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Abstract

In this paper, we employ a lifting method introduced by the au-

thors in order to study the structured singular value applied to in-

put/output operators of control systems. We moreover give a new
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its upper bound de�ned by D-scalings.
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1 Introduction

Let A be a linear operator on a Hilbert space E, and let � be an algebra

of operators on E. The structured singular value of A (relative to �) is the

number

��(A) = 1= inffkXk : X 2 �; �1 2 �(AX)g :
This quantity was introduced by Doyle and Safonov [6, 12] under a more

restrictive context, and it has proved to be a powerful tool in robust system

analysis and design. In system analysis, the structured singular value gives
a measure of robust stability with respect to certain perturbation measures.

Unfortunately, ��(A) is very di�cult to calculate, and in practice an upper
bound for it is used. This upper bound is de�ned by

b��(A) := inffkXAX�1k : X 2 �0;X invertibleg;

where �0 is the commutant of the algebra �.
In [1, 5], we formulated a lifting technique for the study of the structured

singular value. The basic idea is that b��(A) can be shown to be equal to the
structured singular value of an operator on a bigger Hilbert space. (In [1]
this was done for �nite dimensional Hilbert spaces, and then in [5] this was

extended to the in�nite dimensional case.) The problem with these results is
that the size of the ampliation necessary to get b��(A) equal to a structured
singular value, was equal to the dimension of the underlying Hilbert space.
Hence in the in�nite dimensional case we needed an in�nite ampliation. In
this work, we will show that in fact, one can always get by with a �nite

lifting. (Note that in this paper we will be using the terms \ampliation"

and \lifting" interchangeably.) For the block diagonal algebras of interest in
robust control, the ampliation only depends on the number of blocks of the
given perturbation structure. (See Theorem 1 below.) We moreover, give a

new result when b��(A) = ��(A), that is, when no lifting is necessary and

so b��(A) gives a nonconservative measure of robustness. (See Theorem 2.)
This is then used to derive an elegant result of Shamma [13, 14] on Toeplitz

operators. See also [7, 9, 10] for related work in this area.
We now brie
y sketch the contents of this paper. In Section 2, we give

some background results which will be needed in the proof of Theorem 1. In

Section 3, we derive a number of useful facts about the relative numerical
range. Then in Section 4, we state and prove our new version of the lifting
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theorem relating the structured singular value and its upper bound. In Sec-

tion 5, we give new conditions when � = �̂. These are applied in Section 6, to

give a new proof of the aforementioned result of Shamma. Finally, in Section

7, we give a system-theoretic interpretation of our lifting methodology.

2 Preliminary Results

Denote by L(E) the algebra of all bounded linear operators on the (complex,

separable) Hilbert space E. Fix an operator A 2 L(E) and a subalgebra
� � L(E). The numbers ��(A) and b��(A) have already been de�ned in the

Introduction. Observe that � � �00 and �000 = (�00)0 = �0 so that we have
the inequalities

��(A) � ��00(A); b��(A) = b��00(A) :
Observe that the algebras � considered in [6] consisted of block diagonal

matrices, so our approach is more general in this respect. In the following
proposition we summarize some of the elementary properties of ��; see Doyle
[6] or [1] for proofs. We will denote by kTksp the spectral radius of the

operator T .

Lemma 1 (i) ��(A) = supfkAXksp : X 2 �; kXk � 1g;
(ii) �� is upper semicontinuous;

(iii) If E is �nite dimensional, then �� is continuous;

(iv) ��(A) � b��(A).
In our study we will need further singular values which we now de�ne.

For n 2 f1; 2; : : : ;1g we denote by E(n) the orthogonal sum of n copies of E,
and by T (n) the orthogonal of n copies of T 2 L(E). Operators on E(n) can
be represented as n�n matrices of operators in L(E), and T (n) is represented

by a diagonal matrix, with diagonal entries equal to T .
Denote by �n the algebra of all operators on E(n) whose matrix entries

belong to �, and observe that (�n)
00 = (�00)n, and (�n)

0 = (�0)(n) = fT (n) :
T 2 �0g. Therefore we will denote these algebras by �00

n and �
0
n, respectively.
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Lemma 2 For every �nite number n we have

��(A) � ��n
(A(n)) � ��n+1

(A(n+1)) � ��1 (A(1)) � b��(A) ;
and

��00(A) � ��00
n
(A(n)) � ��00

n+1
(A(n+1)) � ��00

1

(A(1)) � b��(A) :

Proof. It clearly su�ces to prove the �rst sequence of inequalities. Observe

that for every X 2 �n and for m > n we can de�ne an operator Y 2 �m by
Y = X � 0. Clearly �(A(n)X) = �(A(m)Y ) [ f0g and hence �1 2 �(A(n)X)
implies �1 2 �(A(m)Y ). Since ��(A) = ��1

(A(1)), this proves the �rst three
inequalities. The last one follows because ��1(A

(1)) � b��1(A(1)) = b��(A).
2

We will now state (without proof) several results from [1, 2, 3, 4, 5] which
we will need in the sequel.

Lemma 3 ([5]) Let A be �nite dimensional C�{algebra. Then A has only

�nitely many equivalence classes of cyclic representations.

Lemma 4 ([5]) Let the sequence Yj of operators on H, and the sequence

hj 2 H satisfy

(i) sup
j

rank Yj <1; sup
j

kYjk <1;

(ii) limj!1 k(Yj � I)hjk = 0;

(iii) limj!1 khjk = 1:

Then lim infn!1 kYjksp � 1.

Lemma 5 ([4]) . Let H be a Hilbert space, T 2 L(H), and Dj 2 L(H)
invertible so that

T0 = lim
j!1

DjTD
�1
j :

If the set fDj;D
�1
j : j = 1; 2; : : :g is contained in a �nite dimensional sub-

space, then kT0ksp = kTksp.
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3 Relative Numerical Range

We will also need some results in what follows about the relative numerical

range. Let H be a complex separable Hilbert space, and let L(H) denote the
set of bounded linear operators on H. Let T1; : : : ; Tm; Q 2 L(H). Then we

de�ne the following relative numerical ranges:

WQ(T1; : : : ; Tm) := f� 2 Cn; � = lim
n!1

(hTjhn; hni)mj=1 :

hn 2 H; khnk = 1; lim
n!1
kQhnk = 0g;

and
W 0

Q(T1; : : : ; Tm) := f� 2 Cn; � = lim
n!1

(hTjhn; hni)mj=1 :
hn 2 H; khnk = 1; lim

n!1
kQhnk = 0; hn ! 0 weaklyg:

Lemma 6 W 0
Q(T1; : : : ; Tm) is a compact convex subset of Cm.

Proof. The compactness is immediate since W 0
Q(T1; : : : ; Tm) is a closed

bounded subset of Cm. As for the convexity, let � = (�1; : : : ; �m); � =
(�1; : : : ; �m) 2 W 0

Q(T1; : : : ; Tm); and let the sequences of unit vectors

fhng1n=1; fkng1n=1 � H

satisfy

�j = lim
n!1
hTjhn; hni;

�j = lim
n!1
hTjkn; kni; j = 1; : : : ;m;

lim
n!1
kQhnk = 0 = lim

n!1
kQknk; hn ! 0; kn ! 0 weakly:

Next for n �xed choose Nn � n such that

jhhn; kNn
ij � 1

n
; jhTjhn; kNn

ij+ jhT �j hn; kNn
ij � 1

n
; j = 1; 2; : : : ;m:

Then for any � 2 [0; 1]

gn :=
p
�hn +

p
1 � �kNn

; n � 2;
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satis�es the following conditions:

kgnk2 = 1 + 2
q
�(1 � �)<hhn; kNn

i ! 1; kgnk2 � 1

2
;

gn ! 0 weakly; kQgnk ! 0;

jhTjgn; gni���j� (1��)�jj � �jhTjhn; hni��jj+(1��)jhTjkNn
; kNn
i��jj+

q
�(1 � �) 1

n
! 0 as n!1:

Thus replacing the gn by gn=kgnk we immediately conclude that

�� + (1� �)� 2 W 0
Q(T1; : : : ; Tm);

as required. 2

Lemma 7 WQ(T1; : : : ; Tm) is the union of all segments

f��+ (1 � �)� : 0 � � � 1g;

where � 2 W 0
Q(T1; : : : ; Tm) and � = (hTjh; hi)mj=1 for some h 2 kerQ; khk =

1:

Proof. Let �; � = (�j)
m
j=1; � = (�j)

m
j=1 be as above and let the sequence

fhng1n=1 � H satisfy khnk = 1; hn ! 0 weakly, Qhn ! 0 strongly, and
hTjhn; hni ! �j for j = 1; : : : ;m: Then as in the proof of Lemma 6, we
obtain that

gn =
p
�hn +

p
1 � �h; n = 1; 2; : : :

satis�es the conditions

kgnk ! 1; kQgnk ! 0;

and

hTjgn; gni ! ��j + (1� �)�j ; j = 1; : : : ;m:

Therefore

�� + (1� �)� 2 WQ(T1; : : : ; Tm):
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Conversely, if  = ( j)
m
j=1 2 WQ(T1; : : : ; Tm), then

 j = lim
n!1
hTjgn; gni; j = 1; : : : ;m;

for some sequence fgng1n=1 � H such that kgnk = 1; kQgnk ! 0: Without

loss of generality we can assume that gn converges weakly to some h0 2 kerQ:

If kh0k = 1 then gn converges strongly to h0 and  j = hTjh0; h0i, j =

1; 2; : : : ;m. Clearly then

 = ��+ (1 � �)(hTjh; hi)mj=1
with h = h0, � = 0, and � 2 W 0

Q(T1; : : : ; Tm): If kh0k = 0 then  belongs to
W 0

Q(T1; : : : ; Tm) and hence  = � + (1 � �)� with � = 1 and � arbitrary.
Finally we consider the case when h0 6= 0 and kh0k 6= 1. The vectors hn =
(gn � h0)=kgn � h0k converge weakly to zero, kQhnk ! 0, and h = h0=kh0k is
a unit vector in kerQ. Clearly then

 j = (1� khk2) lim
n!1
hTjhn; hni+ khk2hTjh; hi; j = 1; : : : ;m;

and therefore

 2 f��+ (1 � �)(hTjh; hi)mj=1 : 0 � � � 1g

where
� := lim

n!1
(hTjhn; hni)mj=1 2 W 0

Q(T1; : : : ; Tm):

This concludes the proof. 2

Corollary 1 For all T;Q 2 L(H), the set

WQ(T ) = f� = lim
n!1
hThn; hni : hn 2 H ; khnk = 1 ; lim

n!1
kQhnk = 0g

is a compact convex set.

Proof. First notice that by an application of the classical Toeplitz-Hausdor�
theorem to TQ := PT j kerQ where P denotes orthogonal projection ofH onto
kerQ, we see that the set

W (TQ) = fhTh; hi : khk = 1; h 2 kerQg
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is compact and convex. Therefore the convex hull of

W 0
Q(T ) [W (TQ)

is the union of all segments

f��+ (1 � �)� : 0 � � � 1g;

where � and � run over W 0
Q(T ) and W (TQ), respectively. But according to

Lemma 7, this union is precisely WQ(T ): 2

Remark. Corollary 1 was proven in [3] using a completely di�erent argu-
ment, based on an approximation lemma which is of independent interest.

Finally, for the proof of our lifting theorem (to be given in Section 4), we

will need the following elementary fact:

Lemma 8 Let Z denote a �nite dimensional normed space, and let S be a

set of linear functionals on Z. Suppose that for every z 2 Z there exists a

sequence `n 2 S such that limn!1 `n(z) = 0. Then there exists a sequence `n
in the convex hull of S such that limn!1 k`nk = 0.

Proof. Since Z is �nite dimensional, S is contained in the dual Z 0 of Z.
We may also assume that S is a convex set. To prove the lemma we must
show that the closure of S contains zero. If it did not then the Hahn-Banach
theorem would imply the existence of a vector z 2 Z and of a number " > 0
such that <`(z) > " for all ` 2 S. This is contrary to the assumption of the

lemma. 2

4 Ampliations of Perturbations

In this section, we will formulate and prove a new lifting result relating ��(A)

and b��(A). For �nite dimensional E, a lifting result of this type was �rst
proven in [1]. The result was then generalized to the in�nite dimensional case

in [5]. (For another proof of this type of lifting result in �nite dimensions,
see [7].) In these theorems, the lifting or ampliation of the operator A and

perturbation structure � depends on the dimension of E. Thus if E is in�nite
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dimensional, we get an in�nite lifting. In the new result proven below, we

only have to lift up to the dimension of �0 which in the cases of interest in

the control applications of this theory only depends on the number of blocks

of the given perturbation structure.

The notation will be that used in Section 2.

Theorem 1 Assume that �0 is a �-algebra of �nite dimension n. Then

b��(A) = ��00
n
(A(n))

for every A 2 L(E).

Proof. The argument starts as in the proof of Theorem 3 in [1], and of
Theorem 1 of [5]. Without loss of generality, we may assume that b��(A) = 1:

We must show that ��00n(A
(n)) � 1: Choose a sequence of invertible operators

Xj 2 �0 such that kXjAX
�1
j k ! b��(A). Since XjAX

�1
j belongs to the �nite

dimensional space generated by �0A�0, we may assume that the sequence
XjAX

�1
j converges to some operator A0 such that kA0k = 1. Obviously

kXA0X
�1k � kA0k for every invertible operator X 2 �0. In particular we

have
k(I �X)A0(I +X +X2 + � � �)k � 1

for X 2 �0 with kXk < 1. Fix an operator X 2 �0 and a sequence "j > 0
converging to zero. There exist vectors hj 2 E with khjk = 1, such that

k(I � "jX)A0(I + "jX + "2jX
2 + � � �)hjk2 � 1� "2j :

This can be rewritten as,

hA�
0A0hj; hji+ 2"j<hA�

0(A0X �XA0)hj ; hji+O("2j ) � 1� "2j
or equivalently,

2"j<hA�
0(A0X �XA0)hj; hji +O("2j ) � h(I �A�

0A0)hj; hji � "2j � �"2j :
Dividing by "j and letting "j ! 0 as j ! 1; we see from the last equation
that

h(I �A�
0A0)hj; hji ! 0; (1)

lim inf
j!1

<hA�
0(A0X �XA0)hj; hji � 0: (2)
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We easily conclude that

lim inf
j!1

<h(X �A�
0XA0)hj; hji � 0: (3)

Set

Q = I �A�
0A0; T = X �A�

0XA0:

Then from (1,3), we see that

Qhj ! 0; lim inf
j!1

<hThj; hji � 0: (4)

Applying the above argument to �X for any � 2 @D (the unit circle), we

see that there exists a sequence h
(�)
j ; kh(�)j k = 1 such that

Qh
(�)
j ! 0; lim inf

j!1
<�hThj; hji � 0: (5)

We claim that 0 2 WQ;0(T ). Indeed, if this were not the case, Corollary
1 would imply the existence of � 2 @D such that

lim inf
j!1

<�hThj; hji < 0

for all sequences of unit vectors hj such that Qhj ! 0 contradicting (5).
Thus, we have shown that for each X 2 �0; there exists a sequence of

unit vectors hj 2 E such that

(I �A�
0A0)hj ! 0; and h(X �A�

0XA0)hj ; hji ! 0: (6)

Let
�0

sa := fX = X� : X 2 �0g:
Consider now a subspace D � �0

sa of real dimension n� 1 such that �0
sa =

D + RI. Set Z = fX � A�
0XA0 : X 2 Dg, and for every unit vector

h 2 E de�ne a linear functional `(h) on Z by `(h)(T ) = hTh; hi, T 2 Z.
Then Lemma 8 applied to the set Sk = f`(h) : k(I � A�

0A0)hk � 1=kg
implies the existence of linear functionals `k in the convex hull of Sk such
that k`kk � 1=k. Observe furthermore that the real dimension of Z is at

most n�1. Then from a standard result (see e.g., [11], page 73), each `k is a
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convex combination of at most n functionals `(h), say `k =
Pn

j=1 �
(k)
j `(h

(k)
j ),

where �
(k)
j � 0,

Pn
j=1 �

(k)
j = 1, and the h

(k)
j are unit vectors in E, such that

k(I �A�
0A0)h

(k)
j k � 1=k:

Let us de�ne unit vectors vectors uk 2 E(n) by

uk = �n
j=1(�

(k)
j )1=2h

(k)
j ; (7)

and observe that limk!1h(X(n)�A�(n)
0 X(n)A

(n)
0 )uk; uki = 0 for everyX 2 �0.

Taking X = Y �Y we obtain

lim
k!1

(kY (n)A
(n)
0 ukk � kY (n)ukk) = 0 (8)

for every Y 2 �0.

Consider now the spaces Hk = �0
nA

(n)
0 uk and Kk = �0

nuk. Lemma 3 im-
plies that, by passing to appropriate subsequences, we may assume that all
the representations X ! X(n)jHk (resp. X ! X(n)jKk) are unitarily equiv-
alent. It follows that we can �nd partial isometries Uk; Vk in �00

n such that
UkHk = H1 and VkKk = K1. Dropping again to appropriate subsequences,

we may assume that the limits u = limk!1 UkA
(n)
0 uk and v = limk!1 Vkuk

exist. Then (8) implies that

kY (n)uk = kY (n)vk

for every Y 2 �0: Therefore there exists a partial isometry W 2 �00
n such

that

WY (n)u = Y (n)v

for every Y 2 �0: Of course,W can be chosen equal to zero on the orthogonal

complement of �0
nu and thus to have �nite rank at most n. The partial

isometries Rk := V �
k WUk are in �00

n, they have uniformly bounded rank, and

lim
k!1

(RkA
(n)
0 � I)uk = lim

k!1
V �
k (WUkA

(n)
0 uk � Vkuk) = 0:

Therefore Lemma 4 implies that

lim inf
k!1

kRkA
(n)
0 ksp � 1:
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Finally, since Rk commutes with X(n);X 2 �0; and we have

X
(n)
j RkA

(n)X
(n)�1
j ! RkA

(n)
0

in norm as j !1. Lemma 5 shows that

kRkA
(n)
0 ksp = kRkA

(n)ksp:
Consequently, we have

lim inf
k!1

kRkA
(n)ksp = lim inf

k!1
kRkA

(n)
0 k � 1:

Thus,

��00n(A
(n)) � lim inf

k!1
kA(n)Xkksp � 1 = b��(A);

which completes the proof of the theorem. 2

Remark. In the cases of interest in control,

�00 = �;

and so one has from Theorem 1 that

��n
(A) = �̂�(A):

5 Conditions for � = �̂

In this section, we will discuss some new conditions when � = �̂ without any
need for lifting or ampliation. In the �nite dimensional case, there have been

some results of this kind, the most famous of which is that of Doyle [6], who
showed that no lifting is necessary for perturbation structures with three or

fewer blocks.

We begin by noting that in the proof of Theorem 1, we established a
useful property of the critical operators A0 in the closed �0 similarity orbit

O�0(A) = fXAX�1 : X 2 �0g
of A. Namely, if we call critical any A0 2 O�0(A) satisfying

lim sup
�#0

k(I � �X)A0(I � �X)�1k � kA0k; 8X 2 �0;

then the �rst part of the proof of Theorem 1 establishes the following:
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Lemma 9 If A0 is a critical operator in O�0(A), then it enjoys the following

property (O):
0 2 WQ(kA0k2X �A�

0XA0); X 2 �0;

where Q = kA0k2I �A�
0A0:

Indeed, property (O) is a reformulation of equation (6) in the case in

which the norm of A0 may be di�erent from 1.

The next lemma is the key step in adapting the proof of Theorem 1 in

order to show that
��(A) = b��(A)

in several interesting cases.

Lemma 10 Let A0 be an operator on E which satis�es the essential version

of property (O), property (O0), namely

0 2 W 0
Q(kA0k2X �A�

0XA0); X 2 �0;

where Q = kA0k2I�A�
0A0: Then there exists a sequence fhkg1k=1 � E; khkk =

1; k = 1; 2; : : : ; such that

Qhk ! 0 strongly and h(kA0k2X �A�
0XA0)hk; hki ! 0;

for all X 2 �0:

Proof. Without loss of generality we can assume that kA0k = 1. Let
X1; : : : ;Xn be an algebraic basis of �0. (Note that �0 is �nite dimen-

sional.) Set Tj := Xj � A�
0XjA0, j = 1; : : : ; n: Then by virtue of Lemma 6,

W 0
Q(T1; : : : ; Tn) is convex and compact. If 0 =2 W 0

Q(T1; : : : ; Tn), there exists
 = ( 1; : : : ;  n) 2 Cn and � > 0 such that

<
nX

j=1

 j�j � �; 8� = (�1; : : : ; �n) 2 W 0
Q(T1; : : : ; Tn):

Set

T =
nX

j=1

 jTj:
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Property (O0) implies that there exists a sequence fgkg1k=1 � E, kgkk = 1,

gk ! 0 weakly such that hTgk; gki ! 0:Without loss of generality (by passing

to a subsequence if necessary), we can assume that

hTjgk; gki ! �j ; (j = 1; : : : ; n);

for k !1: Thus
� = (�1; : : : ; �n) 2 W 0

Q(T1; : : : ; Tn):

Hence

0 <hTgk; gki = <
nX

j=1

 jhTjgk; gki ! <
nX

j=1

 j�j � �;

a contradiction. We therefore conclude that 0 2 W 0
Q(T1; : : : ; Tn); i.e., there

exists a sequence fhkg1k=1 � E satisfying the properties khkk = 1; k = 1; 2; : : :,
kQhkk ! 0; hk ! 0 weakly, and

h(Xj �A�
0XjA0)hk; hki = hTjhk; hki ! 0

for all j = 1; 2; : : : ; n: This implies that

h(X �A�
0XA0)hk; hki ! 0;

for all X 2 �0. 2

We can now state the second main result of this paper:

Theorem 2 If there exists a critical operator A0 satisfying property O0 in

the closed �0{orbit of A, then

��00 (A) = �̂�(A):

Proof. We only have to note that because of Lemma 10, in the proof of

Theorem 1, we need not take direct sums. More precisely, referring to equa-
tion (7) in the proof of Theorem 1, we can take uk = hk; where

fhkg1k=1
is the sequence provided by Lemma 10. The proof then proceeds exactly
as in Theorem 1 with A0 replacing A

(n)
0 , X replacing X(n), and Y replacing

Y (n). 2
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Remark. Under the hypotheses of Theorem 2, when �00 = � (which hap-

pens in all cases of interest in control), we have that

��(A) = �̂�(A):

Let L(�0A�0) denote the linear space generated by

�0A�0 = fXAY : X;Y 2 �0g:

Obviously L(�0A�0) is �nite dimensional, and therefore closed. HenceO�0(A) �
L(�0A�0).

Corollary 2 If for every B 2 L(�0A�0), B 6= 0, the norm of B is not

attained (that is, there is no h 2 H such that kBhk = kBkkhk 6= 0), then

��00 (A) = �̂�(A):

Proof. The critical operator A0 constructed in the �rst part of the proof
of Theorem 1 belongs to L(�0A�0), and therefore its norm is not attained.
However in equation (6), we can assume that the sequence fhjg1j=1 is weakly
convergent, say hj ! h weakly. Without loss of generality, we may assume
that kA0k = 1. Then (6) shows that

(I �A�
0A0)h = 0:

Therefore if h 6= 0, we would have

kA0hk2 = khk2 = kA0k2khk2 6= 0;

and so the norm of A0 would be attained. We conclude that hj ! 0 weakly,

and so A0 satis�es property (O0). The required result now follows by Theo-
rem 2. 2

Remark. Note that Corollary 2 applies only to in�nite dimensional Hilbert

spaces E.

Example.
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We would like to give an explicit example to which Corollary 2 applies. Let

Aj be an operator on a Hilbert space Ej (j = 1; : : : ; n) for which the norm

is not attained. (For example, take Ej = L2((0; 1)) and Aj the muliplication

operator f(x) 7! xf(x) for x 2 (0; 1) and f 2 L2((0; 1)).) Set

E := E1 � � � � � En;

and � the algebra of operators on E of the form

2
66664

X1 0 : : : 0

0 X2 : : : 0
...

...
. . .

...
0 0 : : : Xn

3
77775

withXj 2 L(Ej); j = 1; 2; : : : ; n:Then �0 is formed by the diagonal operators

2
66664

�1IE1 0 : : : 0
0 �2IE2 : : : 0
...

...
. . .

...
0 0 : : : �nIEn

3
77775

for �j 2 C; j = 1; 2; : : : ; n; and IEj denotes the identity operator on Ej ; j =
1; 2; : : : ; n: Let A be any operator on E the n�n block matrix representation
of which has entries in the set f0; A1; : : : ; Ang with only one nonzero entry

in each row and column. Then it is easy to check that L(�0A�0) has the
property required in Corollary 2, and therefore

��00 (A) = �̂�(A):

6 Toeplitz Operators

In this section, we want to use our lifting methodology in order to derive
a beautiful result of Shamma [13, 14] on the structured singular value of a

Toeplitz operator, i.e., a linear time invariant system.

Accordingly, set E = H2(Cn) and let A denote the multiplication (ana-

lytic Toeplitz) operator on E de�ned by

(Ah)(z) = A(z)h(z); jzj < 1; h 2 E;
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where

A(z) = [ajk]
n
j;k=1; jzj < 1;

has H1 entries. Let �0 be any �{subalgebra of L(Cn), the elements of which

are regarded as multiplication operators on E. Note that in this case, �00 = �

is the algebra generated by operators of the form

(Bh)(z) = B(z)h(z); jzj < 1; h 2 E
with B(z)X = XB(z); jzj < 1; X 2 �0 as well as of the form

B

2
66664

h1
h2
...
hn

3
77775 =

2
66664

Y h1
Y h2
...

Y hn

3
77775 ;

with Y 2 L(H2(C)) arbitrary. We can now state:

Lemma 11 Let A0 be an analytic Toeplitz operator. Then if A0 has prop-

erty (O), it also has property (O0).

Proof. Without loss of generality we may assume kA0k = 1. Let X 2 �0

and let hj ; j = 1; 2; : : : be a sequence of unit vectors satisfying

k(I �A�
0A0)hjk2 ! 0; h(X �A�

0XA0)hj; hji ! 0: (9)

Note that since I �A�
0A0 � 0 the �rst condition in (9) is equivalent to

h(I �A�
0A0)hj; hji ! 0:

Let U denote the canonical unilateral shift on E = H2(Cn); that is,

(Uh)(z) := zh(z); jzj < 1; h 2 E:
As is well-known, we can viewH2(Cn) as a subspace of L2(Cn). In particular,

in this representation the relations (9) are equivalent to

Z 2�

0
(khj(eit)k2 � kA0(e

it)hj(e
it)k2)dt ! 0

Z 2�

0
[hXhj(eit); hj(eit)i � hXA0(e

it)hj(e
it); hj(e

it)i]dt ! 0: (10)
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Note that X is an n�n matrix with constant coe�cients. Therefore in (10),

hj can be replaced by Ukhj for any k � 0 without changing the values of the

integrals. We infer that

k(I �A�
0A0)U

kjhjk2 ! 0; h(X �A�
0XA0)U

kjhj; U
kjhji ! 0;

for any sequence fkjg1j=1 of natural numbers. Since for any g; h 2 E

jhUkg; hij = jhg; U�khij � kgkkU�khk ! 0 (k !1);

we can choose kj su�ciently large in order to guarantee that

jhUkjhj; hij � 1

2j
;

for any h of the form

h = (zm�pk)
n
k=1; 0 � m � j; 1 � p � n; (11)

where �pk is the Kronecker delta. Thus

hUkjhj; hi ! 0; as j !1

for all vectors of the form (11). Since these vectors form an orthonormal
basis of E, we see that Ukjhj ! 0 weakly, which concludes the proof of the

lemma. 2

Corollary 3 ([13, 14]) For A and �0 as above, we have that

��(A) = �̂�(A):

Proof. First, note that any operator B in L(�0A�0) is also an analytic

Toeplitz operator. In particular, the critical operator A0 obtained in the

proof of Theorem 1 is a multiplication operator given by

A0(z) = [a0jk(z)]
n
j;k=1; jzj < 1:

By Lemma 9, the operator A0 has property (O), and thus also property (O0),

by virtue of Lemma 11. The conclusion now follows from Theorem 2. 2
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7 Structured Singular Value of Input-Output

Operators

In this section, we will put some of the above results into a system-theoretic

framework. Accordingly, let `2+ be the space of square summable one-sided

sequences in C, let C denote the set of all bounded linear operators on `2+:

Further, let A : `2+(C
n) ! `2+(C

n) be an arbitrary bounded linear opera-

tor. Thus A de�nes a (possibly) time-varying system. (Here `2+(C
n) the

space of of square summable sequences in Cn; i.e., the space of �nite en-
ergy vector-valued signals with n components.) Then we want to interpret
b��(A) as a structured singular value on an extended space with an enhanced
perturbation structure. Note E in this case is the Hilbert space `2+(C

n):
De�ne the algebra of perturbations

� := f

2
66664

�1 0 : : : 0

0 �2 : : : 0
...

...
. . .

...
0 0 : : : �n

3
77775 : �i 2 C; i = 1; : : : ; ng:

Then the commutant of � is the �nite dimensional C�-algebra,

�0 := f

2
66664

d1 0 : : : 0
0 d2 : : : 0
...

...
. . .

...

0 0 : : : dn

3
77775 : di 2 C; i = 1; : : : ; ng:

Note that a constant d 2 C de�nes an operator on `2+ via multiplication.
From Theorem 1, it follows that the � upper bound given by the in�mum

of kXAX�1k over all constant X�scales equals ���(A). We now have the

following interpretation of b��(A). We lift A to A(n) : E(n) ! E(n): Then

(�n)
00 �= f

2
666664

~�1 0 0 0

0 ~�2 0 0
...

...
. . .

...

0 0 : : : ~�n

3
777775
: ~�j 2 �g:

(�n)
00 is a space of time-varying perturbations and we have from Theorem 1

that
b��(A) = ��00

n
(A(n)):
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This is true for arbitrary time-varying systems A. In case A is Toeplitz, i.e.,

the system is time-invariant, then as we have seen (Corollary 3, [13, 14]),

b��(A) = ��(A):
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