinear

H1. These include a nonlinear commutant lifting theorem [3], [4], and a very promising

nonlinear game-theoretic approach [7] as well as a nonlinear version of Ball-Helton theory

[6], and the recent work in [26].

Once again, we will just consider discrete-time systems in what follows.

2 Causal Analytic Mappings

In this section, we will de�ne the class of nonlinear input/output operators which we

will study in this paper. In order to do this, we will �rst need to discuss a few standard
results about analytic mappings on Hilbert spaces. See [3], [4], [14], [15], [21] and the
references therein for complete details.

Let G and H denote complex separable Hilbert spaces. Set

Bro(G) := fg 2 G : kgk < rog

(the open ball of radius ro in G about the origin). Then we say that a mapping � :
Bro(G)! H is analytic if the complex function (z1; : : : ; zn) 7! h�(z1g1 + : : :+ zngn); hi
is analytic in a neighborhood of (1; 1; : : : ; 1) 2 Cn as a function of the complex variables
z1; : : : ; zn for all g1; : : : ; gn 2 G such that kg1 + : : :+ gnk < ro, for all h 2 H, and for all
n > 0.

We will now assume that �(0) = 0. It is easy to see that if � : Bro(G) ! H is
analytic, then � admits a convergent Taylor series expansion ([21], page 97), i.e.,

�(g) = �1(g) + �2(g; g) + � � � + �n(g; � � � ; g) + � � �

where �n : G�� � ��G ! H is an n-linear map. Clearly, without loss of generality we may

assume that the n-linear map (g1; � � � ; gn)! �(g1; � � � ; gn) is symmetric in the arguments

g1; � � � ; gn. This assumption will be made throughout this paper for the various analytic
maps which we consider. For � a Volterra series, �n is basically the nth-Volterra kernel.

Now set

�̂n(g1 
 � � � 
 gn) := �n(g1; � � � ; gn):
Then �̂n extends in a unique manner to a dense set of G
n := G
 : : :
G (tensor product
taken n times). Notice by G
n we mean the Hilbert space completion of the algebraic

tensor product of the G's. Clearly if �̂n has �nite norm on this dense set, then �̂n extends
by continuity to a bounded linear operator �̂n : G
n ! H. By abuse of notation, we

will set �n := �̂n. (Recall that an n-linear map on G � G � � � � � G (product taken n
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times) becomes linear on the tensor product G
n. For details about the construction of

the tensor product, see [2], pages 24-27.)

We now recall the following standard de�nitions:

De�nitions 1.

(i) Notation as above. By a majorizing sequence for the analytic map �, we mean a

positive sequence of numbers �n n = 1; 2; : : : such that k�nk < �n for n � 1. Suppose

that � := lim sup�n
1=n < 1. Then it is completely standard that the Taylor series

expansion of � converges at least on the ball Br(G) of radius r = 1=� ([21], page 97).

(ii) If � admits a majorizing sequence as in (i), then we will say that � is majorizable.

Let H2
K(D

n) denote the standard Hardy space of CK{valued analytic functions on
the n{disc Dn (D denotes the unit disc) with square integrable boundary values. We set
H2

K := H2
K(D) and and H2 := H2

1 . We denote the shift on H2
K(D

n) by S(n). Note that
S(n) is de�ned by multiplication by the function (z1 � � � zn). On H2

K we set S(1) =: U (U

is given by multiplication by z).
We now consider an analytic map � with G = H = H2

k : Note that

H2
k 
 � � � 
H2

k = (H2
k )


n �= H2
K(D

n) with K = kn (1)

where we map 1
 � � � 
 z 
 � � � 
 1 (z in the i-th place) to zi, i = 1; � � � ; n. Clearly, S(n)
corresponds to U
n under this identi�cation.

We will identify �n as a bounded linear map from H2
K(D

n)! H2
k via the canonical

isomorphism (1). Then we say that � is time-invariant if

�nS(n) = U�n; 8n � 1: (2)

(We will also say each �n is time-invariant.) Equivalently, this means that U� = � � U
on some open ball about the origin in which � is de�ned.

Now set
P
(j)

(n) := I � S
j
(n)S

�j
(n); j � 1; n � 1:

Note

P (j) := P
(j)

(1) = I � U jU�j:

Then we say that � is causal if

P (j)�n = P (j)�nP
(j)

(n); j � 1; n � 1: (3)

(We also say each �n is causal.) Equivalently, �n : H2
K(D

n) ! H2
k is causal if for

F (z1; : : : ; zn) 2 H2
K(D

n),

F (z1; : : : ; zn) =
X

i1;:::;in�0

Fi1;:::;inz
i1
1 � � � zinn ; �n(F )(z) :=

X
m�0

fmz
m;
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each fm only depends on

fFi1;:::;in : 0 � i1; : : : ; in � mg:

This means that for

F (z1; : : : ; zn) =
X

maxfi1;:::;ing�m

Fi1;:::;inz
i1
1 � � � zinn ;

we have that

(I � UmU�m)�n(F (z1; : : : ; zn)) = 0: (4)

We would now like to discuss the relationship between time-invariance and causality.

For simplicity, we assume k = 1, i.e., we work with SISO systems. Let � : H2 ! H2 be

linear and time-invariant (i.e., intertwines with the shift). Then it is easy to see that �
is causal. Indeed, �U = U� implies

UmU�m�UmU�m = UmU�mUm�U�m

= Um�U�m

= �UmU�m

which immediately implies

P (m)�P (m) = P (m)�; 8m � 1;

that is, � is causal.

In the nonlinear setting however, time-invariance may not imply causality. As a
concrete example, let �o : (H

2)
2 ! H2 be a linear operator such that U
2�o = �oU ,
de�ned by

(�o(f 
 g))(z) :=
1X

m=0

(fm+1fm + fmgm + fmgm+1)z
m;

where

f(z) =
1X

m=0

fmz
m; g(z) =

1X
m=0

gmz
m:

Now set

�(f) := �o(f 
 f); f 2 H2:

Then � is an analytic, time-invariant map. (In fact � is a homogeneous polynomial of
degree 2.) But � is not causal. Indeed,

(P (1)�(f))(z) = 2f1f0 + f20 ; z 2 D

(P (1)�(P
(1)

(2) f))(z) = f20 ; z 2 D:

Thus P (1)�(f) 6= P (1)�(P
(1)

(2) f), for example for f(z) := 1 + z for z 2 D. (Note that

under the identi�cation (1), P
(1)

(2) corresponds to P (1) 
 P (1).)
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3 Causal Optimization Problem

One of the key techniques in this paper will be to reduce a nonlinear generalization of

the H1 sensitivity minimization problem to a series of linear causal optimization

problems. (This will be done in Sections 8, 9, 10 below.) In this section, we will

formulate this new causal problem.

As above, we let S(n) denote the unilateral shift onH
2
K(D

n) given by multiplication by

(z1 � � � zn). Since H2
K(D

n) will be �xed in the discussion we will let S := S(n). As above,

U will denote the unilateral shift on H2
k given by multiplication by z, and � 2 H1

k�k will

be an inner k � k matrix-valued H1 function (i.e., a k � k inner matrix with entries

H1 scalar functions). Finally W : H2
K(D

n) ! H2
k will denote a causal, time-invariant

bounded linear operator (in the sense of (2) and (3) above).
We can now state the causal H1-optimization problem (COP): Find

� := inffkW ��Qk : Q : H2
K(D

n)! H2
k ; Q causal, time-invariantg: (5)

Moreover, we want to compute an optimal, causal, time-invariant Qopt such that

� = kW ��Qoptk: (6)

If we drop the causality constraint the solution to problem (5) is provided by the
classical commutant lifting theorem [25]. With the causality constraint, the solution to
(COP) is abstractly provided by a causal commutant lifting theorem [16], [13].

In this paper, based on this work we will provide a simple solution to the problem
(COP) without directly referring to the operator theoretic results of [16] and [13]. In
fact, we will show how to directly reduce the computation of � to a classical interpolation

problem handled by the ordinary commutant lifting theorem, a computational procedure
for which was given in [14] and [15]. We will also describe how to get the corresponding
optimal parameter Qopt.

Our technique will be based on a reduction theorem stated in Section 5. In order to
formulate this result, we will �rst discuss the Fourier representation which we do in the

next section.

4 Fourier Representation

In what follows we will have to use the Fourier representation of elements of H2
K(D

n).
We refer the reader to [25] for all the details.

We �rst precisely de�ne all the relevant spaces. First we denote by

`2(H2
K) :=

1M
i=1

H2
K ;

the Hilbert space of all column vectors

f(z) = [f1(z); f2(z); : : : ; fn(z); : : :]
0; (7)
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(0 stands for tranpose) such that

kfk2 :=
1X
i=1

kfik2; (8)

is �nite. (k k is our generic symbol for a Hilbert space norm (2-norm) as well as the

induced operator norm. So for example in (8), it stands for the usual norm on H2
K as

well as the associated norm on `2(H2
K).) Thus `2(H2

K) is a vector-valued Hardy space.

Indeed, if f(z) is given by (7), then we may write

f(z) =
1X

m=0

amz
m; (9)

where each am is an in�nite column vector with components in CK , and

am =
1

m!
[f

(m)
1 (0); : : : ; f

(m)
j (0); : : :]0:

Clearly,

kfk2 =
1X

m=0

kamk2:

Conversely, if f(z) 2 `2(H2
K) is given in the form (9) for

am = [am1; : : : ; amj; : : :]
0;

then f(z) can be written in the form (7), i.e.,

f(z) = [f1(z); : : : ; fj(z); : : :]
0;

where

fj(z) =
1X

m=0

amjz
m:

In what follows, we will either use representation (7) or (9). The context should always
make the meaning clear.

Next we let S� : `2(H2
K)! `2(H2

K) denote the unilateral shift de�ned by multiplica-

tion by z. Then the Fourier representation of H2
K(D

n) is given by the (linear, bounded)
operator

� := �n : H
2
K(D

n)! `2(H2
K);

which is de�ned by

f(z) := �(F (z1; z2; : : : ; zn))

:=
1X

m=0

zm

2
66666666664

Fm;m;:::;m

Fm;:::;m;m+1

Fm;:::m+1;m+1

...
Fm+i1;m+i2;:::;m+in

...

3
77777777775
; (10)
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where

F (z1; : : : ; zn) =
X

j1;:::;jn�0

Fj1;:::;jnz
j1
1 � � � zjnn ;

and (i1; : : : ; in) 2 In for

In := f(i1; : : : ; in) : i1; : : : ; in � 0; minfi1; : : : ; ing = 0g: (11)

We order the set In in the following manner. We have (i1; : : : ; in) < (i01; : : : ; i
0
n); if

maxfi1; : : : ; ing < maxfi01; : : : ; i0ng: Thus

In =
[
k�0

I(k)n ;

where
I(k)n := f(i1; : : : ; in) 2 In : maxfi1; : : : ; ing = kg:

Each I(k)n is then ordered by the lexicographical order.
Note that we are taking f(z) in the form (9) in the above representation. Moreover,

note that

H2
K(D

n) = fF (z1; : : : ; zn) =
X

j1;:::;jn�0

Fj1;:::;jnz
j1
1 � � � zjnn :

X
j1;:::;jn�0

kFj1;:::;jnk2 <1g:

We can also write

f(z) = [f0;:::;0(z); f0;:::;1(z); : : : ; fi1;:::;in(z); : : :]
0; (12)

where

fi1;:::;in(z) :=
1X

m=0

Fi1+m;:::;in+mz
m; (13)

and (i1; : : : ; in) 2 In:

Next, it is easy to see that � : H2
K(D

n)! `2(H2
K) is an isometry. Indeed, using (10),

(12), and (13), we have

k�(F )k2 = kfk2

=
X

i1;:::;in2In

kfi1;:::;ink2

=
X

i1;:::;in2In

kFi1+m;:::;in+mk2

=
X

j1;:::;jn�0

kFj1;:::;jnk2

= kFk2:

A similar computation shows that the adjoint of � is also an isometry, so that � is
an unitary operator. We next show that

�S = S��: (14)
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Indeed, we see that

�S(F ) = �(z1 � � � znF (z1; : : : ; zn))
= �(

X
j1;:::;jn�0

Fj1;:::;jnz
j1+1
1 � � � zjn+1n )

=
1X

m=0

zm+1

2
66666666664

Fm;:::;m

Fm;:::;m;m+1

Fm;:::;m+1;m+1

...

Fm+i1;m+i2;:::;m+in
...

3
77777777775

= z�(F )

= S��(F ):

By (14), we see that ifW : H2
K(D

n)! H2
k is such thatWS = UW , then the operator

W�� : `2(H2
K)! H2

k satis�es

(W��)S� = WS�� = U(W��);

that is, W�� intertwines the shifts S� and U . Consequently, it is standard (see e.g.,
[12], or [25], page 277) that W�� is represented by a row vector

[W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]; (15)

for (i1; : : : ; in) 2 In: Speci�cally, for any

f(z) = [f0;:::;0(z); f0;:::;1(z); : : : ; fi1;:::;in(z); : : :]
0 2 `2(H2

K);

we have

(W��)f(z) =
X

i1;:::;in2In

Wi1;:::;in(z)fi1;:::;in(z): (16)

We will write that

W�� �= [W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]; (17)

in the sense expressed by (15) and (16).

We would like to make this representation a bit more precise now. Notice that the

action of W�� is determined by its action on

kerS�� = fa 2 `2(H2
K) : a is a column vector with components in CKg:

(This follows from the fact that

`2(H2
K)

�=
1M
j=0

S
j
�(kerS

�
�);
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and that W�� intertwines the shifts S� and U .) Thus we need only to compute the

action of W on

�� kerS�� = fF (z1; : : : ; zn) 2 H2
K(D

n) : F (z1; : : : ; zn) =
X

i1;:::;in2In

Fi1;:::;inz
i1
1 � � � zinn g:

(See (11) for the de�nition of In.) By linearity,

W (
X

i1;:::;in2In

Fi1;:::;inz
i1
1 � � � zinn ) =

X
i1;:::;in2In

Fi1;:::;inW (zi11 � � � zinn ):

So by (10) and (16) we have

W�� �= [W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]; (18)

where

Wi1;:::;in(z) = W (zi11 � � � zinn ); (i1; : : : ; in) 2 In: (19)

The above discussion used only the time-invariance for W . In the next proposition,
we will write down an explicit expression for the row vector of (18) and (19) associated
with W�� in case W is causal.

Proposition 1 Let W : H2
K(D

n) ! H2
k be time-invariant. Then W is causal if and

only if

Wi1;:::;in(z) = zmaxfi1;:::;ingW c
i1;:::;in

(z); 8(i1; : : : ; in) 2 In

where W c
i1;:::;in

(z) 2 H1
k�K (the space of k �K matrix-valued H1 functions).

Proof. By de�nition, for all (i1; : : : ; in) 2 In with maxfi1; : : : ; ing = m, and for all

v 2 Ck, we have by the causality condition (4) that

(I � UmU�m)W��(�(zi11 � � � zinn v)) = (I � UmU�m)Wi1;:::;in(z)v = 0:

Thus

Wi1;:::in(z) = zmW c
i1;:::in

(z) = zmaxfi1;:::;ingW c
i1;:::in

(z); 8(i1; : : : ; in) 2 In; (20)

for some W c
i1;:::in

(z) 2 H1
k�K , as required. 2

By the above discussion (in particular, Proposition 1), we see that for W;� as in the

(COP) problem (5), we have

� = inffkW ��Qk : QS = UQ;Q causal, time-invariantg

= inffkW�� ��Q��k : (Q��)S� = U(Q��); Q causal, time-invariantg

10



= inffkW1 ��Q1k :W1; Q1 : `
2(H2

K)! H2
k ; W1 =W��;

Q1
�= [q0;:::;0(z); zq0;:::;1(z); : : : ; zq1;:::;1;0(z); z

2q0;:::;2(z); : : :]g:
From now on (unless explicitly stated otherwise), we will just work with the operators

W1; Q1 : `2(H2
K) ! H2

k : Essentially, via the unitary equivalence �, we are identifying

the spaces H2
K(D

n) and `2(H2
K). In particular, we identify W with W1 = W��, and Q

with Q1 = Q��. For simplicity of notation, we will denote

W = W1; Q = Q1:

The context should always make the meaning clear.

We now translate the notions of causality and time-invariance for an operator W :
`2(H2

K)! H2
k : We will say that W is time-invariant if WS� = UW; that is,

W �= [W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]:

Moreover, we say that W is causal if the operator W� : H2
K(D

n)! H2
k is causal, which

means (see Proposition 1) that

W �= [W c
0;:::;0(z); zW

c
0;:::;1(z); : : : ; zW

c
1;:::;1;0(z); z

2W c
0;:::;2(z); : : :];

for some
fW c

i1;:::;in
(z) 2 H1

k�K : (i1; : : : ; in) 2 Ing:
Motivated by the above discussion, for W : `2(H2

K)! H2
k time-invariant and causal,

we introduce the operator

Wc
�= [W c

0;:::;0(z);W
c
0;:::;1(z); : : : ;W

c
1;:::;1;0(z);W

c
0;:::;2(z); : : :]

= [W0;:::;0(z);W0;:::;1(z)=z; : : : ;W1;:::;1;0(z)=z;W0;:::;2(z)=z
2; : : :]: (21)

We conclude this section by noting that in order to solve the (COP) problem (5), we

can equivalently solve the following problem: Given W : `2(H2
K) ! H2

k time-invariant

and causal as above, �nd

� = inffkW ��Qk : QS� = UQ; Q causalg: (22)

Thus we have to solve the optimization problem (COP) on the Fourier transformed

operators. This we will show how to explicitly do via a Reduction Theorem in the next
section.
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5 Reduction Theorem

In this section, we formulate and prove our main result which will allow us to reduce the

computation of a causal dilation to an ordinary one based on the classical commutant

lifting theorem, i.e., interpolation in H1. In what follows H, K, Hi; i � 1 will denote

(complex, separable) Hilbert spaces.

In order to prove the result we will need two elementary lemmas:

Lemma 1 Let A : K ! H be a bounded linear operator, and let T and S� be isometries

on H and K, respectively. Then

kTASk = kAk:

Proof. By hypothesis, T �T = I, and SS� = I, and so

kAk2 = kA�Ak = kA�T �TAk

= k(TA)(TA)�k = kTASS�(TA)�k
= k(TAS)(TAS)�k = kTASk2;

as required. 2

Lemma 2 Let

A = [A1; A2; : : :] :
1M
i=1

Hi !H;

where

A(�1
i=1hi) :=

1X
i=1

Aihi:

Further, let U�
i be an isometry on Hi for i � 1. Then

kAk = k[A1; A2; : : :]k = k[A1U1; A2U2; : : :]k:

Proof. Note that

[A1U1; A2U2; : : : ; AnUn; : : :] = [A1; A2; : : : ; An; : : :]

2
666666664

U1 0 0 : : : : : :

0 U2 0 : : : : : :
...

. . .
. . .

...
...

0 : : :
. . . Un

...
... : : : : : :

. . .
. . .

3
777777775
:

But if we set S := �1
i=1Ui, by hypothesis S� is an isometry on �1

i=1Hi, and so by

Lemma 1, we are done. 2

12



Theorem 1 (Reduction Theorem) Notation as above. Then

� = inffkW ��Qkg : QS = UQ; Q causalg (23)

= inffk[W0;:::;0(z)��q0;:::;0(z); z(W0;:::;1(z)��q0;:::;1(z)); : : :]k : (24)

[q0;:::;0(z); : : : ; qi1;:::;in(z); : : :] 2 L(`2(H2
K);H

2
k ); (i1; : : : ; in) 2 Ing

= inffkWc ��Qk : QS = UQg: (25)

(Note in (24) the norm is the operator norm in L(`2(H2
K);H

2
k ). In general, for Hilbert

spaces H and K, L(H;K) denotes the space of bounded linear operators from H to K.)

Proof. The second equality (24) follows from Proposition 1. To prove the third equality

(25), it is enough to prove that for any causal, time-invariant operator


 �= [!0;:::;0(z); !0;:::;1(z); : : : ; !i1;:::;in(z); : : :];

we have k
k = k
ck: (See (21) above.)
Now since

k
k = ess supfk[!0;:::;0(�); !0;:::;1(�); : : : ; !i1;:::;in(�); : : :]k : j�j = 1g;
k
ck = ess supfk[!0;:::;0(�); !c

0;:::;1(�); : : : ; !
c
i1;:::;in

(�); : : :]k : j�j = 1g;
we need to prove that for any �xed � 2 @D that

k[!0;:::;0(�); !0;:::;1(�); : : : ; !i1;:::;in(�); : : :]k = k[!0;:::;0(�); !c
0;:::;1(�); : : : ; !

c
i1;:::;in

(�); : : :]k:
But by Proposition 1,

!i1;:::;in(�) = !c
i1;:::;in

(�)�maxfi1;:::;ingICK ;

where ICK is the identity on CK . Hence by Lemma 2 with Hi := CK and Ui :=
�maxfi1;:::;ingICK (i � 1), we are done. 2

6 Algorithm for Computation of �

We would like to summarize the above discussion with a high-level algorithm for the
computation of the optimal causal performance �, and corresponding causal optimal

interpolant Qopt in (5) and (6).

First of all using the notation of the Reduction Theorem, let us denote

�o := inffkWc ��Qk : QS = UQg: (26)

(See equation (25).) Then the Reduction Theorem guarantees that

� = �o:

This means that a causal optimization problem can be reduced to a classical generalized

interpolation problem in H1.

We can summarize the procedure as follows:

13



(i) LetW;� be as in (5). (ThusW : H2
K(D

n)! H2
k here.) We computeW (zi11 � � � zinn )

where (i1; : : : ; in) 2 In: By (18) and (19), we get

W�� �= [W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :];

and then by (20) we obtain the row matrix

[W0;:::;0(z);W
c
0;:::;1(z); : : : ;W

c
i1;:::;in

(z); : : :]:

(ii) The row matrix represents an operator (see (17)) Wc : `2(H2
K) ! H2

k : Let � :

H2
k ! H2

k 	 �H2
k denote orthogonal projection. Using skew Toeplitz theory ([8],

[17], [20]), we can compute the norm of the operator

�(W;�) := �Wc: (27)

This norm is �, the optimal causal performance.

(iii) Using the classical commutant lifting theorem and skew Toeplitz theory, we can

compute the optimal dilation Bc : `
2(H2

K) ! H2
k of �(W;�). Recall this means

that
BcS� = UBc; �Bc = �(W;�); kBck = k�(W;�)k = �:

We can then write
Bc =Wc ��Qopt;c:

Then from (21), we can �nd the optimal causal dilation

B = W�� ��Qopt�
�:

Note that B and Bc are related as in (21), and similarly for Qopt;c and Qopt�
�.

Qopt : H
2
K(D

n)! H2
k is the optimal causal interpolant, i.e.,

� = kW ��Qoptk:

In the next section, we will give an explicit procedure for the computation of Qopt

in the SISO case.

7 Maximal Vectors and Optimal Dilations

We use the notation of the previous section. We want to show how to compute the

optimal dilation for
A := �(W;�) : `2(H2)! H2:

(We are only considering SISO systems here.)

14



Our discussion will be based on [15] which generalizes a well-known result of Sarason

[24]. We recall that a maximal vector of A, ho 6= 0, is a vector such that kAhok =

kAkkhok.
Given h 2 `2(H2),

h = [h1; h2; : : :]
0;

we write

h� = [�h1; �h2; : : :]:

Moreover, we set

T := �U jH2 	�H2;

where � : H2 ! H2	�H2 denotes orthogonal projection. As above, U is the unilateral

shift on H2, and S� denotes the shift on `2(H2).
With this notation, we can now state the following result:

Proposition 2 Notation as above. Let A : `2(H2) ! H2 	 �H2 be as above (so that

AU = TA). Suppose moreover that that A has a maximal vector ho. Let Bc : `
2(H2)!

H2 be the minimal intertwining dilation of A, i.e., �Bc = A, BcU = S�Bc, and kAk =
kBck. Then if we let � := kAk2, we have that

B =
�h�o
Aho

:

Proof. We sketch the proof following [15]. First of all given ho 2 H, we represent ho as
a column vector with components hj , j � 1 as above. Let

Bc
�= [b1; b2; : : :]:

Then we have that
(Bcho)(z) =

X
j�1

bj(z)hj(z)

(for z 2 D), and

kBck = ess supf
0
@ 1X
j=1

jbj(�)j2
1
A

1

2

: j�j = 1g:

But

kAk2khok2 = kAhok2 � kBchok2 � kBck2khok2 = kAk2khok2:
Thus kAhok2 = kBchok2, and since �Bcho = Aho, we have that Aho = Bcho. Next

notice that X
j�1

jbj(eit)j2 � �

15



almost everywhere, and

1

2�

Z 2�

0
(�

1X
j=1

jhj(eit)j2 � j
1X
j=1

bj(e
it)hj(e

it)j2)dt = 0:

(This follows from the fact that �khok2 = kBchok2.) But using the Cauchy-Schwarz

inequality, the expression under the integral sign is non-negative. Thus

�
X
j�1

jhj(eit)j2 = j
X
j�1

bj(e
it)hj(e

it)j2 � (
X
j�1

jbj(eit)j2)(
X
j�1

jhj(eit)j2) � �
X
j�1

jhj(eit)j2

almost everywhere, which implies that

X
j�1

jbj(eit)j2 = �

almost everywhere, and

hj = �(eit)bj(eit)

almost everywhere for all j � 1, and for some function � 2 H2 satisfying

Aho = Bcho = ��:

Thus for
Bc(e

it) �= [b1(e
it); b2(e

it); : : :]

we have
Bc(e

it)Aho(eit) = �ho(e
it)�

almost everywhere, as required. 2

Remarks.

(i) As remarked above, from the optimal dilation Bc, we can solve for Qopt;c via

Bc =Wc ��Qopt;c:

The optimal causal interpolant is then derived as described as in the last section.

(ii) In some cases it may be more convenient to derive the optimal dilation from a
maximal vector of A�. A similar proof to the one just given shows that

Bc =
A�h1

h1
(28)

where h1 2 H2 	�H2 is a maximal vector for A�.
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Figure 1: Standard Feedback Con�guration

8 Nonlinear Control Problem

We will now describe the physical control problem in which we are interested. In our
treatment which follows, we will add the causality constraint to the results of [15], and

thereby derive a physically realizable nonlinear optimization procedure. First, we will
need to consider the precise kind of input/output operator we will be considering. As
above, H2

k denotes the standard Hardy space of Ck-valued functions on the unit disc.
We now make the following de�nition.

Then we say an analytic input/output operator � : H2
k ! H2

k is admissible if it is

causal, time-invariant, majorizable, and �(0) = 0. We denote

Cl := fspace of admissible operatorsg:

Since the theory we are considering is local, the notion of admissibility is su�cient for
all of the applications we have in mind.

We now begin to formulate our control problem. Referring to Figure 1, P represents a
physical plant which we assume is modelled by an admissible operator. In our problem,
we are required to design a feedback compensator C in such a way as to attentuate
the e�ect of the �ltered disturbances (�ltered by the \weight" W ) d. The un�ltered
disturbances v are assumed to have energy (i.e., 2-norm) bounded by some �xed constant.

This leads to following kind of mathematical problem. See [14] and [15] for more details.
Let P;W denote admissible operators, with W invertible. Then we say that the

feedback compensator C stabilizes the closed loop if the operators (I + P � C)�1 and

C � (I + P � C)�1 are well-de�ned and admissible. One can show that C stabilizes the
closed loop if and only if

C = q̂ � (I � P � q̂)�1 (29)

for some q̂ 2 Cl. (See [14], [15] and the references therein.) Note that the weighted sensi-

tivity (I + P � C)�1 �W can be written as W �P �q, where q := q̂ �W . This is precisely

the operator relating the disturbance v to the output y. (Since W is invertible, the data

q and q̂ are equivalent.) In this context, we will call such a q, a compensating parameter.
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Note that from the compensating parameter q, we get a stabilizing compensator C via

the formula (29).

As in [15], the problem we would like to solve here, is a nonlinear version of the

classical disturbance attenuation problem. This corresponds to the \minimization" of

the \sensitivity" W � P � q taken over all admissible q. In order to formulate a precise

mathematical problem, we need to say in what sense we want to minimizeW�P �q. This
we will do in the next section where we will propose a notion of \sensitivity minimization"

which we seems quite natural to analytic input/output operators. For the linear case of

sensitivity minimization see [10], [18] and the references therein.

9 Nonlinear Sensitivity Function

This section follows very closely the set-up of [15]. However, now we explicitly put in

the causality constraint.
We begin by de�ning a fundamental object, namely a nonlinear version of sensitivity.

We should note that while the optimal H1 measure of performance is a real number
in the linear case [18], the measure of performance which seems to be more natural in
this nonlinear setting is a certain function de�ned in a real interval. This new kind of
performance criterion is one of the keys concepts developed in [14] and [15]. See also

Section 11, for a further analysis of the physical meaning of our nonlinear sensitivity
function.

In order to de�ne our notion of sensitivity, we will �rst have to partially order germs
of analytic mappings. All of the input/output operators here will be admissible. We
also follow here our convention that for given � 2 Cl, �n will denote the bounded linear

map on the space (H2
k )


n �= H2
K(D

n) (with K = kn) associated to the n-linear part of �
which we also denote by �n (and which we always assume without loss of generality is
symmetric in its arguments). The context will always make the meaning of �n clear.

We can now state the following de�nitions:

De�nitions 2.

(i) For W;P; q 2 Cl (W is the weight, P the plant, and q the compensating parameter),

we de�ne the sensitivity function S(q),

S(q)(�) :=
X
n=1

�nk(W � P � q)nk

for all � > 0 such that the sum converges. Notice that for �xed P and W , for each

q 2 Cl, we get an associated sensitivity function.

(ii) We write S(q) � S(~q), if there exists a �o > 0 such that S(q)(�) � S(~q)(�) for all

� 2 [0; �o]. If S(q) � S(~q) and S(~q) � S(q), we write S(q) �= S(~q). This means that

S(q)(�) = S(~q)(�) for all � > 0 su�ciently small, i.e., S(q) and S(~q) are equal as germs

of functions.

18



(iii) If S(q) � S(~q), but S(~q) 6� S(q), we will say that q ameliorates ~q. Note that this

means S(q)(�) < S(~q)(�) for all � > 0 su�ciently small.

Now with De�nitions 2, we can de�ne a notion of \optimality" relative to the sensi-

tivity function:

De�nitions 3.

(i) qo 2 Cl is called optimal if S(qo) � S(q) for all q 2 Cl.
(ii) We say q 2 Cl is optimal with respect to its n-th term qn, if for every n-linear q̂n 2 Cl,
we have

S(q1 + : : :+ qn�1 + qn + qn+1 : : :) � S(q1 + : : :+ qn�1 + q̂n + qn+1 + : : :):

If q 2 Cl is optimal with respect to all of its terms, then we say that it is partially

optimal.

10 Iterative Causal Commutant Lifting Method

In this section, we discuss a construction from which we will derive both partially optimal
and optimal compensators relative to the sensitivity function given in De�nitions 2

above. As before, P will denote the plant, and W the weighting operator, both of which
we assume are admissible. We always suppose that P1 (the linear part of P ) is an
isometry, i.e., P1 is a k � k inner matrix-valued H1 function. (P1 corresponds to � of
Section 6.)

We begin by noting the following key relationship:

(W � P � q)l =Wl �
X

1�j�l

X
i1+���+ij=l

Pj(qi1 
 � � � 
 qij); 8l � 1:

Note that once again for � admissible, �n denotes the n-linear part of �, as well as the
associated linear operator on H2

K(D
n):

We are now ready to formulate the iterative causal commutant lifting procedure. Let

� : H2
k ! H2

k 	 P1H
2
k denote orthogonal projection. Using the above (see (27)) we may

choose q1 causal such that

kW1 � P1q1k = k�(W1; P1)k:

Now given this q1, we choose a causal q2 such that

kW2 � P2(q1 
 q1)� P1q2k = k�(W2 � P2(q1 
 q1)); P1)k:

Inductively, given q1; : : : ; qn�1, set

Ŵn := (Wn �
X

2�j�n

X
i1+���+ij=n

Pj(qi1 
 � � � 
 qij)) (30)

19



for n � 2. Then we may choose qn such that

kŴn � P1qnk = k�(Ŵn; P1)k: (31)

Note that in each step of the procedure, the new \weight" Ŵn is determined by the

n-linear part Wn of the original weight, and the optimal causal parameters chosen pre-

viously (namely, q1; : : : ; qn�1). The \plant" P1 remains �xed throughout the procedure.

Thus if P1 is rational, the iterative causal commutant lifting procedure takes place on

the �nite dimensional space H2
k 	 P1H

2
k , and may therefore be reduced to �nite matrix

computations. This will be illustrated with an example in Section 13.

The following facts can be proven just as in [14] and [15] to which we refer the

reader for the proofs. (See in particular [15], pages 849-853 .) First the causal iterative

commutant lifting procedure converges:

Proposition 3 With the above notation, let q(1) := q1 + q2 + � � �. Then q(1) 2 Cl.

Next given any q 2 Cl, we can apply the causal iterative commutant lifting procedure
to W � P � q. Now set

SC(q)(�) :=
X
n=1

�nk�(Ŵn; P1)k:

Then we have,

Proposition 4 Given q 2 Cl, there exists ~q 2 Cl, such that S(~q) � SC(q). Moreover ~q
may be derived from the causal iterated commutant lifting procedure.

Moreover, as in [15] we have the following results:

Proposition 5 q is partially optimal if and only if S(q) �= SC(q).

Theorem 2 For given P and W as above, any q 2 Cl is either partially optimal or can

be ameliorated by a partially optimal compensating parameter.

Finally we have,

Theorem 3 Let P and W be single-input/single-output admissible operators. If the

linear part of P is rational, then the partially optimal compensating parameter qopt con-

structed by the iterated causal commutant lifting procedure is optimal.

The proof of this last result is based on the uniqueness of the optimal interpolant

in the case when k = 1, and when the space H2 	 P1H
2 is �nite dimensional. In fact,

the conclusion of Theorem 3 remains valid under the hypotheses that the operators

�Wj; j � 1 and �Pi; i � 2 are compact (and k = 1). See [15].
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11 Control Interpretation of Iterated Lifting

We would like to mention here what we believe to be a very natural way of looking at

the optimization procedure discussed above. For convenience, we will only treat SISO

systems here.

We refer again to Figure 1. We consider the problem of �nding

�� := inf
C

sup
kvk��

k[(I + P � C)�1 �W ]vk; (32)

where we assume all the operators involved are admissible. Thus we are looking at a

worst case disturbance attenuation problem where the energy of the signals v is required

to be bounded by some pre-speci�ed level �. (In the linear case of course since everything

scales, we can always without loss of generality take � = 1. For nonlinear systems, we

must specify the energy bound a priori.) Again with the assumptions made in Section
8, one see that (32) is equivalent to the problem of �nding the problem of �nding

�� = inf
q2Cl

sup
kvk��

k(W � P � q)vk: (33)

The iterated causal commutant lifting procedure gives an approach for approximating
a solution to such a problem. Briey, the idea is that we write

W = W1 +W2 + � � � ;
P = P1 + P2 + � � � ;
q = q1 + q2 + � � � ;

where Wj; Pj ; qj are homogeneous polynomials of degree j. Notice that

�� = � inf
q12H1

kW1 � P1q1k+O(�2); (34)

where the latter norm is the operator norm (i.e., H1 norm). From the classical commu-
tant lifting theorem we can �nd an optimal (linear, causal, time-invariant) q1;opt 2 H1

such that

�� = �kW1 � P1q1;optk+O(�2): (35)

Now the iterative procedure gives a way of giving higher order corrections to this
linearization. Let us illustrate this now with the second order correction. Indeed, having
�xed now the linear part q1;opt of q in (33), we note that

W (v)� P (q(v))� (W1 � P1q1;opt)(v) =

W2(v)� P2(q1;opt(v))� P1q2(v) + higher order terms:

Regarding Ŵ2; P2; q2 as linear operators on H2
H2 �= H2(D2;C) as above, we see that

sup
kvk��

k(W � P � q)(v)� (W1 � P1q1;opt)vk � �2kŴ2 � P1q2k+O(�3);
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where the \weight" Ŵ2 is given as in (30). The point of the iterative causal commutant

lifting procedure is now to pick an optimal admissible q2;opt, and so on.

In short, instead of simply designing a linear compensator for a linearization of the

given nonlinear system, this methodology allows one to explicitly take into account the

higher order terms of the nonlinear plant, and therefore increase the ball of operation

for the nonlinear controller.

12 Rationality

A nice feature of the iterated procedure described above, is that if we start out with

rational data, then we derive compensating parameters at each step which are also

rational. Thus the whole procedure is amenable to digitable implementation in such
cases. Let us briey review the notion of rationality in this context. See [14] for all the
details.

Let W : H2
K(D

n)! H2
k be time-invariant and admit the row vector representation

W�� �= [W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]; (i1; : : : ; in) 2 In:

Then we say that W is rational if there exists a numerical polynomial q(z) 6= 0 such that

q(z)[W0;:::;0(z);W0;:::;1(z); : : : ;Wi1;:::;in(z); : : :]

is a row of matrix-valued polynomials of bounded degree. Moreover if W is causal, we
say that W is causal rational if

Wc
�= [W0;:::;0(z);W

c
0;:::;1(z); : : : ;W

c
i1;:::;in

(z); : : :];

is rational in the above sense.
The following result may be derived exactly as in [15] (see Theorem (8.7)):

Theorem 4 Notation as above. Suppose that the linear part of the plant is rational.

Then the class of causal rational input/output operators is preserved under the causal

iterated commutant lifting procedure.

Hence for this important class of systems, we are reduced to rational �nite dimen-

sional operations in carrying out our optimization procedure.

13 Example

In this section, we will give an example of our nonlinear design procedure. In what

follows below, we set HD2 := H2(D2), the space of C-valued analytic functions on the
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bidisc D2 with square integrable boundary values. We should note that this example

was �rst worked in [15] without the causality constraint which we impose now.

We let

W (z) =
1� z

2

and P = P1 + P2 where P1 is the operator given by multipication by z2 (in the discrete

Fourier domain), and

P2(F ) =
1

2�i

Z
j�j=1

F (z��1; �)
d�

�

for F 2 HD2
�= H2
H2. More precisely, as we explained above, we can regard a bilinear

map P2 on H2 �H2 as a linear map on H2 
H2, and then we identify H2 
H2 with

HD2 . (The identi�cation is given by z 
 1 ! z1 and 1 
 z ! z2.) Notice that in the

discrete-time domain, P2 is just discrete Fourier transform of the \squaring" map, i.e.,
given the square integrable sequence fang, we have that P2 is the Fourier transform of
the mapping fang ! fa2ng. Thus it is clear that P2 is causal.

We now apply our procedure to the weight W and the plant P . By slight abuse of
notation, we let W : H2 ! H2 denote the operator de�ned by multiplication by W , and
let � : H2 ! H2	P1H

2 =: H1 be orthogonal projection. We set Ao := �W jH1. Notice

that H1
�= C2, and that via this isomorphism, we have the identi�cation

Ao =

"
1
2

0
�1

2
1
2

#
:

But

A�
oAo =

"
1
2

�1
4

�1
4

1
4

#

from which we get that kAok = (
p
5 + 1)=2, and that a maximal vector ho (i.e., a vector

such that kAohok = kAokkhok 6= 0) is given by

ho :=

"
1
��

#

where � := (
p
5 � 1)=2. Using then the Sarason formula [24], we can compute that the

optimal compensating parameter is

q1 :=
�

2(1 � �z)
:

Of course, the above computation was based on standard linear H1-optimization

theory. We now want to show how to get the optimal causal second order compensating
parameter.

For F 2 HD2, let

F (z1; z2) =
1X

j;k=0

Fjkz
j
1z

k
2 :
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Note that the action of the operator (see (30))

�Ŵ2 :=
4

�2
P2(q1 
 q1)

on F is determined by its action on

F00 +
1X
j=1

Fj0z
j
1 +

1X
k=1

F0kz
k
2 :

Thus in order to compute the row vector representing �Ŵ2, we need only compute:

(�Ŵ2)(F00+
1X
j=1

Fj0z
j
1 +

1X
k=1

F0kz
k
2) =

1

2�

Z
j�j=1

(
X
m�0

�mzm��m)(
X
n�0

�n�n)(
X

minfj;kg=0

Fjkz
j�k�j)

d�

�
=

X
minfj;kg=0

(Fjk(�z)
maxfj;kg)=(1 � �2z):

We identify as above an operator 
 : H2
K(D

n) ! H2
k and its Fourier transformed

version 
�� : `2(H2
K)! H2

k .
Therefore (under this identi�cation),

�Ŵ2
�= 1

1 � �2z
[1; �z; �z; �2z2; : : : ; �nzn; : : :];

�Ŵ2;c
�= 1

1 � �2z
[1; �; �; �2; : : : ; �n; : : :];

and

kŴ2k = kŴ2;ck � 2:4195:

Set A = �(�Ŵ2;c); where � : H2 ! H2 	 z2H2 =: H(z2) �= C2 denotes orthogonal

projection. Note that the compressed shift T on H(z2) �= C2 is given by the truncated
Toeplitz operator

T =

"
0 0

1 0

#
:

Using skew Toeplitz theory ([8], [17], [20]), we compute the norm of A and the corre-

sponding optimal vector. Accordingly, we let r(z) := 1 � �2z. Then for � > 0; and

for

� :=
2 � �

(2� � 1)�2
;

24



we compute that

r(T )(�2IC2 �AA�)r(T )� = �2r(T )r(T )� � (1 + 2
1X
i=1

�2i)IC2

= (1� �)�2
"
1 + 1=� � � �1

�1 3� �

#
:

kAk is given by the largest � such that the latter matrix is singular. Thus we see that

k�(�Ŵ2;c)k = kAk � 1:8079;

which is the optimal causal performance. If we drop the causality requirement, then we

get that
k�(�Ŵ2)k � 1:4314:

(Of course, with the additional constraint the norm of the optimal dilation increases.)
Let

yo(z) := 1 + (1 +
1

�
� �)z 2 H(z2);

so that we may regard

yo =

"
1

1 + 1
�
� �

#

under the identi�cation H(z2) �= C2. Then it is easy to compute that

r(T )(kAk2IC2 �AA�)r(T )�yo = 0:

Therefore r(T )�yo is a maximal vector of A�. But from the previous section (see (28)),
the optimal dilation Bopt;c of A is

Bopt;c
�= A�r(T )�yo

r(T )�yo

=
(3 � �)z + 1

(1 + 1
�
� �)z + 1

[1; �; �; �2; �2; : : :]:

Thus the optimal causal dilation Bopt of �(�Ŵ2) is

Bopt
�= (3� �)z + 1

(1 + 1
�
� �)z + 1

[1; �z; �z; �2z2; : : :]:

The optimal causal interpolant q2 is derived from

� 4

�2
P2(q1 
 q1)� z2q2 = �Bopt;
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which gives that

q2 �=
(�� 3)�2

(1 � �2z)((1 + 1=� � �)z + 1)
[1; �z; �z; �2z2; : : :]:

Now set q(2) := q1 + q2; the optimal second order compensating parameter, and

q̂(2) := q(2)W�1: The resulting controller is given by C(2) = q̂(2) � (I � P � q̂(2))�1: Note
that it is not necessary to explicitly compute C(2); since it can be implemented in a

feedback loop with components P and q̂(2) as in [27].

14 Concluding Remarks

In this paper, we have given an iterative approach for the construction of optimal causal
compensators for input/output operators described by analytic mappings. Our proce-

dure generalizes weighted sensitivityH1 minimization in a straightforward natural way.
Hence, it may be regarded as a weighted nonlinear inversion procedure.

In contrast to our previous work using power series approaches ([3], [4], [14], [15]), we
can now guarantee causality a priori. Moreover, the computation of a causal compensator
can be reduced to classical dilation theory, and in fact the skew Toeplitz techniques of

[8], [17], and [20] provide an explicit computational methodology.
The example which we have worked out here, has been given just for the purpose

of illustrating our procedure. We plan to work out a more complicated and realistic
problem, the details of which will be given in an upcoming report.
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