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Abstract We earlier introduced an approach to categorical shape description based on the

singularities (shocks) of curve evolution equations. The approach relates to many techniques in

computer vision, such as Blum's grass�re transform, but since the motivation was abstract, it is

not clear that it should also relate to human perception. We now report that this shock-based

computational model can account for recent psychophysical data collected by Christina Burbeck

and Steve Pizer. In these experiments subjects were asked to estimate the local centers of stimuli

consisting of rectangles with \wiggles" (sides modulated by sinusoids). Since the experiments

were motivated by their \core" model, in which the scale at which boundary detail is represented

is proportional to object width, we conclude that such properties are also implicit in shock-based

shape descriptions.
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1We would be willing to prepare an extended version of this paper for the special issue of Image and Vision

Computing.
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Figure 1: This �gure illustrates the four types of shocks that arise in the reaction-di�usion space [6].

1 Shocks and the Shape Triangle

Observing that shapes that are slight deformations of one another appear similar, Kimia et al.

propose the following evolution equation for visual shape analysis [5, 6]:

8><
>:
Ct = (�0 � �1�)N

C(s; 0) = C0(s):
(1)

Here C is the vector of curve coordinates, N is the outward normal, s is the path parameter, t is

the time duration (magnitude) of the deformation, and �0; �1 are constants. The space of all such

deformations is spanned by the ratio �0=�1 and time t, constituting the two axes of the reaction-

di�usion space. Underlying the representation of shape in this space are a set of shocks [8], or

entropy-satisfying singularities, which develop during the evolution and are classi�ed into four

types (Figure 1): 1) A first-order shock is a discontinuity in orientation of the shape's

boundary; 2) A second-order shock is formed when two distinct non-neighboring boundary

points collide, but none of their immediate neighbors collapse together; 3) A third-order

shock is formed when two distinct non-neighboring boundary points collide, such that the
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Figure 2: The detection of shocks for a dumbbell shape undergoing constant inward motion, taken

from [10]. Each sub-�gure is a snapshot of the evolution in time, with the outline of the original shape

shown in black, the evolved curve overlayed within, and the arrows representing velocity vectors for

the current �rst-order shocks.

neighboring boundary points also collapse together2; and 4) A fourth-order shock is formed

when a closed boundary collapses onto a single point. To get an intuitive feel for the shock types

consider the numerical simulation of a dumbbell shape evolving under constant inward motion

(analogous to Blum's grass�re), Figure 2. Note the emergence of a qualitative description of the

shape as that of two parts separated at a \neck" (second-order shock), with each part consisting

of three \protrusions" (�rst-order shock groups) merging onto a \seed" (fourth-order shock).

Such generic perceptual shape classes have lead to the metaphor of a shape triangle, where

three distinct processes compete with one another to explain shape [7], Figure 3 (left). The

sides of the triangle re
ect this competition and capture the tension between object composi-

tion (parts), boundary deformation (protrusions) and region deformation (bends). When one

considers the parts-protrusions continuum and plots the time till formation of the second-order

shock under constant inward motion, normalized by the time till annihilation of the shape, Fig-

ure 3 (right), a curious connection is unearthed. The ratio is a measure of local width versus

global width, and provides a metric for the perceptual distance of the shape from the \parts"

node along this axis.

2Whereas third-order shocks are not generic they merit a distinct classi�cation for several computational

reasons as well as their psychophysical relevance [7]. Consider the abundance of biological and man-made

objects with symmetric \bend-like" components, e.g., �ngers of a hand, limbs, legs of a table, branches of a tree,

etc.
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Figure 3: Left: The sides of the shape triangle represent continua of shapes; the extremes correspond

to the \parts", \protrusions" and \bends" nodes [7]. Right: Using the shock detection algorithm

in [10], we plot the time till formation of the second-order shock (for constant inward motion), normal-

ized by the lifetime of the shape, for samples of the \bow-tie" stimuli used in [7]. Observe the increase

in this ratio in moving from the parts node (shape 10) to the protrusions node (shape 1).

Now, note that intermediate shapes along the bends-protrusions continuum closely resemble

wiggles. The term \wiggle" appropriately describes not only the sinusoidal nature of the bound-

ary modulation, but also its perceived e�ect on the object's central axis [4]. In the context of

the shape triangle, for thin objects placed close to the \bends" node the axis is seen to wiggle,

for thicker objects placed close to the \protrusions" node the axis is perceived to be straight.

Within the shock-based framework, such e�ects are re
ected in the geometry of the high-order

shocks that arise, Figure 6. We are formally led to the following prediction:

Prediction 1 The perceived center of a \wiggle" along a horizontal line in alignment with a

sinusoidal peak coincides with a high-order shock 3 that forms under constant inward motion.

3Type 3 or 4 for in-phase sinusoids, and type 2 for out-of-phase ones (mirror symmetric shapes).
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Figure 4: Left: The geometry of a \wiggle" stimulus. Right: Is the dot to the left or to the right

of the object's center?

The psychophysical experiments of Burbeck et al., introduced next, involved precisely the above

class of shapes.

2 Wiggles

Pizer et al. [9, 3, 4] have developed an alternative approach to visual shape analysis called the

core model. Underlying the formulation of the core model is the hypothesis that the scale at

which the human visual system integrates local boundary information towards the formation of

more global object representations is proportional to object width. Psychophysical examinations

of Weber's Law for separation discrimination support this proposal [2]. Arguing that the same

mechanism explains the attenuation of edge modulation e�ects with width, Burbeck et al. have

recently reported on an elegant set of psychophysical experiments where subjects were required

to bisect elongated stimuli with wiggly sides. In the following we present their main �ndings.

As predicted above, we will later demonstrate a strong correlation between these �ndings and

computational results obtained from a shock-based description of the wiggles.
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The stimuli consisted of rectangles subtending 4 degrees of visual arc in height, with sinu-

soidal edge modulation, Figure 4 (left). Two widths were considered (0:75� and 1:5�) and for

each width there were 6 edge modulation frequencies (0:25; 0:5; 1; 2; 4; 8 cycles=�) and 2 edge

modulation amplitudes (20% and 40% of object width). A black probe dot appeared near the

center of each stimulus, in horizontal alignment with a sinusoidal peak. The subject was asked

to indicate \whether the probe dot appeared to be left or right of the center of the object, as

measured along a horizontal line through the dot."4 As a sample experiment view the stimulus

on the right of Figure 4 for a period of one second from a distance of 1.5 meters. You are likely

to judge the dot to be to the right of the object's center. It may surprise you to �nd that it

actually lies midway between the boundaries on either side, as can be veri�ed by placing a ruler

across the �gure. In fact, despite instructions to make a local judgement your visual system is

biased towards acquiring edge information across a more global spatial extent.

Burbeck and Pizer quanti�ed this e�ect of edge modulation on the perceived center by

varying the horizontal position of the probe dot and subjecting the data to probit analysis. The

center of the object was inferred as the 50% point on the best-�tting probit function5, and the

bisection threshold was de�ned as the variance of this function. The perceived central modulation

was then obtained as the horizontal displacement between the perceived centers in alignment

with left and right sinusoidal peaks. The main �ndings were:

Result 1 For a �xed edge modulation frequency the perceived central modulation decreases with

increasing object width.

Result 2 For a �xed object width the perceived central modulation decreases with increasing

edge modulation frequency.

These results appear to be consistent with our earlier prediction. Speci�cally, if the per-

ceived centers of the wiggle stimuli inferred by Burbeck et al. coincide with high-order shocks,

the central modulation computed as the horizontal displacement between fourth-order shocks in

4See [4] for further details.
5The location at which a subject is statistically equally likely to judge the probe dot to be to the left or to

the right of the object's center.
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a. b. c. d.

Figure 5: The shock-based decription of selected 40% amplitude modulation stimuli used in [4]. a) 0.75

degree width, 0.25 cycles/degree edge modulation; b) 0.75 degree object, 2.0 cycles/degree edge modu-

lation; c) 1.5 degree object, 0.25 cycles/degree edge modulation; d) 1.5 degree object, 2.0 cycles/degree

edge modulation.

alignment with successive left and right sinusoidal peaks, Figure 6, should agree with the psy-

chophysical data. Thus in the following section we compare computational results obtained using

the shock detection algorithm of [10] with Burbeck et al.'s data.

3 Results and Discussion

We computed shock-based representations for all 24 wiggles using the algorithm in [10]. Results

for selected stimuli are shown in Figure 5, with the geometry of the high-order shocks explained

in Figure 6. As striking evidence in favor of our hypothesis, consider the computed central

modulations overlayed as solid lines on the original observer data taken from [4], Figure 7. Note

that any discrepancies between the computational and psychophysical data are well within the

inter-subject discrepancies.

Whereas the core and the shock-based representation are motivated from quite di�erent

points of view, the strong overlap between computational and psychophysical results for each
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Figure 6: Shape (d) from Figure 5 is rotated and second-order and fourth-order shocks are labeled (all

other shocks are �rst-order). Note that the fourth-order shocks are in alignment with the sinusoidal

peaks.

model points to an intimate connection between the two. A precise mathematical comparison

is beyond the scope of this paper. Instead, we identify the qualitative connections that have

emerged.

First, the \fuzziness" of the core model, whereby the width of the core scales with object

width, is paralleled by the ratio of a shock's formation time to the lifetime of the shape, a

measure of local width/global width. This property is also re
ected in the \bisection-threshold"

or variance of the perceived centers in Burbeck et al.'s psychophysical experiments. Underlying

this notion is the concept that the scale at which boundaries should interact to form more global

object models is proportional to the spatial extent across which they communicate.

Second, the e�ects of edge modulation on perceived centers for the wiggle stimuli can be

explained by both models. We submit that the shock-based predictions are clearer, the only

relevant parameter being the location of the relevant high-order shocks. The core model is

mathematically quite complex, and its simulation requires the proper choice of a number of

parameters [9]. However, to put this comparison in proper context, we note that the algorithm

for the core is designed to infer medialness directly from grey level images; a non-trivial task.

On the other hand, the framework for shocks assumes that a foreground binary shape has

already been segmented, an assumption which although not unreasonable for the synthetic wiggle

stimuli, is certainly a limitation for more complicated images. Both models support medial-axis
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Figure 7: Central modulations computed from shock-based descriptions (solid lines) and are overlayed

on the observer data (dashed lines) reproduced from [4]. The central modulations are expressed as a

percentage of the edge modulation amplitude and are plotted against edge modulation frequency for

amplitudes of 20% of the object width (left) and 40% of the object width (right). Results for the wider

1:5� object are depicted by the circles and for the narrower 0:75� object by the squares.
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like representations for shape; see [1] for recent work on this topic. It is indeed gratifying that

they are further quanti�ably consistent with human performance involving shape.
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