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Abstract

In this paper, we extend to the non-convex case the a�ne invariant

geometric heat equation studied in [30] for convex plane curves. We prove

that a smooth embedded plane curve will converge to a point when evolv-

ing according to this 
ow. This result extends the analogy between the

a�ne heat equation of [30] and the well known Euclidean geometric heat

equation studied in [16].

This paper has been accepted for publication to the Journal of the Amer-

ican Mathematical Society.

1 Introduction.

In the past several years, there has been much research devoted to the study of

evolutions of plane curves where the velocity of the evolving curve is given by the

Euclidean curvature vector. This evolution appears in a number of di�erent pure

and applied areas such as di�erential geometry, crystal growth, and computer

vision. See for example [4, 5, 6, 15, 16, 17, 19, 20, 35] and the references therein.
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As is well known, this Euclidean curvature evolution is a \Euclidean curve

shortening" process, precisely because the 
ow lines in the space of curves are

tangent to the gradient of the length functional. Therefore, the curve perimeter

is shrinking as fast as possible [17]. The behavior of an embedded curve evolving

according to this 
ow has been well-studied. Gage and Hamilton prove that a

convex embedded smooth initial curve converges to a round point under this

evolution [13, 14, 15]. Grayson [16] has shown that a non-convex embedded

curve converges to a convex one, and from there to a round point according

to the Gage and Hamilton result. Since this evolution is based on Euclidean

invariant concepts (Euclidean curvature vector), the solution is invariant only

under rigid plane motions (i.e., the group of proper Euclidean motions in R2

generated by rotations and translations). This equation has also been called the

geometric heat equation.

Recently, the a�ne analogue of the Euclidean curve shortening 
ow was

considered for convex curves [30]. In this case, the velocity of the evolving curve

is given by the a�ne normal vector. The investigation of this type of evolution

was motivated by the search for a�ne invariant 
ows in computer vision and

image processing [32, 31]. Among the results proven in this work is that when a

curve is evolving according to this 
ow, the area shrinks as fast as possible with

respect to a certain a�ne metric [27]. Since the a�ne distance is based on area

[8], in this sense, this evolution is an a�ne shortening 
ow. (See our discussion

in Section 3 as well.) We have also shown that any convex plane curve converges

to an elliptical point (de�ned relative to the corresponding family of normalized

dilated curves) when the deformation is given by this a�ne shortening. These

results make this evolution the a�ne analogue of the Euclidean curve short-

ening for convex curves. We will also refer to this 
ow as the a�ne invariant

geometric equation; see our discussion in Section 3 below. Independently, Al-

varez et al [1, 2] have considered an equivalent model from the point of view

of viscosity solutions. We should also note that very recently, Andrews in [3]

has generalized the results of [30] to convex hypersurfaces moving according to

their a�ne normal.

The goal of this work is to extend the a�ne shortening 
ow to non-convex

curves. One of the key problems to be overcome is the fact that the basic

invariants of a�ne di�erential geometry are not de�ned for non-convex curves.

In particular, we have to de�ne the evolution velocity vector for in
ection points.

This extension must keep the a�ne invariance property, and must reduce to

the original a�ne 
ow for convex curves. In this note, a natural extension is

presented for which these conditions hold. The key step in this extension is

the fact that the Euclidean normal component of the a�ne normal is given

by �1=3N where � denotes the curvature and N the (ordinary) Euclidean unit

normal [30], and in fact it turns out that the evolution is de�ned by taking

the normal velocity vector to be precisely �1=3N . Using techniques based on

[4, 5, 16, 30, 32], we show that any simple closed curve will shrink to a point

under A�ne Curve Shortening. Moreover, we prove that the total curvature of

any such solution tends to 2�. See Theorem 15.1.
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We now summarize the contents of this paper. In Section 2, we discuss

some of the basic facts from a�ne di�erential geometry that we will need in the

sequel. In Section 3, we introduce the a�ne invariant heat equation for convex

curves and sketch the relevant background from [30]. Section 4 is concerned

with the extension of this 
ow to non-convex curves. In Section 5, we prove

short-term existence using a version of Nash-Moser iteration. In Section 6, we

prove uniqueness for C2 initial data, and then in Section 7 establish a version of

the weak and strong maximum principles for A�ne Curve Shortening. Section

8 contains bounds on the curvature which we will need for convergence. In

Section 9, we give a bound on the number of maximal convex and concave arcs.

Counting intersections of solutions is a fundamental tool in the study of one-

dimensional di�usion equations. In Section 10, we recall the weak version of the

intersection comparison theorem due to Matano [21] and note that it applies to

the a�ne heat 
ow. We also show that the strong maximum principle is not

valid for the a�ne heat equation, and only a weak maximum principle holds.

In Section 11, we develop the technique of evolving foliated rectangles which

allows us to rule out the formation of certain singularities in Sections 12 and 13.

Then in Section 14, we give an a�ne version of the Grayson �-whisker lemma,

which we use in our proof of the main result on the convergence of a nonconvex

initial curve to an elliptical point in Section 15.

2 Sketch of A�ne Di�erential Geometry.

In this section, we summarize some of the basic notions from a�ne di�erential

geometry that we will need in the sequel. Our treatment is based on the classical

works [8, 18].

A general a�ne transformation in the plane (R2) is de�ned as

~X = AX +B;(1)

where X 2 R2 is a vector, A 2 GL+2 (R) (the group of invertible real 2 � 2

matrices with positive determinant) is the a�ne matrix, and B 2 R2 is a

translation vector. It is easy to show that transformations of the type (1) form

a real algebraic group A, called the group of proper a�ne motions or full a�ne

group. We will also consider the case of when we restrict A 2 SL2(R) (i.e., the

determinant of A is 1), in which case (1) gives us the group of special a�ne

motions or special a�ne group, Asp.

We now very brie
y recall the notion of \invariant" [10, 18]. A quantity Q is

called a relative invariant of a Lie group G if whenever Q transforms into ~Q by

any transformation g 2 G, we obtain ~Q = 	Q, where 	 is a function of g alone.

If 	 = 1 for all g 2 G, Q is called an invariant [10]. Di�erential invariants may

be de�ned in terms of the prolongation of the action of the relevant transforma-

tion group to the appropriate jet space [22, 23]. A�ne di�erential geometry is

concerned with the di�erential invariants of the special a�ne group Asp. Thus
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all the a�ne invariants, we will discuss below are invariant with respect to Asp,

and relative invariants with respect to the full a�ne group.

In the case of Euclidean motions (A in (1) being a rotation matrix), it is well

known that the Euclidean curvature � of a given plane curve, is a di�erential

invariant of the transformation. In the case of general a�ne transformations, in

order to keep the invariance property, a new de�nition of curvature is necessary.

In what follows, this a�ne curvature will be de�ned [8, 9, 18, 34]. See also [8, 9]

for extensive treatments of a�ne di�erential geometry.

Let C : S1 ! R2 be an embedded curve with curve parameter p (where

S1 denotes the unit circle). We assume throughout this section that all of our

mappings are su�ciently smooth, so that all the relevant derivatives may be

de�ned. A re-parametrization of C(p) to a new parameter s can be performed

such that

[Cs; Css] = 1;(2)

where [X;Y ] stands for the determinant of the 2� 2 matrix whose columns are

given by the vectors X; Y 2 R2. This relation is invariant under proper a�ne

transformations, and the parameter s is called the a�ne arc-length. Setting

g(p) := [Cp; Cpp]1=3;(3)

the parameter s is explicitly given by

s(p) =

Z p

0

g(�)d�:(4)

Note that in the above standard de�nitions, we have assumed that g (the a�ne

metric) is di�erent from zero at each point of the curve, i.e., the curve has

no in
ection points. Since we will be considering closed smooth curves for our

evolutions, in utilizing this classical a�ne di�erential geometry, we must restrict

ourselves to strictly convex curves [8, 9, 18, 30]. In Section 4 we will show how

to get around this problem for the a�ne evolution of non-convex curves.

It is easy to see that the following relations hold [8, 9, 30]:

ds = gdp;(5)

Cs = Cp
dp

ds
;(6)

Css = Cpp
�
dp

ds

�2

+ Cp
d2p

ds2
:(7)

Cs is called the a�ne tangent vector and Css the a�ne normal vector.

By di�erentiating (2) we obtain

[Cs; Csss] = 0:(8)
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Hence, the two vectors Cs and Csss are linearly dependent and so there exists �

such that

Csss + �Cs = 0:(9)

The last equation implies

� = [Css; Csss];(10)

and � is called the a�ne curvature. The a�ne curvature is the simplest non-

trivial di�erential a�ne invariant of the curve C [9]. Note that � can also be

computed as

� = [Cssss; Cs]:(11)

For the exact expression of � as a function of the original parameter p, see [9].

For proofs on the invariance property of the above de�ned a�ne concepts, see

[30].

In the Euclidean case, constant Euclidean curvature � is obtained only for

circular arcs and straight lines. Further, the Euclidean osculating �gure of a

curve C at a point x is always the circle with radius 1=�(x) whose center lies on

the normal at x [34].

In the a�ne case, the conics (parabola, ellipse, and hyperbola), are the only

curves with constant a�ne curvature � (� = 0, � > 0, and � < 0; respectively).

Therefore, the ellipse is the only closed curve with constant a�ne curvature. The

a�ne osculating conic of a curve C at a non-in
ection point x is a parabola,

ellipse, or hyperbola, depending on whether the a�ne curvature � at x is zero,

positive or negative [9, 18, 34].

3 A�ne Shortening of Convex Curves.

We present now the a�ne curve shortening 
ow or a�ne invariant geometric

heat equation for convex curves as formulated in [30]. We will also summarize its

relation with the classical Euclidean curve shortening 
ow, and recall its basic

properties. For all the details and proofs, the reader is referred to [30].

Let C(p; t) : S1 � [0; T ) ! R2 be a family of embedded curves where t pa-

rameterizes the family and p parameterizes each curve. The classical Euclidean

curve shortening 
ow or geometric heat equation is given by [15, 16](
@C(p;t)
@t

=
@2C(p;t)
@~s2

= �(p; t)N ;
C(�; 0) = C0(�);

(12)

where

~s =

Z
k Cp k dp;

is the Euclidean arclength and � and N are the curvature and unit normal,

respectively.
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As pointed out in the Introduction, an embedded curve converges to a round

point when evolving according to (12) [15, 16]. If the initial curve is non-convex,

it becomes convex before it shrinks to a point [16]. Other properties of this

Euclidean curve shortening, and of Euclidean curve evolution in general, can be

found for example in [6, 15, 16, 17, 19, 35].

In [30], we argue that the a�ne analogue of (12) is given by�
@C(p;t)
@t

= Css(p; t);
C(�; 0) = C0(�):

(13)

Based on this evolution, an a�ne invariant curve shortening theory is devel-

oped in [30] for a strictly convex initial curve C0(�). We now summarize those

results which will be necessary for our discussion in the next section. All the

proofs of the following results may be found in [30].

Lemma 3.1 The solution of the evolution (13) is an absolute invariant of the

group Asp of special a�ne motions, and a relative invariant of the group A of

proper a�ne motions.

Theorem 3.2 Notation as above. Then C(p; t) evolving according to (13) re-

mains convex.

Theorem 3.3 The solution of (13) exists as long as the area enclosed by the

evolving curve is bounded away from zero.

Theorem 3.4 Any convex smooth embedded curve converges to an elliptical

point when evolving according to (13). This convergence is in the sense that

the family of dilated normalized curves converges in the Hausdor� metric to an

ellipse.

We would like now to brie
y note the connection of (13) with a gradient 
ow

of the area. We follow here the treatment of [27] to which the reader is referred

to all of the details. Since a�ne geometry is de�ned only for convex curves [8],

we will initially have to restrict ourselves to the (Fr�echet) space of four times

di�erentiable convex closed curves in the plane, i.e.,

C0 := fC : [0; 1]! R2 : C is convex, closed and C4g:

As above, let ds denote the a�ne arc-length. Then, for Laff :=
H
ds the a�ne

length [8], we de�ne on C0

k C kaff :=
Z 1

0

k C(p) ka dp =
Z Laff

0

k C(s) ka ds;

where

k C(p) ka:= [C(p); Cp(p)]:
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Note that the area enclosed by C is just

A =
1

2

Z 1

0

k C(p) ka dp =
1

2

Z 1

0

[C; Cp] dp =
1

2
k C kaff :(14)

Observe that

k Cs ka= [Cs; Css] = 1; k Css ka= [Css; Csss] = �

where � is the a�ne curvature as above. This makes the a�ne norm k � kaff
consistent with the properties of the Euclidean norm on curves relative to the

Euclidean arc-length d~s. (Here we have that k C~s k= 1, k C~s~s k= �.)

Let C(p; t) be a family of curves in C0. A straightforward computation

reveals that the �rst variation of the area functional

A(t) =
1

2

Z 1

0

[C; Cp] dp

is

A0(t) = �
Z Laff (t)

0

[Ct; Cs] ds:

Therefore the gradient 
ow which will decrease the area as quickly as possible

relative to k � kaff is exactly Ct = Css, i.e., equation (13). In this sense then,

(13) is an a�ne curve shortening 
ow.

4 Extension of A�ne Heat Equation to Non-

Convex Curves.

Let C(p; t) : S1 � [0; T ) ! R2 be a family of curves where t parametrizes the

family and p parametrizes each curve.

We now make the standard argument about how to drop the tangential

component of the velocity vector in curve evolution problems such as (13).

Accordingly, given a (parametrized) plane curve C(p; t), we denote its image by
Img[C(p; t)]. Therefore, if the curve C(p; t) is parametrized by a new parameter

w, such that w = w(p; t), @w=@p > 0, we obtain

Img[C(p; t)] = Img[C(w; t)]:

The following lemma (whose proof may be found in [12] and also in [31])

refers to the image of a curve evolving with tangential velocity component. Let

T and N be the Euclidean unit tangent and Euclidean unit normal of the curve,

respectively. Then we have:

7



Lemma 4.1 Let � be a geometric quantity for a curve, i.e, a function whose

de�nition is independent of a particular parametrization. Then a family of

curves which evolves according to

Ct = �T + �N

can be converted into the solution of

Ct = ��T + ��N

for any continuous function ��, by changing the space parametrization of the

original solution. Since � is a geometric function, � = �� when the same point

in the (geometric) curve is taken.

In particular, the lemma shows that Img[C(p; t)] = Img[Ĉ(w; t)], where C(p; t)
and Ĉ(w; t) are the solutions of

Ct = �T + �N

and

Ĉt = ��N ;
respectively.

Now in [30], it is noted that

Css = �1=3N + tangential component;

that is, the Euclidean normal component of the a�ne normal Css is equal to

�1=3N . Since �1=3 vanishes at the in
ection points, by the above argument

we see immediately that the a�ne invariant 
ow given by (13) is geometrically

equivalent to

Ct = �1=3N ;(15)

C0(�) = C(�; 0):

If C is the solution of (13) and Ĉ is the solution of (15), then

Img[C] = Img[Ĉ]:

From the above, Img[Ĉ] is an a�ne invariant of the evolution (15). Note that

the image of the curve (i.e., the geometric curve) is the a�ne invariant, not

the parametrized curve. However, this evolution is well-de�ned for non-convex

curves. We will refer to (15) as the a�ne invariant geometric heat equation.

Hence, in spite of the non-existence of the classical a�ne di�erential in-

variants for non-convex curves [8, 18], our above analysis makes it possible to

extend the a�ne evolutionary 
ow (13) to the non-convex case. This is due to

the invariant property of the in
ection points, and the possibility to \ignore"
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the tangential velocity component since this does not e�ect the geometric evo-

lution of the 
ow. See also [1, 2] for an equivalent formulation of (15) studied

from a viscosity solution framework.

Remark. In [24, 25, 26] we classify invariant 
ows under a given Lie group

action. Using this classi�cation one may show in particular that (15) is the

simplest (in the sense of having the smallest number of spatial derivatives)

nontrivial planar evolution equation invariant under the special a�ne group,

and thus is unique (up to constant factor).

We will devote the remainder of this paper to the study the regularity prop-

erties of (15).

5 Short-Time Existence.

In this section, we verify the short-time existence for the 
ow (15). Because

the conditions of Angenent [4, 5] do not apply to the function �1=3, we must go

through an approximation argument. We assume that our initial curve C0(�) is
C2:

We �rst approximate �1=3 by v = �(�) = ��(�), where

��(�) =
1

3

Z �

0

ds
3
p
� + s2

:(16)

Note that �0(�) > 0, and � 2 C1(R): Assume that fCt : 0 < t < Tg evolves

by v = �(�) with j�j � M for 0 < t < T: Using Nash-Moser iteration, we will

derive an upper bound for

w :=
@v

@~s
:

Recall that ~s denotes the Eulcidean arc-length.

We begin with the evolution equations for v and w. From

@�

@t
= v~s~s + �2v(17)

and v = �(�) we get that

@v

@t
= �0(�)v~s~s + �2v�0(�):(18)

Using the commutation relation

[
@

@t
;
@

@~s
] = �v

@

@~s
;

we get the evolution of w:

@w

@t
=

@

@~s

�
@v

@t

�
+ �vw

= (�0(�)w~s)~s + (�2v�0(�))~s + �vw:(19)
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5.1 Nash-Moser Iteration Applied to w.

Set

Xp(t) :=

Z
Ct

jwjpd~s:

Then

X 0
p(t) =

Z
Ct

(pjwjp�1wt � jwjp�v)d~s

=

Z
Ct

fpjwjp�1(�0(�)w~s + �2v�0(�))~s + p�vjwjp � �vjwjpgd~s:

Integrating by parts, and using 2j�2w~sj � �4 + w2
~s , we get

X 0
p(t) = �p(p� 1)

Z
Ct

�0(�)fjwjp�2w2
~s + �2jwjp�2w~sgd~s+ (p� 1)

Z
Ct

�vjwjpd~s

� �p(p� 1)

2

Z
Ct

�0(�)jwjp�2w2
~sd~s+

p(p� 1)

2

Z
Ct

�4�0(�)jwjp�2d~s+

+ (p� 1)

Z
Ct

�vjwjpd~s

� �2(1� 1=p)

Z
Ct

�0(�)((wp=2)~s)
2d~s+

p2

2

Z
Ct

�4�0(�)jwjp�2d~s+ p

Z
Ct

�vjwjpd~s:

We now take p � 2, so that 1� 1=p � 1=2. Let sup j�j = M and inf �0(�) = �̂.

Then we can �nd an approximating �(�) such that

j�4�0(�)j+ j��(�)j � C;

for some constant C uniformly in the approximating �(�). Then we get,

X 0
p(t) � ��̂

Z
Ct

(wp=2)2~sd~s+
C

2
p2Xp�2(t) + CpXp(t):(20)

We want to get rid of the �rst term of (20) by means of an interpolation in-

equality.

Proposition 5.1 If f is a function on Ct with f 2 C1, and if there exists a

point x0 2 Ct with f(x0) = 0; then

sup
Ct

f2 � kfk2kf 0k2:

Proof. We integrate (f2)~s = 2ff 0 from the zero x0 to any other point x 2 Ct
along two di�erent paths 
1 and 
2 from x0 to x:

f(x)2 =

Z

1

2ff 0d~s =

Z

2

2ff 0d~s
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=

Z

1

ff 0d~s+

Z

2

ff 0d~s

�
Z
Ct

jff 0jd~s

� kfk2 � kf 0k2 by Cauchy-Schwarz;

which completes the proof. 2

Apply this to f = wp=2: Since w = v~s and v must attain a maximum, there

must be a point where f = (v~s)
p=2 = 0: We get

sup jwjp �
�Z

Ct

jwjpd~s
�1=2�Z

Ct

(wp=2)~sd~s

�1=2

:

But since �Z
Ct

wpd~s

�
� sup jwjp=2

�Z
Ct

jwjp=2d~s
�
;

we obtain�Z
Ct

jwjpd~s
�

�
�Z

Ct

wpd~s

�1=4�Z
Ct

(wp=2)2~sd~s

�1=4�Z
Ct

jwjp=2d~s
�

�
�Z

Ct

(wp=2)2~sd~s

�1=3 �Z
Ct

jwjp=2d~s
�4=3

;

and hence,

�
Z
Ct

(wp=2)2~sd~s � � X3
p

X4
p=2

:(21)

Substituting in (20), we �nd that

X 0
p(t) � ��̂ X

3
p

X4
p=2

+
Cp2

2
Xp�2 + CpXp:

Next, if we use the inequality

Xp�2 =

Z
Ct

jwjp�2d~s �
Z
Ct

(1 + jwjp)d~s � L+Xp;

(where L = L(Ct) is the Euclidean length of Ct) we get that

X 0
p(t) � ��̂ X3

p

X4
p=2

+ C(
p2 + 2p

2
)Xp +

CLp2

2
;(22)

which holds for p � 2:
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The di�erential inequality (22) allows us to turn bounds forXp=2 into bounds

for Xp. We must begin with p = 2, in which case we have no bound on

X1 = Xp=2 =

Z
Ct

jwjd~s =
Z
Ct

jv~sjd~s:

But, for p = 2 we have the bound,

kv~sk2 � kvk1=22 � kv~s~sk1=22

� sup jvj1=2 � L(Ct)1=2kv~s~sk1=22 :

Since v = �(�) and L(Ct) are uniformly bounded, we get that

kwk2 � C1kw~sk1=22 ; for C1 constant,(23)

and hence from (20), (22), (23),

dX2

dt
� ��̂

Z
Ct

(w~s)
2d~s+ 4CX2 + 2CL

� � �̂

C4
1

(X2)
2 + 4CX2 + 2CL

which implies

X2(t) �
A2

t
(0 < t < T );(24)

for a su�ciently large constant A2 depending only on sup j�j = M; inf �0 =

�̂; supL(Ct); and T .

5.2 The Iteration Step.

Suppose we have for some p � 2

kwkp=2 �
A

t�
;

or equivalently

Xp=2(t) � Ap=2t�p�=2:

Then (22) implies for X(t) = Xp(t) the di�erential inequality

dX

dt
� ��̂
A2p

t2�pX3(t) + C 0(p2 + 2p)X(t) + C 00p2; (0 < t < T )(25)

where C 0 := C
2
, and C 00 := CL

2
:

We now try to �nd a supersolution of the form

X̂(t) = Bpt�p�
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for (25), i.e., X̂(t) is required to satisfy the reverse inequality. Assume that

B � 2. Substituting, we see that we want (for 0 < t < T ),

�p�Bpt�1�p� � ��̂
A2p

t2�p�3�pB3p + C 0(p2 + 2p)Bpt�p� + C 00p2;

or equivalently,

�p� � ��̂
�
B

A

�2p

t1+2p(���) + C 0(p2 + 2p)t+ C 00p2B�pt1+p� :

Choose

� := �+
1

2p
;

and note that since B � 2, we have that C 00p2B�p � �C; ( �C a constant), and so

we require that

�p� � ��̂(B
A
)2p + C 0(p2 + 2p)T + �CT 3=2+p�;

which holds if we take

B = A

�
p� + �C1(p

2 + 2p) + �C2T
p�

�̂

� 1
2p

;

where
�C1 := C 0T; �C2 := �CT 3=2:

Recapping, we have shown that if kwkp=2 � At�� for 0 < t < T , then kwkp �
Bt�� , i.e.,

kwkp � A

�
p� + �C1(p

2 + 2p) + �C2T
p�

�̂

� 1
2p

t���
1
2p ; 0 < t < T:

We can now carry out the iteration. Let

pk = 2k+1; k � 0;

�k =
1

2
+

k+2X
j=3

2�j ; k � 1;

�0 =
1

2
:

Let A0 be the constant from estimate (24), and de�ne

Ak+1 := Ak

�
pk� + �C1(p

2
k + pk) + �C2T

pk�k

�̂

� 1
p
k+1

:

Then

lim
k!1

Ak = A1 <1; lim
k!1

�k =
3

4
;

13



and so we see that

kwk1 � A1t
� 3

4 for 0 < t < T:

Note that the constant A1 only depends on �̂; T; sup j�j =M; the length of

Ct (L), and
sup
j�j�M

f�4j�0(�)j+ �j�(�)jg:

We now can prove the following result:

Theorem 5.2 Given C0(�) 2 C2; there exists a (classical) solution of (15)

fC(~s; t) : 0 < t < Tg with

max
Ct

j�j = �(t) " 1

as t " T .

Proof. As above, we set

v = ��(�) :=
1

3

Z �

0

(� + s2)�1=3ds:

We assume that C�t evolves according to

@C
@t

= ��(�)N :

Then as in (17,18,19), we get that

@�

@t
= v~s~s + �2v;(26)

@v

@t
= �0�(�)v~s~s + �2v�0�(�);(27)

@w

@t
= (�0�(�)w~s)~s + (�2v�0�(�))~s + �vw;(28)

where as above w := v~s:

Now equation (26) implies that

d

dt
sup j�j � (sup j�j)2��(sup j�j):(29)

Hence if �(t; A) is the solution of

@��

@�
(�; A) = ��(��(�; A))��(�; A)

2;

��(0; A) = A;

14



then

sup
C�
t

j�j � ��(t; sup
C�
0

j�j):

Using the Nash-Moser iteration argument as above, we get that

sup
Ct

jwj � C

t3=4
; 0 < t < T;(30)

where C depends on

sup
0<t<T

sup
Ct

j�j;

but not on �:

The latter bounds then imply the existence of a solution as long as sup j�j
remains bounded. We are almost done now. Indeed, we evolve C�0 by v = ��(�),

with the resulting family fC�t : 0 < t < Tg for some T independent of �: Our

preceding estimates imply that we can extract a subsequence �i # 0 on which

v and � converge uniformly, and still retain the estimate (30). The limit is the

required family satisfying the conclusion of Theorem 5.2. 2

Remark. The bound on w = v~s implies that �1=3(t) is Lipschitz on Ct, and
so in
ection points have at least �fth order contact with their tangents. Recall

that for a generic C3 curve, one only has third order contact at in
ection points.

6 Uniqueness of Solution with C2 Initial Data.

In this section, we give a uniqueness result for solutions of the a�ne heat equa-

tion. Accordingly, we state,

Theorem 6.1 Let C0 be a C2 curve. Then there is a unique classical solution

fCt : 0 < t < Tg of (15).

Proof. Set for ",

C"0(~s) = C0(~s) + "N0(~s);

where N0(~s) is the unit normal to C0(~s): Using the above notation, for � > 0 we

evolve C"0(~s) by v = ��(�): We thereby obtain a family of classical solutions

fC";�t : 0 < t < Tg

on some (short) time interval. Denote the normal variation with respect to "

by h = h";�(~s; t); i.e.,

h";�(~s; t) = h@C
";�(~s; t)

@"
;N ";�(~s; t)i;

15



where N ";�(~s; t) is the unit normal to C";�(~s; t): The normal variation h evolves

by the same equation as the normal velocity:

@h

@t
= �0�(�)

@2h

@~s2
+ �0�(�)�

2h:(31)

By the argument as in Section 5 for w = v~s, we get that j@h
@~s
j is uniformly

bounded. Taking j"j < "0 for some "0 > 0; we can assume that hjt=0 � 1:

(Note that at t = 0, C";�0 does not depend on �. For hjt=0 � 1, the curves C" are
basically \Huygens wave fronts" generated by C"=0:) By the maximum principle

applied to (31), it then follows that

sup
"

sup
0<t<T

sup
C";�
t

h";� < C;(32)

for some constant C. Hence the curves C";�t depend in a C1 manner on ",

uniformly in �; t. So one can take a subsequence �i # 0 for which the

C";�t ! C"t ;

where the C"t also depend C1 on ":

This construction provides us with two classical solutions of the evolution

equation (15) with velocity �1=3, namely fC"t ; C�"t g, between which any other

classical solution must lie (maximum principle{see the next section). But our

sup jhj estimate (32) shows that the width of the region between C"t and C�"t is

O("). Since � is arbitrary, the result follows. 2

7 Maximum Principles.

Let the graph of y = u(x; t) evolve by v = �1=3: Then it is easy to compute

[24, 25] that u satis�es the local a�ne heat equation

ut = (uxx)
1=3:(33)

In this section we consider two solutions u and �u of (33) on a rectangle Q =

[a; b]�[t0; t1]. As always, the parabolic boundary of Q is the union of the bottom

[a; b]� ft0g and the two sides fag � [t0; t1] and fbg � [t0; t1] of Q.

Lemma 7.1 (Weak and Strong Maximum Principles) Assume u and �u

are solutions of (33) on Q, and assume that u, ux, uxx, ut and the corresponding

derivatives for �u are continuous on Q.

1. If u � �u on the parabolic boundary of Q then u � �u on all of Q.

2. If, in addition, u < �u on one of the sides, then u < �u in the interior of Q.
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We remark that the stronger statement (2) in this lemma di�ers from the usual

maximum principle in that we require u < �u on an entire side of Q. The

dichotomy \either u � �u or else u < �u in the interior of Q" which the usual

strong maximum principle states does not hold for a�ne invariant heat equation

(15). See Subsection 10.1 for some relevant examples.

Proof. The �rst part follows from the standard maximum principle arguments.

let m(t) be max ff0g[ fu(x; t)� �u(x; t) j a � x � bgg. Then m(t) is continuous

and equation (33) implies that the righthand derivative of m(t) is nonnegative.

At t = t0 we have m(t0) = 0, so we must have m(t) � 0.

To prove the second part, we consider the di�erence w(x; t) = �u(x; t)�u(x; t).
Assume that w � 0 on the parabolic boundary, and moreover w(a; t) � � for

some constant � > 0. The mean value theorem implies that w satis�es

wt =M(x; t)wxx;(34)

except at points where both uxx and �uxx vanish. In fact,

M(x; t) =
�
u(x; t)2=3 � u(x; t)1=3�u(x; t)1=3 + �u(x; t)2=3

��1
is uniformly bounded from below by some constant, say, M(x; t) �M� > 0.

Let w"(x; t) be the solution of wt =
1
2
M�wxx on Q with zero initial data,

w"(b; t) � �" and w"(a; t) � � for t0 < t � t1. One easily veri�es that w";xx > 0

in the interior of Q, e.g., by using the explicit formula for the solution.

Then we claim that w > w" throughout Q. This is certainly true on the

parabolic boundary where strict inequality even holds. Using M �M� and the

convexity in x of w" one checks that w" is a strict subsolution of (34), at any

point where M is de�ned. Now let t� be the supremum of all t0 � t1 for which

w > w" for t � t0 and all x 2 [a; b]. Suppose that t� < t1. Then there would be

some x� 2 (a; b) at which�
w(x�; t�) = w"(x�; t�); wx(x�; t�) = w";x(x�; t�);

and wt(x�; t�) � w";t(x�; t�);
(35)

and also

wxx(x�; t�) � w";xx(x�; t�) > 0:

This last inequality shows that uxx and �uxx cannot both vanish at (x�; t�) so

that M is well de�ned at (x�; t�), and w satis�es (34) there. We can then

apply the standard maximum principle argument to conclud e that wt(x�; t�) >

w";t(x�; t�) and hence contradict (35).

We have shown w � w" for arbitrary " > 0, and therefore also have w � w0

on Q. Since w0 > 0 in the interior of Q this completes the proof. 2
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8 Local Curvature Bounds.

In this section, we derive the following local estimate which will be useful in the

sequel.

Theorem 8.1 Let u(x; t) be a classical solution of (33) on a � x � b; 0 < t <

T; with

M1 := sup
x;t
fjuxj : a � x � b; 0 < t < Tg <1:

Then for any � > 0 such that a+ � < b� �; there exists a constant C > 0 such

that

juxx(x; t)j �
C

t3=4
(36)

for a+ � � x � b� �; 0 < t < T: The constant C only depends on � and M1.

Proof. The proof follows that of [5], Theorem 3.1. By comparing the graph with

shrinking ellipses one �nds that the bound for juxj implies an L1 bound for u

on any smaller interval a+ � � x � b� �; 0 � t < T: Indeed, juxj �M1 implies

that ju(x; 0)j �M0 for some M0 <1. Now let x0 2 (a; b) be given and set

� = min(x0 � a; b� x0):

The ellipsoid with center at (x0;M0 + h); horizontal axis �, and vertical axis h,

will evolve by v = �1=3 to its center in time t = 3=4(h�)2=3: As it shrinks to its

center, it must remain disjoint from the graph y = u(x; t), and thus we get an

upper bound for u at time t

u(x; t) �M0 + h =M0 +

�
4t

3

� 3
2 1

�
:

The same bound of course also applies to �u(x; t):
Now, using the notation of [5], instead of w�;�(x; t), we use the explicit

(parabola) solutions of the local a�ne heat equation (33)

w(x; t) = �1

2

�
x� �

"

�2

� t

"2=3
+ �;(37)

and count intersections. (These are the a�ne \grim reapers." See [16].) The

solutions (37) allow a slight simpli�cation of the proof in [5]. We will sketch the

argument for completeness, only giving the details where there is a modi�cation

in the original proof of Theorem 3.1.

Fix (x0; t0). Then in order to estimate uxx(x0; t0); choose �; "; � so that

u(x0; t0) = w(�; "; �;x0; t0);

ux(x0; t0) = wx(�; "; �;x0; t0):
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The latter equations give one the freedom to choose " as small as one likes (and

then �; � depend on ").

Accordingly, we choose " > 0 so small such that at t = 0;

jwx(�; "; �;x; 0)j > M1;

whenever

jw(�; "; �;x; 0)j �M1;

i.e., we take a very narrow parabola. We also require that

w(�; "; �;x; 0) < �M1 for x � a; x � b:

These conditions then imply that u(�; 0) � w(�; 0) has exactly two simple zeros

on [a; b], and that

u(a; t)� w(a; t) > 0; and u(b; t)� w(b; t) > 0

hold for 0 � t � t0. Thus the function u(�; 0) � w(�; 0) has two sign changes,

and u(x; t)� w(x; t) does not change sign on fa; bg as t increases.
We would like to apply the Sturmian theorem from [7] at this point. Indeed,

if it were applicable, it would imply that u(�; t0)� w(�; t0) has � 2 zeroes. Due

to the degeneracy of the equation (33), we cannot apply the Sturmian theorem.

However, Matano's elegant argument [21] can be applied since it only uses the

weak maximum principle. (See our discussion in Section 10 below.) From this,

we can conclude that u(�; t0)� w(�; t0) has at most two sign changes.

The proof now goes exactly as in [5]. Indeed, the assumption that uxx(x0; t0) <

wxx(x0; t0) leads to a contradiction, so we �nd

uxx(x0; t0) � wxx(x0; t0) = �"�2:

An upper bound is found in the same way by applying the above argument to �u
instead of u. Thus we have a pointwise estimate for juxxj, which upon computing
the proper ", turns out to be the stated estimate. Indeed, the exponent 3=4 in

(36) follows from scaling. For if ut = (uxx)
1=3, then

�u(x; t) =
1

�
u(�x; �4=3t)

also satis�es �ut = (�uxx)
1=3 with the same derivative bound. 2

9 Convex and Concave Arcs.

In this section, we study the behavior of convex and concave arcs of a given

curve under the a�ne evolution (15).

Let X : S1� [0; T )! R2 be a normal parametrization of a solution fCt : 0 �
t < Tg of v = �1=3. A convex (concave) arc � � Ct is the image of a maximal
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interval [a; b] � R on which �(�; t) � 0 (or � � 0, respectively). (Note that we

can regard X(�; t) as a periodic function de�ned on R in the usual way for each

�xed t 2 [0; T ).)

On the set f(p; t) : �(p; t) 6= 0g we know that � is a solution of

�t = �(�)~s~s + �2�(�);

where �(�) = �1=3. Hence we can apply Matano's arguments [21] and conclude

that the number of sign changes of �(�; t) does not increase with time. Our main
result in this section is an estimate for the number of such sign changes.

Theorem 9.1 Notation as above. If the total curvature K =
R j�jd~s of the

initial curve C0 is �nite, then the number of (maximal) convex arcs at time

t� > 0 does not exceed

K �max
�
CL2

t
3=2
�

;
2

�

�
:(38)

For comparison we remark that solutions of Euclidean curve shortening are

real analytic, and hence always have a �nite number of convex and concave arcs.

Nonetheless no a priori estimate like (38) is known.

Throughout this section we will let Ct be a solution of a�ne curve shortening
whose initial curve C0 is smooth and has only a �nite number of in
ection

points. We will establish the estimate (38) for such curves with the constant k

independent of the solution Ct. Approximation by analytic curves and passage

to the limit then proves the general case.

9.1 Strong maximum principles for � and �

The equations for � and � are degenerate so the strong maximum principle does

not apply immediately.

Proposition 9.2 If �(p; t0) � 0 for a � p � b and if �(a; t0) > 0, �(b; t0) > 0

then for some � > 0 one has �(p; t) > 0 on [a; b]� (t0; t0 + �).

Proposition 9.3 If �(p; t0) � �0 for a � p � b and if �(a; t0) > �0, �(b; t0) > 0

then for some � > 0 one has �(p; t) > �0 on [a; b]� (t0; t0 + �).

Proof. Instead of considering the curves Ct directly, we let C�t be the solution

of @tC�t = ��(�)N , with �� as in (16), which at time t = t0 coincides with Ct0 .
The velocity v� = ��(�) of C�t satis�es

v�t = �0�(�)v
�
~s~s + �2�0�(�)v

� :(39)

Since � is bounded, uniformly in � > 0, we have

�0�(�) � � > 0; 0 � �2�0�(�) �M;
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for certain constants 0 < � < M . As � ! 0 the constant � also decreases to 0.

We will assume below that 0 < � < 1.

By continuity v�(a; t0) > 0 implies that for some " > 0 one has v�(a; t) > 0

for t0 � t � t0+". Similarly, v
�(b; t0) > 0 will hold for t0 � t � t0+". The strong

maximum principle forces v�(p; t) > 0 on the re ctangle R = [a; b]� (t0; t0 + ").

By letting � drop to 0 we only get that v(p; t) � 0 on the rectangle R, i.e. we
get the weak maximum principle. To conclude v > 0 for � = 0, we must get an

estimate for v� on R. We do this with a subsolution for (39).

Let ��(p; t) denote the arclength along C�t from a to p. Then @�
@~s

= 1, and

by the commutation relation [@t; @~s] = �v@~s we �nd that

@~s(@t�) = @t(1)� �v@~s� = ��v;

which is uniformly bounded. Together with ��(a; t) � 0 this implies that @t�
�

and hence �� are bounded (uniformly in �).

Consider

w�(p; t) = ��
�
��(p; t) + 
(t� t0) + 1; �(t� t0)

�
(40)

where �, 
 are constants and

�(x; �) =
1p
�
exp

��x2
4�

	
;

is the fundamental solution of the heat equation �� = �xx. If x > 0 then �(x; �)

is decreasing (�x < 0), and if x > 2
p
� then �(x; �) is convex (�xx > 0) as a

function of x.

On the rectangle R we have �(p; t) � 0 and 0 � t � t0 � " and hence

x = �(p; t)� 
(t� t0) + 1 and � = �(t� t0) satisfy

x2 � (1� 
")2 > 2" > 2�" � 2�

provided " is chosen small enough (remember that � < 1.)

How small " should be chosen depends on 
. If we now choose 
 > � inf ��t ,

then we get

w�
t = ���� + �(
 + ��t )�x

= ���xx + �(
 + ��t )�x

= �w�
~s~s + �(
 + ��t )�x

� �0�(�)w
�
~s~s

� �0�(�)w
�
~s~s + �2�0�(�)w

� :

Hence w�(p; t) is a subsolution on R for all small � > 0. At t = t0 we have

w�(p; t) � 0. If we choose � > 0 su�ciently small then we will have w� � v�

on the vertical sides of R for all � > 0. The maximum principle then implies
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v� � w� on R. In the limit � ! 0 we �nd that v(p; t) � w0(p; t) > 0 on R. This
completes the proof of Proposition 9.2.

The proof of Proposition 9.3 is very similar. One notes that the angle ��(p; t)

of the approximating evolutions evolve according to

@�

@t
=
@v

@~s
= �0�(�)

@2�

@~s2
:(41)

Thus for any constant �0 the function w = �� � �0 evolves according to wt =

�0�(�)w~s~s. One can then use the same subsolution (40) to prove � > �0 on R.
2.

9.2 History of a convex arc.

In what follows below, we will just consider convex arcs. The treatment for

concave arcs is of course identical.

Let � = fX(p; t�) : p� � p � p+g be a given convex arc.

Since �(�; t�) only has a �nite number of sign changes, there is an interval

(p��"; p�) on which �(p; t�) < 0. LetO� be the connected component of the set

f(p; t) 2 R� [0; t�] : �(p; t) < 0g which contains the segment (p��"; p�)�ft�g.
Similarly we de�ne O+ to be the component of f� < 0g which meets the segment
(p+; p+ + ")� ft�g.

Since the curvature satis�es the weak maximum principle (see Lemma 7.1),

Matano's arguments in [21] can be applied to prove:

Lemma 9.4 (Matano) For any (p0; t0) 2 R� (0; t�) with �(p0; t0) 6= 0 there

is a continuous P : [0; t0] ! R with P (t0) = p0 and �(P (t); t) 6= 0 for all

0 � t � t0.

Hence there exists some p with (p; t) 2 O� for every t 2 [0; t�], and we may

de�ne

p�(t) = supfp : (p; t) 2 O�g;
p+(t) = inffp : (p; t) 2 O+g:

For 0 � t � t�; we let �t be the image under X(�; t) of [p�(t); p+(t)]. By

de�nition, p�(t�) = p� and p+(t�) = p+; so �t� = �. We call f�t : 0 � t � t�g
the history of the arc �t� .

Proposition 9.5 Disjoint arcs �1; �2 � Ct have disjoint histories.

Proof. Let

�1
def
= X([p1;�; p1;+]; t�); �2

def
= X([p2;�; p2;+]; t�);
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and assume that p1;� < p1;+ < p2;� < p2;+: Then by the maximality of �i; i =

1; 2 there is a q 2 (p1;+; p2;�) with �(q; t�) < 0: By Matano's lemma 9.4, there

must be a continuous q : [0; t�]! R with �(q(t); t) < 0 and q(t�) = q. But then

p1;+(t) < q(t) < p2;�(t) for 0 � t � t�: 2

9.3 Range of the tangent angle.

Set

�t := f�(p; t) : p�(t) � p � p+(t)g;
where �(�; t) denotes the standard angle parameter on �t.

Lemma 9.6 If 0 � t1 < t2 � t�; then �t1 � �t2 :

In the proof of this proposition it will be convenient to de�ne

q�(t) = inffp > p�(t) : �(p; t) > 0g; q+(t) = supfp < p+(t) : �(p; t) > 0g:

Proposition 9.7 �(p; t) � 0 for p�(t) � p � q�(t).

Proof. Since �(�; t) only has �nitely many sign changes �(p; t) must be positive

for all p in some small interval (q�(t); q�(t) + "). In the interval [p�(t); q�(t)]

one must have �(p; t) � 0, by virtue of the de�nition of q�(t). To see that �

actually vanishes on this interval we assume the contrary, i.e. that �(p0; t0) < 0

for some t0 and p0 2 (p�(t0); q�(t0)). For some " > 0 one has �(p; t0) < 0 for

p�(t0)� " < p < p�(t0). By proposition 9.2 we then would have � < 0 on some

rectangle R = (p�(t0) � "; p0) � (t0; t0 + "). One could then connect (p0; t0)

to (p�(t0) � "; t0) within f� < 0g, so that (p0; t0) 2 O�. This contradicts the
de�nition of p�(t0).

Proposition 9.8 p�(t) is a lower semicontinuous function; p=(t) is upper

semicontinuous. Furthermore, we have

lim sup
t!t0

p�(t) � q�(t0);

lim inf
t!t0

p+(t) � q+(t0):

Proof. Lower semicontinuity of p�(t) follows from openness of O�: given t0
and small " > 0, one has (p�(t0); t0) 2 O� and hence for small � > 0 one has

(p�(t0); t) 2 O� for all t 2 (t0 � �; t�0 + �). Hence p�(t) > p�(t0) � � for

jt� t0j < �. Openness of O+ similarly implies upper semicontinuity of p+(t).

For small " > 0 one will have �(q�(t0) + "; t0) > 0. By continuity of � one

also has �(q�(t0) + "; t) > 0 for jt � t0j < �, if � is small enough. Matano's

lemma provides a continuous P : [0; t0 � �] ! R with �(P (t); t) > 0 and

P (t0 � �) = q�(t0) + ". Let � be the segment fq�(t0) + "g � [t0 � �; t0 + �].
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Suppose that p�(t1) > q�(t0) + " for some t1 2 (t0 � �; t0 + �). Then

(p1; t1) 2 O� for some p1 2 (q�(t0) + "; p�(t1)), which means one can connect

(p1; t1) to (p�(t�)� "; t�) with some graph p = P
(1)
� (t),

t1 � t � t� in O�. By Matano's lemma one can also �nd a continuous

function p = P
(2)
� (t), 0 � t � t1 whose graph lies in O� and goes through

(p1; t1).

Let P� : [0; t�] ! R be the function obtained by combining P
(1)
� and P

(2)
� .

Then the graph of P� lies in O�, and since � > 0 on the segment �, the graph

of P� must be disjoint from �, and so one has P�(t) > q�(t0)+ " for jt� t0j � �.

In particular P (t0) > p�(t0); which contradicts the de�nition of p�(t0). 2

To complete the proof of Lemma 9.6 we now show that

��(t)
def
= �(p�(t); t)

is a nonincreasing function of t. To begin we note that

��(t) = �(p; t) for all p 2 [p�(t); q�(t)];

since �(p; t) � 0 on that interval. It then follows from continuity of � : R �
[0; t�]! R and proposition 9.8 that ��(t) is a continuous function.

At any given t0 there will be an " > 0 such that �(�; t0) < 0 on [p�(t0) �
"; p�(t0)) and �(�; t0) > 0 on (q�(t0); q�(t0) + "]. Thus �(p; t0) � ��(t0) on the

closed interval [p�(t0)� "; q�(t0) + "]

, with strict inequality at the endpoints of this interval. By proposition 9.3

we then get �(p; t) > ��(t0) on some rectangle [p�(t0)�"; q�(t0)+"]�(t0; t0+�).
Since p�(t) lies between p�(t0)� " a

nd q�(t0)+ " for t close to t0, we see that ��(t) > ��(t0) for t0 < t < t0+ �.

Hence ��(t) is an increasing function, as claimed.

The same arguments show that �+(t)
def
= �+(p+(t); t) is a decreasing function.

Lemma 9.6 now follows from �(t) = [��(t); �+(t)].

9.4 Total curvature of the history.

Now de�ne

��(t) := supfj�(p1; t)� �(p2; t)j : p�(t) � p1; p2 � p+(t)g:

Set

L := L(C0);
the length of the initial curve C0.

We will now prove the following:
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Proposition 9.9 Notation as above. Let �t� � Ct� at time t� > 0 be a (maxi-

mal) convex arc. Then

��(0) � min

 
t
3
2
�

CL2
;
�

2

!
;

for some constant C.

Since convex and concave arcs alternate, we get the same estimate for concave

arcs.

9.5 Proof of Proposition 9.9 and Theorem 9.1.

Assume that ��(0) < �
2
; and let

�0 �
�
���(0)

2
;
��(0)

2

�
:

On any convex part of �t, we can use the angle parameter �, and then the

normal velocity as a function of �; t satis�es

@v

@t
=

1

3
v4(v�� + v):(42)

A computation shows that

�v(�; t) = A(t) cos

�
��

2��(0)

�
(43)

will be a supersolution of (42), if we choose

A(t) =

�
A(0)�4 +

ct

(��)2

�� 1
4

;(44)

for c a suitably small constant.

Now by the maximum principle we get the following inequalities for v: First

choosing A(0) =1, we see that

jv(�; t)j � c(��(0))1=2

t1=4
:(45)

Second, if one takes A(0) =
�
1
15

�1=4
sup�0 jvj; then we �nd

jv(�; t)j �
 
15 +

ct

(��)2
sup
�0

v4

!�1=4
sup
�0

jvj:(46)

25



A word of explanation is in order about our use of the maximum principle

here since the equation for v (42) is degenerate at v = 0, and the domain of �

is not �xed. In fact, for one value of �, v(�; t) may have several values if there

are several convex/concave arcs in �t with tangent in the direction of �: Never-

theless, it is easy to justify the use of the maximum principle in this context.

Indeed, at any t 2 (0; t�), �t is the union of a �nite number of convex/concave

arcs. On each of these arcs, the angle � is a single-valued coordinate which takes

values in some interval contained in [� 1
2
��(t); 1

2
��(t)]: This interval changes in

time, but at its endpoints v vanishes, while our supersolution �v is bounded from

below on [� 1
2
��(t); 1

2
��(t)]: Thus the maximum principle does indeed apply

and gives v � �v on convex arcs, and �v � �v on concave arcs. Hence we have

jv(p; t)j � �v(�(p; t); t); on �t:

Next the estimate (46) implies that at

t = T1=2(sup
�0

jvj;��) := (��)2

c(sup�0 jvj)4
; �� = ��(0)(47)

one has

sup
�T1=2

jvj � 1

2
sup
�0

jvj:(48)

By the same arguments, we get

sup
�t+T1=2

jvj � 1

2
sup
�t

jvj;(49)

for T1=2 = T1=2(sup�t jvj;��) as given in (47), with

�� = ��(t) = supfj�(p1; t)� �(p2; t)j : p�(t) � p1; p2 � p+(t)g:

We now inductively de�ne a sequence t0 < t1 < t2 < � � � ; with

sup
�tj+1

jvj � 1

2
sup
�tj

jvj;

by putting

tj+1 � tj = T1=2(sup
�tj

jvj;��(tj)):

Setting L = L(C0), we may (crudely) estimate ��(tj) by

��(tj) �
Z
�(tj)

j�jd~s � (sup
�tj

jvj)3L;

so that

T1=2(sup
�tj

jvj;��(tj)) �
L2

c
(sup
�tj

jvj)2:
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From

sup
�tj

jvj � 2�j sup
�0

jvj;

we �nd

tj+1 � tj �
L2

c
2�2j(sup

�t0

jvj)2;

so that

t1 := lim
j!1

tj � t0 + CL2(sup
�t0

jvj)2;

where C is a constant. We can estimate sup�t0
jvj using (45), which gives

t1 � t0 +
CL2��(0)

t
1=2
0

:

The best estimate is obtained for

t0 = (2CL2��(0))2=3;

which gives

t1 � (CL2��(0))2=3:

Since our maximal arc �t� is not 
at, we must have t1 � t�; that is,

��(0) � t
2=3
�

CL2
;

provided ��(0) � �=2 (a condition which we assumed above). This proves

Proposition 9.9.

For the proof of Theorem 9.1, we note that since disjoint maximal convex

arcs �t� � Ct� have disjoint histories, there cannot be more than

max

�
KCL2

t
3=2
�

;
2K

�

�

convex arcs in Ct� , where K denotes the total curvature of C0. 2

9.6 Arcs with large curvature.

Lemma 9.10 For any solution fCt j 0 < t < Tg of A�ne Curve Shortening

(15) there is a constant K such that the total curvature j R �d~sj of any convex

or concave arc with sup j�j > K exceeds �.

This lemma was proved by Grayson [16, lemma 3.5] for Euclidean Curve Short-

ening. The two ingredients in his proof are (1) �niteness of the number of convex

and concave arcs, and (2) the steady (super) solution �(�) = A sin(� � �) for

the curvature equation. We have just shown that solutions of A�ne Curve

Shortening also break up into a �nite number of convex and concave arcs, and

instead of using the curvature equation we can use equation (42) for the veloc-

ity: v(�) = A sin(� � �) is also a super solution for this equation. With these

remarks we may simply repeat Grayson's arguments to prove lemma 9.10.
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10 Intersection of Solutions.

Let C1; C2 � R2 be embedded C1 curves. Suppose that C1 and C2 intersect tran-
versally, i.e., the unit tangents at a given point of intersection are independent.

In this case, we de�ne #(C1 \ C2), the number of crossings of C1 and C2 to be

the number of intersection points of C1 and C2.

If C1 and C2 do not intersect tranversally, we choose a tubular neighborhood
N of C1, and then decompose C2 \N into pieces which are graphs in N. If we

identify C1 with the zero section of N, we can count the number of sign changes

of each of those pieces. The resulting sum is by de�nition #(C1\C2), the number

of crossings of C1 and C2. (This de�nition is the same as in [5].)

Theorem 10.1 (Weak Sturmian Theorem) Let C1(�; t); C2(�; t) evolve by v =
�1=3: Then

#(C1(�; t) \ C2(�; t)) � #(C1(�; 0) \ C2(�; 0)):

Proof. This weaker version of the results in [5, 7] may be proved using Matano's

method [21] which only uses the weak maximum principle (see also Lemma 9.4.)

2

It is important to note that the weak Sturmian theorem does not claim that

#(C1(�; t)\C2(�; t)) is always �nite, or that non-transverse intersections of C1(�; t)
and C2(�; t) cause #(C1(�; t)\ C2(�; t)) to decrease (see [5, 7]). In this regard, we

have the following illuminating examples:

10.1 Some special solutions of A�ne Curve Shortening.

Let

u(x; t) = (T � t)��(x):

Then

ut � (uxx)
1=3 = �(T � t)��1�(x) � (T � t)�=3(�00(x))1=3:

Thus u will be a solution of the local a�ne heat equation (33) if � = 3=2 and

�00(x) = (
3

2
�(x))3:(50)

The latter ODE has oscillatory solutions which can be written in terms of elliptic

functions. These special solutions intersect the x-axis only �nitely often on any

bounded interval for t < T , but coalesce with the x-axis at t = T: Consequently,

the strong maximum principle and backward uniqueness fail for the a�ne heat

equation (33).

We now look for examples of solutions of (33) of the form

u(x; t) = �(xt��):
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We compute that with �
def
= xt��,

ut � (uxx)
1=3 =

��x
t�+1

�0(�)� t�2�=3(�00(�))1=3

=
��
t
��0(�)� t�2�=3(�00(�))1=3:

Take � = 3=2; and solve the resulting equation

(�00(�))1=3 +
3

2
��0(�) = 0:

It is then easy to see that

�00(�) =
�27
8
�3�0(�)3

(�0(�)�2)0 =
27

4
�3 = (

27

16
�4)0

�0(�) = � 4

3
p
3

1p
A+ �4

for some constant A

from which we derive the step function solution

�(�) =
4

3
p
3

Z 1

�

1p
A+ s4

ds:(51)

Thus we get a solution of the a�ne heat equation (33) of the form

uA(x; t) = �A(
x

t3=2
);

where �A(�) is given by (51). This solution is the a�ne analogue of the error

function solution of the classical linear heat equation ut = uxx:

The initial value is

uA(x; 0) =

�
0 (x > 0)

�A(�1) (x < 0)

where

�A(�1) =
4

3
p
3

Z 1

�1

1p
A+ s4

ds =
4A�1=4

3
p
3

Z 1

�1

1p
1 + s4

ds:

A study of the in
ection point x = 0 of uA(x; t) for given t > 0; shows that

it indeed has �fth order contact with its tangent, as predicted by the theory.
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11 Evolving Foliated Rectangles.

In this section, we will use the technique of foliated rectangles in order to prevent

singularity formation in the equation (15). We begin with:

De�nition. A foliated rectangle F is a family of C1 functions

fua 2 C1([x0; x1]) : a0 � a � a1g;

for which

(1) ua(x); uax(x) are continuous in (a; x):

(2) If a < a0, then ua(x) < ua
0

(x) for x0 � x � x1.

De�nition. An evolving foliated rectangle

fFt : 0 < t < Tg

is a family of foliated rectangles Ft given by ua(x; t); where each ua(x; t) is a

classical solution of the a�ne heat equation ut = (uxx)
1=3 with ua(x0; t) and

ua(x1; t) constant.

Lemma 11.1 Every \initial" foliated rectangle F0 de�nes a unique evolving

foliated rectangle fFt : 0 < t <1g.

Proof. Let F0 be de�ned by fua : a0 � a � a1g, ua 2 C1([x0; x1]): Without

loss of generality, we may assume that x0 = 0; x1 = 1; a0 = 0; a1 = 1: We

may extend the ua by re
ection, so that uax is an odd and periodic function of

period 2. We �rst prove Lemma 11.1 under the assumption that the ua are C2.

In this case, the same arguments leading to the short-term existence theorem

(Theorem 5.2) imply the existence on a short-term time interval of a classical

solution ua : R� (0; T )! R with the given initial data.

Now intersection with steep straight lines shows that

sup
R

j@u
a

@x
j

does not increase. From Theorem 8.1 we get that

juaxxj �
C

t3=4
;(52)

for some constant C and 0 < t < 1: Hence the curvature of the ua cannot

blow up in �nite time, so the ua are de�ned for all t � 0. Moreover, the decay

estimate (52) suggests that

ua(x; t)! ua(0)(1� x) + ua(1)x; as t!1:

30



In fact, by comparing with the solution of Example 1 (showing the strong max-

imum does not hold for the a�ne heat equation), from equation (50), one can

show that the graphs of the ua become straight lines in �nite time. (This follows

from the fact that u(x; t) = �(T � t)3=2�(�x) + �x + � is a solution of (33), if

� satis�es (50).)

To prove that the fua(�; t) : 0 � a � 1g form a foliated rectangle, we observe

that for a; a0 2 [0; 1], the maximum principle implies,

sup
x
jua(x; t) � ua

0

(x; t)j � sup
x
jua(x; 0)� ua

0

(x; 0)j;(53)

and if a > a0; then

inf
x
(ua(x; t)� ua

0

(x; t)) � inf
x
(ua(x; 0)� ua

0

(x; 0)):(54)

Inequality (53) implies that for a sequence an ! a, the uan(�; t) converge uni-
formly to ua(�; t), and because of the derivative bounds given above also in

C2([0; 1]): Then inequality (54) implies that ua > ua
0

for a > a0. Thus the proof

of the lemma is complete if the initial F0 is C
2.

For C1 initial foliated rectangles, we can approximate by smooth foliated

rectangles. The derivative bounds only depend on

sup
a;x

juaxj;

so we can extract convergent subsequences. Uniqueness of the resulting Ft

follows from (53). 2

We now prove a result which prevents the formation of singularities of the


ow (15) using the technique of evolving foliated rectangles.

Theorem 11.2 Let fFt : 0 < t < Tg be an evolving foliated rectangle. Let

fCt : 0 < t < Tg be a classical solution of (15) which never hits the edges of Ft,

and such that Ct is transverse to each leaf of F0 and intersects it once. Then Ct
does not form a singularity in the interior of FT .

Proof. The main ideas are based on [5]; see the proof of Theorem 7.1. Let Ft

be given by

y = ua(x; t); 0 � a � 1:

From the a�ne invariance of (33), it is easy veri�ed that the functions

ua;�;�(x; t) = ua(x; t) + �x+ �;

are solutions of (33). By compactness, there is an "0 > 0 such that C0 is

transverse to the graph of any ua;�;� with 0 � a � 1, j�j; j�j � "0; and Ct is
disjoint from the endpoints of the ua;�;� (0 � t < T ). (Note that since Ct is a
closed curve, it will always intersect each leaf of Ft.)
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Let P = (x0; u
a(x0; t0)); where 0 � t0 < T: Then if Ct0 passes through P , it

will have at most one crossing with the graph of

y = ua(x; t) + �(x� x0) = ua;�;��x0(x; t);

for any � with j�j; j�x0j � "o: This implies that the Ct are uniformly locally

Lipschitz in Ft. Hence Ct cannot have a singularity in FT . 2

Remark. The point of the above proof is that the ua;�;� de�ne a cone-�eld on

Ft to which Ct is transverse. This forces Ct to be uniformly locally Lipschitz.

12 The 2�{Theorem.

In this section, we prove one of the key results needed to guarantee the conver-

gence of a given curve under the a�ne 
ow (15) to an elliptical point.

We �rst note that as in the curve shortening (Euclidean) 
ow [16], for the

a�ne 
ow (15), the total curvature of Ct does not increase (see also [31]).
Let  be a convex C2 function. Then

d

dt

Z
 (�)d~s =

Z
 0(v~s~s + �2v)� v� (�)d~s

=

Z
[� 00(�)�~sv~s + �(� 0(�)�  (�))v]d~s:

Note that � 00(�) � 0: If we take for given � > 0;

 (�) :=
p
� + �2;

then � 0(�)�  (�) � 0; so

d

dt

Z p
� + �2d~s � 0:

Letting � # 0, we get that
d

dt

Z
j�jd~s � 0;

as claimed.

As in [4, 5], one can now show that for any classical solution fCt : 0 < t < Tg,
a limit curve CT exists, and that CT has �nitely many singular points P1; : : : ; PN
at which some of the total curvature

R j�jd~s must concentrate. Starting at every
singular point Pi one has two branches of the curve, which we shall refer to as

the in- and outgoing branch. Since these are limits for t " T of disjoint arcs

in Ct the strong maximum principle implies that the in and outgoing branches

are disjoint unless they coincide, in which case they are part of a line segment

ending at Pi. We refer to this latter situation by saying that CT has a needle at

Pi.

The following key result holds:
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Theorem 12.1 (2�-Theorem) Let Ct have a singularity at t = T , and P 2
R2, and suppose the in and out-going branches of CT at P do not coincide.

Then for any " > 0 there is a t" < T such that each Ct \B"(P ) with t" < t < T

has a connected subarc � � (Ct \ B"(P )) on which

j
Z
�

�d~sj � 2� � ":

Proof. The proof is the same as in [5], Theorem 7.1, with only one modi�cation.

Since the strong form of the Sturmian Theorem is not available, we must be

careful when we use the foliated rectangle F . But Theorem 11.2 solves this

problem. More precisely, assume to the contrary that

j
Z
�

�d~sj < 2� � "

for all subarcs � � (Ct \B"(P )); we construct a foliated rectangle exactly as in

[5] (proof of Theorem 7.1). We can then verify that Ct avoids the edges of F0

and passes transversely through F0 once. By Theorem 11.2, Ct cannot form a

singularity in FT . But P 2 FT , a contradiction which proves the theorem. 2

Thus the arguments of [5] carry through without much modi�cation provided

the limiting curve CT has no needles. The following theorem guarantees that

this is always the case.

Theorem 12.2 (No Needles Theorem) Notation as in theorem 12.1. The

in and outgoing branches at any singular point Pi are disjoint.

We present the proof in the next section.

13 Proof of the No-Needles theorem.

Points on Ct with tangent parallel to the x-axis will be called horizontal points.

A horizontal spot is either a horizontal point or else a maximal interval on

which the tangent is horizontal (equivalently, a horizontal spot is a connected

co mponent of the intersection of Ct with a horizontal line).

Lemma 13.1 For each t > 0 the number of horizontal spots on Ct is �nite.

This number is nonincreasing.

Proof. Between two consecutive horizontal spots one either has an in
ection

point, or else the curvature changes by ��. Since the total curvature is �nite

and since Ct has �nitely many in
ection points, the number of horizontal spots

is bounded.
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The number of horizontal spots is the sum over all integers k of the number

of signchanges of �(�; t) � k�. For each k this number is nonincreasing since �

satis�es (41). Hence the number of horizontal spots cannot inc rease. 2

After a certain time the number of horizontal spots, being a nonnegative

nonincreasing integer, will remain constant. By Lemma 9.3 the tangent angle

at any in
ection point is monotonically increasing, so we may assume that for

T � � < t < T

none of the in
ection points are horizontal. Thus all horizontal points are

located on convex or concave arcs of Ct. Near them the equation (15) is nonde-

generate, so Ct is a real analytic curve near each horizontal spot. We can ther

efore enumerate and trace the horizontal spots Q1(t), : : :, QN (t) throughout the

time interval (T � �; T ).

Lemma 13.2 The limits limt"T Qj(t) = Qj(T ) exist.

Proof. Let Qj(t) = (xj(t); yj(t)). Since Qj(t) is horizontal we have just argued

that Qj(t) is never an in
ection point, and hence that the curvature �(Qj(t); t)

has constant sign. Hence y0j(t) = 3
p
�(Qj(t); t) has constant sign and yj(t)

converges as t " T .
To prove convergence of xj(t) we use the Chen-Matano [11] device of com-

paring Ct with its re
ection in a vertical line. Suppose

lim inf
t"T

xj(t) = � < � = lim sup
t"T

xj(t):

Choose 
 2 (�; �) and let ~Ct be the re
ection of Ct in the vertical line x = 
.

Both Ct and ~Ct are solutions of A�ne Curve Shortening, so the number of

intersections #(Ct\ ~Ct) cannot increase. As t " T xj(t) = 
 must occur in�nitely

often. Each time this happens Ct and ~Ct are tangent at Qj(t), and the number

of intersections #(Ct \ ~Ct) drops. If one chooses 
 appropriately #(Ct \ ~Ct) will
be �nite for some t 2 (T � �; T ) (Ct only has a �nite number of vertical spots),

so we have a contradiction. 2

We now turn to the \no-needles theorem." Assume that the in and outgoing

branches of a singular point Pj 2 CT coincide. Without losing generality we

may assume that Pj is the origin, and that the in and outgoing branches both

contain an interval [0; "�] on the x-axis near Pj .

In view of Lemma 13.2, we can �nd � > 0 for any 0 < "1 < "0 such that

the strip S def
= f(x; y) j "1 � x � "2g contains no horizontal points or vertical

points for T � � < t < T . Hence Ct \ S consists of a �nite number of graphs

y = u(k)(x; t) each of which satisfy ut = (uxx)
1=3. By assumption the u(k)(x; t)

tend to zero as t " T .
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Figure 1: A singular curve with a needle.

Lemma 13.3 For each k and all t 2 (T � �; T ), one has

(T � t)�3=2
���u(k)(x; t)��� � C

("0 � x)(x � "1)
; "1 < x < "0:(55)

Proof. On the interval ("1; "2) the function u
(k)(�; t) is monotone { let's assume

u
(k)
x > 0. If u(k)(x0; t0) > 0, then u(k)(x; t0) � u(k)(x0; t0) for x 2 (x0; "2) and

hence the graph of u(k) is disjoint from the ellipse inscribed in the rectangle

[x0; "2]� [0; u(k)(x0; t0)]. Allowing both the curve cCt and the ellipse to evolve

by A�ne Curve Shortening (15), they must remain disjoint. Since u(k)(x; t)! 0

as t " T the ellipse must vanish before t = T . This implies that its area is less

than C(T � t0)
3=2 which implies that u(k)(x0; t0) � C(T � t0)

3=2=("2 � x0).

If we had started with the assumption that u(k)(�; t) were decreasing rather
than increasing we would have arrived at u(k)(x0; t0) � C(T � t0)3=2=(x0 � "1).
The estimate (55) allows for both possibilities. 2

Lemma 13.4 For each k the limit

lim
t"T

u(k)(x; t) = �(k)(x)(56)

exists. Moreover, �(k)(x) is a solution of (50).

Proof. Consider

v(x; �)
def
= (T � t)�3=2u(k)(x; t); t = T � e�� :

A�ne Curve Shortening for the graph of u(k) is equivalent to the following PDE

for v(x; �)
@v

@�
= (vxx)

1=3
+

3

2
v:(57)

Moreover we have just shown in (55) that

jv(x; �)j � C

("0 � x)(x � "1)
; when "1 < x < "0, � > log 1

�
.
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Regularity for (57) implies that vx, vxx and
�
(vxx)

1=3
�
x
are uniformly bounded

for � " 1 on any compact interval ["01; "
0
0] � ("1; "0). (To avoid proving regu-

larity for (57) observe that for any solution v of (57)

u(x; t) = (1� t)3=2v(x; �0 � log[2(1� t)])

satis�es ut = (uxx)
1=3; use the results of section 8 to obtain regularity for u for

0 < t < 3=4 and then transfer to v to obtain regularity for �0 � log 2 < � <

�0 + log 2.)

These estimates imply that any sequence �j " 1 has a subsequence along

which v(x; �jk + �) converges to some eternal solution v�(x; �) (i.e. de�ned for

"1 < x < "0 and all � 2 R) of (57). To complete our proof we will now show

by \intersection comparison" that v� is in fact time independent, and hence a

solution of (50) as claimed.

Consider the curves

Ĉ� =
n�
x; (T � t)�3=2y

�
j (x; y) 2 Ct

o
:

where T � t = e�� . The graph of v(�; �jk ) is a part of Ĉ�jK .

Proposition 13.5 Let �0 2 R. Let �� be any solution of (50). Then one can

approximate �� by other solutions �i ! �� of (50) which intersect Ĉ�0 only

�nitely often.

Since the �i are steady states for (57) the number of intersections of �i with

Ĉ� does not increase with � , and it follows in particular that the limit v�(�; �)
only intersects �i �nitely often.

Proof. For solutions � of (50) the quantity E� := (�0)2 � 27
16
�4 is constant.

Let C0 denote Ĉ�0 with the vertical points deleted. The curve C0 is a �nite

union of graphs y = �v(x). We consider the function E = (�vx)
2 � 27

16
�v4. Since

�vx ! �1 at the vertical points, E : C0 ! R is a C1 and proper function. By

Sard's theorem the regular values of E form an open and dense subset of the

real line.

If the \energy" E��
of the given solution �� is not a regular value, then

one can approximate E� with regular values Ei ! E�, and select corresponding

solutions �i ! �� of (50).

At a tangency of �i and C0 one has E = Ei. Since Ei is a regular value of E :

C0 ! R, there are only �nitely many such tangencies. All other intersections of

�i and C0 must be transverse. Hence there only �nitely many such intersections.
2

We return to the proof of Lemma 13.4. Assume that for some (x0; �0) one

has

v�(x0; �0) 6= 0; and v�� (x0; �0) 6= 0:(58)
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Let � be the solution of (50) with �(x0) = v�(x0; �0) and �0(x0) = v�x(x0; �0).

By (58) we then have �00(x0) 6= 0, and �00(x0) 6= v�xx(x0; �0). It follows that

�(�)� v�(�; �) looses exactly two zeroes at time � = �0. In fact for ~� close to �

and for any ~v with ~v, ~v� and ~vxx uniformly close to v
�, v�� and v�xx, respectively,

the di�erence ~v� ~� will also loose at least two ze ros near (x0; �0). In particular

we could take ~v(x; �) = v�(x; � + �jk ) with k large and we could choose a ~� near

� for which Ĉ� only intersects ~� �nitely often. Then the number of zeroes of

v�(�; �) ��(�) would drop in�nitely often, which is impossible.

Thus the assumption (58) is incorrect, and we �nd that v�(x; �) � �(x) for

some solution � of (50). 2

We now conclude the proof of the \no needles theorem." Let �j " 1 be such

that v(x; � + �j) converges uniformly for bounded � and on compact intervals

["1; "0] � (0; "�) to some solution � of (50).

Let � be the union of the y axis and the curve f(x;�(x)) j x � 0g.
As j ! 1 the part of the curves Ĉ� in the strip f(x; y) j �"� < x < "�g

converge to �. This forces Ĉ� to have a sharp corner near the point where the

graph of � intersects the y-axis. But Ĉ evolves by

v = �1=3 +
3

2
y cos �;

and one easily deduces regularity results for this equation from similar results for

v = �1=3. In particular, Ĉ� must have uniformly bounded curvature in bounded

regions of the xy-plane. It is therefore impossible for Ĉ� to converge to �. 2

14 The A�ne �-Whisker Lemma.

In this section, we recall Grayson's �-whisker lemma [16] and point out that it

is also valid for the a�ne shortening 
ow (15). The �-whisker lemma prevents a

curve from getting too close to itself along subarcs which turn through at least

�. Since the proof in this a�ne case is very similar to that of [16], we will only

sketch the relevant details.

14.1 �-points.

Let fCt j 0 < t < Tg be a maximal solution of A�ne Curve Shortening (15), and
choose T0 < T so that the (�nite) number of convex and concave arcs remains

constant for T0 � t < T .

For � 2 R we de�ne an �-point on Ct to be a point where �(p; t) = �

(mod 2�). An �-spot is, by de�nition, a connected component of the set of

�-points. By applying Lemma 13.1 in a suitably rotated coordinate system we

conclude that at any given instant t 2 (0; T ) there at most a �nite number of

�-spots, and that this number is nonincreasing in time.
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Figure 2: � and the curve Ĉ� converging to �.
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Proposition 14.1 Let T0 < t1 < T . If A1 2 Ct1 is an � point, but not an

in
ection point, then there exists a smooth family fAt j T0 � t � t1g of � points

with At1 = A1.

Proof. Since A1 is not an in
ection point the evolution is smooth near (A1; t1) in

space-time. At a non-in
ection point one has �~s = � 6= 0 so the Implicit Function

Theorem provides a smooth family of points At with �(At; t) = �. This family

may only be de�ned for t close to t1: let (t2; t1] be the largest interval on which

such a smooth family can be de�ned. Then At will accumulate at in
ection

spots of Ct2 as one lets t decrease to t2.
By Proposition 9.3 the only way an in
ection spot can become an �-spot

is for two � points with nonzero curvature to meet and annihilate each other.

Thus a small neighborhood of an in
ection spot at time t2 which is also an

�-spot will not contain any �-points for t slightly above t2. Consequently,

if one traces a smooth family of �-points At back in time it can never run into

an in
ection spot with t2 � T0. Hence we can continue our smooth family of

�-points all the way back to T0. 2

14.2 �-arcs.

Following Grayson [16, page 295] we de�ne an arc B � Ct0 to be an �-arc1 if

the inward pointing unit tangent vectors to the arc are both given by
�
cos�
sin�

�
.

Thus the endpoints of an �-arc are � or �+�-points. As we have seen, these

can be traced back in time as long as t � T0. The resulting family of �-arcs

fBt j T0 � t � t0g will be called the history of Bt0 .

Theorem 14.2 (�-Whiskers) There exists a � > 0 such that for any point P

on an �-arc Bt0 � Ct0 with t0 2 [T0; T ), the line segment

`P;�;�
def
= fP + rv� j 0 � r � �g; v� =

�
cos�

sin�

�
;

is disjoint from Ct0 n Bt0 .

To prove this one traces the history of Bt0 back to time t = T0. For d > 0 and

T0 � t � t0 we then de�ne Bdt to be Bt translated by d � v�. We also de�ne d(t)

to be the largest d > 0 such that Bd0t is disjoint from Ct n Bt for all 0 < d0 < d.

At t = T0 a compactness argument provides a � independent of the arc such

that one can translate BT0 by an amount � in the direction of the vector v�
without bumping into CT0 n BT0 , i.e. such that

d(T0) � �.

1Grayson calls these arcs \nice."
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Grayson then shows, using maximum principle arguments, that d(t) is a

nonincreasing function. The arcs Bd(t)t and Ct n Bt must have a tangency. If

the tangency is interior then it will dissapear instantaneously by the strong

maximum principle (see Lemma 7.1). If the tangency occurs at an endpoint of

Bd(t)t then the curvatures of Bd(t)t and Ct n Bt must be di�erent (for otherwise
Ct n Bt would intersect the d(t)-whisker `P;d(t);� where P is the cor responding

endpoint on Bt.) Hence the tangency disappears in this case as well, and d(t)

is indeed nondecreasing.

15 Convergence to a Point.

Our main result is:

Theorem 15.1 Let fCt j 0 � t < Tg be a maximal classical solution of A�ne

Curve Shortening (15). Then

1. Ct shrinks to a point as t " T , and
2. The total curvature

R j�jd~s of Ct tends to 2� as t " T .

To prove this we argue by contradiction: assume the limit curve CT is not a

single point, and let P be one of the singular points on this curve. By the

2�-Theorem 12.1 there exist tn " T such that Ctn \ B(P; 2�n) contains an arc

Bn with turning angle ����
Z
Bn

�d~s

���� � 3

2
�:

This puts us in Grayson's \case I" (see [16, page 300].) In [16, theorem 4.1]

he shows that this case cannot occur, and the two ingredients of his proof are

\�-whiskers" and our Lemma 9.10 which states that arcs with turning angle less

than � have uniformly bounded curvature. As we have veri�ed these statements

for A�ne Curve Shortening, Grayson's arguments lead us to a contradiction.

The curve therefore must shrink to a point.

The second statement of the theorem is Grayson's Lemma 3.9, whose proof

also is based on Lemma 9.10 and �-whiskers. The same arguments therefore

apply in our setting.
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