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Optimal Control with Noisy Time
Andrew Lamperski and Noah J. Cowan

Abstract—This paper examines stochastic optimal control problems in
which the state is perfectly known, but the controller’s measure of time
is a stochastic process derived from a strictly increasing Lévy process.
We provide dynamic programming results for continuous-time finite-
horizon control and specialize these results to solve a noisy-time variant
of the linear quadratic regulator problem and a portfolio optimization
problem with random trade activity rates. For the linear quadratic case,
the optimal controller is linear and can be computed from a generalization
of the classical Riccati differential equation.

Index Terms—Optimal Control; Stochastic Optimal Control; Uncertain
Time

I. INTRODUCTION

Effective feedback control often requires accurate timekeeping.
For example, finite-horizon optimal control problems generally result
in policies that are time-varying functions of the state. However,
chronometry is imperfect and thus feedback laws are inevitably
applied at incorrect times. Little appears to be known about the
consequences of imperfect timing on control [1]–[3]. This paper
addresses optimal control with temporal uncertainty.

A stochastic process can be time-changed by replacing its time
index by a monotonically increasing stochastic process [4]. Time-
changed stochastic processes arise in finance, since changing the time
index to a measure of economically relevant events, such as trades,
can improve modeling [5]–[7]. This new time index is, however,
stochastic with respect to “calendar” time.

We suspect that similar notions of stochastic time changing may
facilitate the study of time estimation and movement control in the
nervous system. Biological timing is subject to noise and environ-
mental perturbation [8]. Furthermore, humans rationally exploit the
statistics of their temporal noise during simple timed movements,
such as button pushing [9] and pointing [10]. To analyze more
complex movements, a theory of feedback control that compensates
for temporal noise seems desirable.

Within control, the most closely related work to the present paper
deals with analysis and synthesis of systems with uncertain sampling
times. The study of uncertain sampling times has a long history
in control [11], and is often motivated by problems of clock jitter
[12], [13] or network delays [14]. In these works, control inputs are
sampled at known times and held over unknown intervals. To derive
the dynamic programming principle in this paper, system behavior
is analyzed for control inputs held over random intervals, bearing
some similarity to optimal control with random sampling [15].
Fundamentally, however, studies of sampling uncertainty assumes that
an accurate clock can measure the sample times; the present work
relaxes this assumption.

Other aspects of imperfect timing have been addressed in control
research to a more limited extent. For example, the importance of
synchronizing clocks in distributed systems seems clear [16], [17], but
more work is needed to understand the implications of asynchronous
clock behavior on common control issues, such as stability [18] and
optimal performance [19].

A. Lamperski is with the Department of Electrical and Com-
puter Engineering, University of Minnesota, Minneapolis, MN, USA
(alampers@umn.edu).

N. J. Cowan is with the Department of Mechanical Engineering, The Johns
Hopkins University, Baltimore, MD, USA (ncowan@jhu.edu).

This paper focuses on continuous-time stochastic optimal control
with perfect state information, but a stochastically time-changed con-
trol process. Dynamic programming principles for general nonlinear
stochastic control problems are derived, based on extensions of the
classical Hamilton-Jacobi-Bellman equation. The results apply to a
wide class of stochastic time changes given by strictly increasing
Lévy processes. The dynamic programming principles are then spe-
cialized to give explicit solutions to a time-changed version of the
finite-horizon linear quadratic regulator and a portfolio optimization
problem.

Section II defines the notation used in the paper, states the neces-
sary facts about Lévy, and defines the class of noisy clock models
used. The main results on time-changed diffusions and optimal
control are given in Section III. The results are proved in Sections IV
with supplementary arguments given in the appendices. Sections V
and VI discuss future work and conclusions, respectively.

II. PRELIMINARIES

After establishing notation and reviewing Lévy processes, this
section culminates in the construction of Lévy-process-based clock
models upon which the remainder of the theory of this paper is built.

A. Notation

The norm symbol, ‖ · ‖, is used to denote the Euclidean norm for
vectors and the Frobenius norm for matrices.

For a set S, its closure is denoted by S.
The spectrum of matrix A is denoted by spec(A).
The Kronecker product is denoted by ⊗, while the Kronecker sum

is denoted by ⊕: A⊕B = A⊗ I + I ⊗B.
The vectorization operation of stacking the columns of a matrix is

denoted by vec.
A function h : R× Rn → R is in C1,2 if h(s, x) is continuously

differentiable in s, twice continuously differentiable in x. The func-
tion h is said to satisfy a polynomial growth condition, if in addition,
there are constants K and q such that

max

{
|h(s, x)|,

∣∣∣∣∂h(s, x)

∂s

∣∣∣∣ , ∣∣∣∣∂h(s, x)

∂xi

∣∣∣∣ , ∣∣∣∣∂2h(s, x)

∂xi∂xj

∣∣∣∣}
≤ K (1 + ‖x‖q) ,

for i, j = 1, . . . n, and all x ∈ Rn. In this case, h ∈ C1,2
p is written.

Stochastic processes will be denoted as ζt, Xs, etc., with time
indices as subscripts. Occasionally, processes with nested subscripts
will be written with parentheses, e.g. ζτs = ζ(τs). Similarly, the
elements of a stochastic vector will be denoted as X1(s).

The left limit of a process Xt will be denoted by Xt− =
lims↑tXs.

Functions that are right-continuous with left-limits will be called
càdlàg, while functions that are left-continuous with right-limits will
be called càglàd.

B. Background on Lévy Processes

Basic notions from Lévy processes required to define the general
class of clock models are now reviewed. The definitions and results
can be found in [20].
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A real-valued stochastic process Zs is called a Lévy process if
• Z0 = 0 almost surely (a.s.).
• Zs has independent, stationary increments: If 0 ≤ r ≤ s, then
Zr and Zs − Zr are independent and Zs − Zr has the same
distribution as Zs−r .

• Zs is stochastically continuous: For all a > 0 and all s ≥ 0,
limr→s P(|Zs − Zr| > a) = 0.

It will be assumed that Lévy processes in this paper are right-
continuous with left-sided limits, i.e. they are càdlàg. No generality
is lost since, for every Lévy process, Zt, there is a càdlàg Lévy
process, Z̃t, such that Zt = Z̃t for almost all t.

Some of the technical arguments rely on Poisson random measures,
which will now be defined. Let B be the Borel subsets of R and let
(Ω,Σ,P) be a probability space. A Poisson random measure is a
function N : [0,∞)× B × Ω→ N ∪ {∞}, such that
• For all s ≥ 0 and ω ∈ Ω, N(s, ·, ω) is a measure.
• For all disjoint Borel subsets A,B ∈ B such that 0 /∈ A and 0 /∈
B, N(·, A, ·) and N(·, B, ·) are independent Poisson processes.

Typically, the ω argument will be dropped, and it will be implicitly
understood that N(s,A) denotes a measure-valued stochastic process.

The following relationship between Lévy processes and Poisson
random measures will be used in several arguments. For a Lévy
process, Zs, with jumps denoted by ∆Zs, there is a Poisson random
measure that counts the number of jumps into each Borel set A with
0 /∈ A:

N(s,A) = |{∆Zr ∈ A : 0 ≤ r ≤ s}| .

Here, |S| denotes the cardinality of a finite set, S.
Subordinators. A monotonically increasing Lévy process, τs, is

called a subordinator. The following properties of subordinators will
be used throughout the paper.
• Laplace Exponent: There is function, ψ, called the Laplace

exponent, defined by

ψ(z) = bz +

∫ ∞
0

(
1− e−zt

)
λ(dt), (1)

such that

E
[
e−zτs

]
= e−sψ(z) for all z ≥ 0. (2)

Here b ≥ 0 and the measure satisfies
∫∞

0
min{t, 1}λ(dt) <∞.

The measure λ is called a Lévy measure. The pair (b, λ) is called
the characteristics of τs.

• Lévy-Itô Decomposition: There is a Poisson random measure
N such that

τs = bs+

∫ ∞
0

tN(s, dt).

Furthermore, if A ⊂ (0,∞) is a Borel set such that 0 /∈ A, then
E[N(1, A)] = λ(A).

The function, ψ, is called the Laplace exponent because (2) is the
Laplace transform of the distribution of τs.

For control problems, simpler formulas will often result from
replacing ψ with the function β(z) = −ψ(−z). Note then, that β
has the form

β(z) = bz +

∫ ∞
0

(
ezt − 1

)
λ(dt). (3)

Define rmax by

rmax = sup

{
r :

∫ ∞
1

ertλ(dt) <∞
}

and define the domain of β as

dom(β) = {z ∈ C : Re z < rmax}.

Note that
∫∞

1
λ(dt) <∞ implies that rmax ∈ [0,∞].

The function β is used to construct optimal solutions for the linear
quadratic problem, as well as the portfolio problem below. The main
properties are given in the following lemma, which is proved in
Appendix B.

Lemma 1: For all z ∈ dom(β), the function β is analytic at z,
and

E [ezτs ] = esβ(z). (4)

Furthermore, if A is a square matrix with spec(A) ⊂ domβ, then

β(A) = bA+

∫ ∞
0

(
eAt − I

)
λ(dt) (5)

is well defined and

E
[
eAτs

]
= esβ(A). (6)

Since β is analytic, several methods exist for numerically comput-
ing the matrices β(A) [21]. In special cases, as discussed below, β(A)
may be computed using well-known matrix computation methods.

Example 1: The simplest non-trivial subordinator is the homoge-
neous Poisson process Nt, which is characterized by

P(Nt = k) = e−γt
(γt)k

k!
,

where γ > 0 is called the rate constant. Its Laplace exponent is given
by ψ(z) = γ − γe−z , which is found by computing the expected
value directly. The characteristics are (0, γδ(t − 1)). In this case,
dom(β) = C, and β(A) = γeA − γI , which can be computed from
the matrix exponential.

Example 2: The gamma subordinator, which is often used to
model “business time” in finance [22], [23], has increments dis-
tributed as gamma random variables. It has Laplace exponent ψ(z) =
δ log(1 + z/γ) with characteristics b = 0 and λ(dt) = δe−γtt−1dt.
Thus β(z) = −δ log(1 − z/γ), dom(β) = {z ∈ C : Re z < γ},
and matrix function β(A) = −δ log

(
I − γ−1A

)
may be computed

from the matrix logarithm.1

Why Lévy Processes? In the next subsection, the clock model in
this paper will be constructed from a subordinator τs. The motivation
for using Lévy processes will be explained. Consider a continuous-
time noisy clock, cs which is sampled with period δ. A natural model
might take the form

cδ(k+1) = cδk + δ + n(k, δ), (7)

where n(j, δ) are random variables. In this case, the clock increments
consist of a deterministic step of magnitude δ plus a random term.

If cs is a Lévy process, then by definition, all of the increments
cδ(k+1) − cδk are independent and identically distributed. Thus, the
decomposition in (7) holds with n(k, δ) = cδ(k+1) − cδk − δ. If cs
were not a Lévy process, then (7) may hold for some particular δ, but
there might be another period, δ′ < δ, for which the decomposition
fails. The Lévy process assumption will guarantee that the clocks are
well-behaved when taking continuous time limits (i.e. δ ↓ 0).

1When spec(M) ⊂ {z ∈ C : Re z > 0}, log(M) refers to the principle
logarithm: the unique matrix such that elog(M) =M and spec(log(M)) ⊂
{z ∈ C : −π < Im z < π}. See [21].
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C. Clock Models

Throughout the paper, t will denote the time index of the plant
dynamics, while s will denote the value of clock available to the
controller. Often, t and s will be called plant time and controller
time, respectively. The interpretation of s and t varies depending on
context. In biological motor control, t would denote real time, since
the limbs obey Newtonian mechanics with respect to real-time, while
s would denote the internal representation of time. For the portfolio
problem studied in Subsection III-B, an opposite interpretation holds.
Here, the controller (an investor) can accurately measure calendar
time, but price dynamics are simpler with respect a different index,
“business time”, which represents the progression of economic events
[5]–[7]. Thus, s would denote calendar time, while t would denote
business time, which might not be observable.

The relationship between s and t will be described stochastically.
Let τs be a strictly increasing subordinator. In other words, if s < s′

then τs < τs′ a.s. (Note that any subordinator can be made to be
strictly increasing by adding a drift term bs with b > 0.) The process
τs will be interpreted as the amount of plant time that has passed
when the controller has measured s units of time. The process ζt will
be an inverse process that describes how much time the controller
measures over t units of plant time. Formally, ζt is defined by

ζt = inf{σ : τσ ≥ t}. (8)

We claim that ζ(τs) = s a.s. Indeed, ζ(τs) = inf{σ : τσ = τs}, b
y definition. Since τs is right continuous and strictly increasing, a.s.,
the claim follows.

Example 3: The case of no temporal uncertainty corresponds to
τs = s and ζt = t. The Laplace exponent of τs is computed directly
as ψ(z) = z and the characteristics are (1, 0). Here dom(β) = C.

Example 4: A more interesting temporal noise model, also used as
a “business time” model [24], is the inverse Gaussian subordinator.
Fix γ > 0 and δ > 0. Let Ct = γt + Wt, where Wt is a standard
Brownian motion. The inverse Gaussian subordinator is given by

τs = inf{t : Ct = δs},

with Laplace exponent ψ(z) = δ(
√
γ2 + 2z − γ). Here b = 0 and

λ is given by

λ(dt) =
δ√

2Γ(1/2)
e−

1
2
γ2tt−

3
2 dt,

where Γ is the gamma function. Here, dom(β) corresponds to Rez <

γ2/2 and β(A) = δ
(
γI −

√
γ2I − 2A

)
, which can be computed

from the matrix square root. It can be shown that the inverse process
is given by

ζt = sup
{
δ−1Cσ : 0 ≤ σ ≤ t

}
.

See Figure 1.

In the preceding example, the process τs has jumps, but the inverse,
ζt, is continuous. The next proposition generalizes this observation
for any strictly increasing subordinator, τs.

Proposition 1: The process ζt is continuous almost surely.

Proof: Fix ε > 0 and t ≥ 0. Set s = ζt. Strict mono-
tonicity of τs implies that [τmax{s−ε,0}, τs+ε] is a nonempty in-
terval, a.s. The inverse property of ζt implies (almost surely) that
t ∈ [τmax{s−ε,0}, τs+ε] and ζt′ ∈ [max{s − ε, 0}, s + ε] for all
t′ ∈ [τmax{s−ε,0}, τs+ε].

0 1 2 3 4 5 0 1 2 3 4 50

1

2

3

4

5

0

1

2

3

4

5(A) (B)

controller time, plant time, 

Fig. 1. (A). The inverse Gaussian subordinator, τs, with γ = δ = 2. The
process was simulated by generating independent inverse Gaussians using the
method from [25]. (B) The inverse process, ζt. Note that the graph of ζt can
be found from the graph of τs by simply switching the axes.

III. MAIN RESULTS

This section presents the main results of the paper. First, given
an Itô process, Yt, a representation of the time-changed process
Xs = Y (τs) as a semimartingale with respect to controller time, s, is
derived. This representation is then used to derive a general dynamic
programming principle for control problems with noisy clocks. As
an example, the dynamic programming principle is used to solve a
simple portfolio optimization problem under random trade activity
rates. Finally, the dynamic programming method is used to solve
a noisy-time variant of the linear quadratic regulator problem. All
proofs are given in Section IV.

A. Time-Changed Stochastic Processes

This section gives a basic representation theorem for time-changed
stochastic processes that will be vital for dynamic programming
proofs. The theorem is proved in Subsection IV-A.

Let Wt be a Brownian motion with E[WtW
T
t ] = tI . Let Y be a

stochastic process defined by

dYt = Ftdt+GtdWt, (9)

where Ft and Gt are FWt predictable processes, where (FWt )t≥0 is
the σ-algebra generated by Wt. Furthermore, assume that Ft and Gt
are left-continuous with right-sided limits.

For a strictly increasing subordinator, τs, let Fτ,W = (Fτ,Ws )s≥0

be the smallest filtration such that for all r ∈ [0, s] and all t ∈ [0, τs]
both τr and Wt are measurable.

Theorem 1: Let τs be a subordinator characterized by (b, λ). If
the terms of (9) satisfy

•
∫ τS

0
‖Ft‖dt <∞ almost surely and

• E
[∫ τS

0
‖Gt‖2dt

]
<∞,

then the time-changed process Xs = Y (τs) is an Fτ,W semimartin-
gale given by

Xs = X0 + b

∫ s

0

F (τr−)dr +
√
b

∫ s

0

G(τr−)dW̃r+

∑
0≤r≤s

(∫ τr

τ
r−

Ftdt+

∫ τr

τ
r−

GtdWt

)
. (10)

Here W̃s is an Fτ,W -measurable Brownian motion defined by
√
bW̃s = W (τs)−

∑
0≤r≤s

(W (τr)−W (τr−)) ,

satisfying bE[W̃sW̃
T
s ] = bsI .
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B. Dynamic Programming

This subsection introduces the general control problem studied in
this paper. First, the basic notions of controlled time-changed dif-
fusions and admissible systems are defined. Then, the finite-horizon
control problem is stated, and the associated dynamic programming
verification theorem is stated. The concepts in this subsection are
based on the general theory of controlled Markov processes [26]. A
nonlinear portfolio problem is solved at the end of the subsection.

Controlled Time-Changed Diffusions. Consider a controlled
diffusion

dYt = F (ζt, Yt− , U(ζt))dt+G(ζt, Yt− , U(ζt))dWt, (11)

with state Y and input U . Recall that ζt is defined in (8) as the
inverse process of a subordinator, τs. Let Xs denote the time-changed
process, Xs = Y (τs). The processes, Xs is thus a time-changed
controlled diffusion.

Admissible Systems For s ≥ 0, let Fζ,Xs be the σ-algebra
generated by (s,Xs), and let Fζ,X be the associated filtration.

Let X ⊂ Rn and U ⊂ Rp be a set of states and a set of
inputs, respectively. A state and input trajectory (Xs, Us) is called
an admissible system if
• Xs ∈ X for all s ≥ 0
• Us is a càglàd, Fζ,X -adapted process such that Us ∈ U for all
s ≥ 0.

Note that the requirement that Us is càglàd and Fζ,X -adapted
implies that U(ζt) may depend on the “noisy clock” process, ζt,
as well as Xr , with r < ζt. If ζt 6= t, then U(ζt) cannot directly
measure t.

Problem 1: The time-changed optimal control problem over time
horizon [0, S] is to find a policy Us that solves

min
U

E
[∫ S

0

c(s,Xs, Us)ds+ Ψ(XS)

]
,

where the minimum is taken over all admissible systems (Xs, Us).

Given a policy, U , and (s, x) ∈ [0, S]×Rn, the cost-to-go function
J(s, x;U), is defined by

J(s, x;U) = E
[∫ S

s

c(s,Xr, Ur)dr + Ψ(XS) Xs = x

]
.

Note, then, that the optimal control problem can be equivalently cast
as minimizing J(0, x;U) over all admissible systems.

Backward Evolution Operator. As in standard continuous-time
optimal control, the backward evolution operator,

Auh(s, x) =

lim
σ↓0

1

σ
(E [h(s+ σ,Xs+σ)|Xs = x, Ur = u]− h(s, x)) , (12)

is used to formulate the dynamic programming equations.
To calculate an explicit form forAu, an auxiliary stochastic process

is introduced. For (s, x, u) ∈ [0, S)×X × U , define Y xust by

Y xust = x+

∫ t

0

F (s, Y xusr , u)dr +

∫ t

0

G(s, Y xusr , u)dŴr, (13)

where Ŵr is a unit Brownian motion independent of Wt and τs.
Now the domain of Au is defined. Let D be the set of h ∈ C1,2

p

such that there exist K and q satisfying∫ ∞
0

|EŴ [h(s, Y xust )]− h(s, x)|λ(dt) < K(1+‖x‖q+‖u‖q) (14)

for all (s, x, u) ∈ [0, S)×X × U .

It will be shown in Subsection IV-B that for h ∈ D, the backward
evolution operator for Xs is given by

Auh(s, x) =
∂h(s, x)

∂s
+ b

∂h(s, x)

∂x
F (s, x, u)

+
1

2
bTr

(
G(s, x, u)T

∂2h(s, x)

∂x2
G(s, x, u)

)
+

∫ ∞
0

(EŴ [h(s, Y xust )]− h(s, x))λ(dt). (15)

Remark 1: When the dynamics are time-homogeneous, i.e.
F (s, y, u) = F (y, u) and G(s, y, u) = G(y, u), and the policy is
Markov, Us = U(Xs−), the expression for Au in (15) is a special
case of Phillips’ Theorem [20], [27]. In this case, the formula can be
derived using techniques from semigroup theory [27]. The derivation
in this paper is instead based on Itô calculus.

Finite Horizon Verification. The following result is a dynamic
programming verification theorem for Problem 1. The theorem is
proved in Subsection IV-B by reducing it to a special case of finite-
horizon dynamic programming for controlled Markov processes [26].

Theorem 2: Assume that there is a function V ∈ D that satisfies:

inf
u

[c(s, x, u) +AuV (s, x)] = 0, (16)

V (S, x) = Ψ(x), (17)

where (16) holds for all (s, x, u) ∈ [0, S) × X × U and (17) holds
for all x ∈ X .

Then V (s, x) ≤ J(s, x;U) for every admissible system, (X·, U·)
with Xs = x.

Furthermore, if a policy U∗r and associated state process X∗r , with
X∗s = x, satisfy

U∗r ∈ arg min
u

[c(r,X∗r , u) +AuV (r,X∗r )] , (18)

for almost all (r, ω) ∈ [s, S]× Ω, then V (s, x) = J(s, x;U∗).

Remark 2: The theorem gives a sufficient condition for a policy
to be optimal. By the definition of admissible systems if (16)-(17)
hold and (X∗r , U

∗
r ) satisfy (18), then U∗r is optimal over all causal

policies, including those with memory.

Example 5: Consider the problem of maximizing E [Xη
S ], with η ∈

(0, 1) subject to the time-changed dynamics

dYt = U(ζt)Yt(µ1dt+ σ1dW1(t))

+ (1− U(ζt))Yt(µ2dt+ σ2dW2(t))

Xs = Y (τs),

where W1(t) and W2(t) are independent Brownian motions. The
problem can be interpreted as allocating wealth between stocks mod-
eled by time-changed geometric Brownian motions: Zi(s) = Ri(τs),
where dRi(t) = Ri(t)(µidt+ σidWi(t)).

Let u∗ be the optimal solution and ρ∗ be the optimal value of the
following quadratic maximization problem:

max
u

[
1

2
η(η − 1)

(
(uσ1)2 + ((1− u)σ2)2)

+ η (uµ1 + (1− u)µ2)

]
.

If ρ∗ ∈ dom(β), it can be verified by elementary stochastic calculus
that V (s, x) given by

V (s, x) = eβ(ρ∗)(S−s)xη
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satisfies the dynamic programming equations, (16) and (17), with
X × U = [0,∞) × R and max replacing min. The corresponding
optimal input is U∗s = u∗.

C. Linear Quadratic Regulators

In this section, Theorem 2 is applied to linear systems with
quadratic cost. The result (with no Brownian forcing) was originally
presented in [3], using a proof technique specialized for linear
systems.

Problem 2: Consider linear dynamics

dYt = (AYt +BU(ζt))dt+MdWt, (19)

subject to the time change Xs = Y (τs). Here X = Rn and U = Rp.
The time-changed linear quadratic regulator problem over time

horizon [0, S] is to find a policy Us that solves

min
U

E
[∫ S

0

(
XT
sQXs + UT

s RUs
)
ds+XT

SΦXS

]
,

over all càglàd, Fζ,X -adapted policies. Here Q and Φ are positive
semidefinite, while R is positive definite.

The following lemma introduces the mappings used to construct
the optimal solution for the time-changed linear quadratic regulator
problem. The lemma is proved in Appendix C by showing that each
mapping may be computed from β(Ã) for an appropriately defined
matrix Ã.

Lemma 2: Let P be an n×n matrix. If {0}∪spec(2A) ⊂ dom(β),
then the following linear mappings are well defined:

F (P ) = b(ATP + PA) +

∫ ∞
0

(
eA

TtPeAt − P
)
λ(dt)

G(P ) = bP +

∫ ∞
0

eA
TtP

∫ t

0

eArdrλ(dt)

H(P ) =

∫ ∞
0

∫ t

0

eA
TrdrP

∫ t

0

eAρdρλ(dt)

g(P ) = Tr

(
P

(
bMMT +

∫ ∞
0

∫ t

0

eArMMTeA
Trdrλ(dt)

))
.

Furthermore, F , G, and H satisfy

E
[
eA

TτsPeAτs
]

= P + sF (P ) +O(s2)

E
[
eA

TτsP

∫ τs

0

eArdr

]
= sG(P ) +O(s2)

E
[∫ τs

0

eA
TrdrP

∫ τs

0

eAρdρ

]
= sH(P ) +O(s2).

Remark 3: The descriptions of F , G, and H in terms of ex-
pectations are not required for the proof below. They are given to
demonstrate that the formulas in terms of (b, λ) coincide with the
formulas from [3].

Example 6: With no temporal noise, the mappings reduce to

F (P ) = ATP + Y P, G(P ) = P,

H(P ) = 0, g(P ) = Tr(PMMT).
(20)

Furthermore, since β(z) = z is analytic everywhere, these formulas
are true for any state matrix, A.

Example 7: Consider an arbitrary strictly increasing subordinator
with Laplace exponent ψ. Let A = µ where µ is a real, non-zero

scalar with 2µ ∈ dom(β). Let M be a scalar. Combining (2) with
the formula

∫ t
0
eµσdσ = µ−1(eµt − 1) shows that

F (P ) = β(2µ)P

G(P ) = µ−1(β(2µ)− β(µ))P

H(P ) = µ−2(β(2µ)− 2β(µ))P

g(P ) =
1

2
µ−1β(2µ)M2P.

Theorem 3: Say that {0} ∪ spec(2A) ⊂ dom(β). Define the
function V (s, x) = xTPsx + hs by the backward differential
equations

− d

ds
Ps = Q+ F (Ps)−G(Ps)B(R+BTH(Ps)B)−1BTG(Ps)

T

− d

ds
hs = g(Ps),

with final conditions PS = Φ and hS = 0. The function V (s, x)
satisfies dynamic programming equations, (16) and (17), and the
optimal policy is given by

Us = KsXs−

Ks = −(R+BTH(Ps)B)−1BTG(Ps)
T.

The policy is computed by minimizing (18). Thus, Theorem 2
implies that linear state feedback is optimal over all causal policies.

A straightforward variation on the proof of Theorem 3 shows that
for any linear policy, Us = LsXs− , the cost-to-go is given by

J(s, x;U) = xTZsx+ ps,

where Zs and ks satisfy the backward differential equations

− d

ds
Zs = Q+ F (Zs) + LT

sB
TG(Zs)

T +G(Zs)BLs

+ LT
s (R+BTH(Zs)B)Ls

− d

ds
ps = g(Zs).

In the following example, these formulas are used in order to compare
the performance of the policy from Theorem 3 with the policy Us =
LsXs− , where Ls is the standard LQR gain, not compensating for
temporal noise.

Example 8: Consider the system defined by the state matrices

A =

[
0.75 1

0 0.75

]
, B =

[
0
1

]
, M = 0,

with cost matrices given by

R = 0.5, Q = 0, Φ =

[
1 0
0 0

]
.

Let τs be the inverse Gaussian subordinator with γ = δ = 2. The
condition, spec(2A) ⊂ dom(β), is satisfied since 2 · 0.75 = 1.5 <
γ2/2 = 2. Figure 2 compares the optimal policy with the standard
LQR policy.

IV. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1

From the definition of Xs,

Xs = X0 +

∫ τs

0

Ftdt+

∫ τs

0

GtdWt. (21)

Note that Xs is Fτ,Ws -measurable. Thus, Xs will be an Fτ,W
semimartingale, provided that 1)

∫ τs
0
Ftdt has finite variation and

2)
∫ τs

0
GtdWt is an Fτ,W martingale.
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Fig. 2. (A) Plots of X1(s) under the optimal policy and the LQR policy
for 10 realizations of τs. The initial condition is x = [0, 1]T. (B) The same
plots under time variable t. The black line shows the LQR trajectory with no
temporal noise. In the case of no temporal noise, the classical LQR uses high
gains near t = 0 to produces high-speed trajectories such that Y1 approaches
0 at final time. In this case, timing errors lead to wide variation in the final
position. The optimal policy reduces the speed of the trajectory near s = 0
order to minimize the effects of temporal noise. (C) The optimal cost V (s, x)
and J(s, x;U) for the LQR policy (i.e. U is optimal without time noise) are
plotted for x = [0, 1]T. As expected, V (s, x) ≤ J(s, x;U). Furthermore,
as the time-horizon increases, the LQR policy depends strongly on timing
information, and so temporal noise leads to higher cost as s goes to 0. (D)
A histogram of the final positions, X1(S), for 1000 realizations of τs. The
optimal controller leads to X1(S) being tightly distributed around 0, while
the LQR controller gives a wide spread of X1(S) values. The errors in the
final position lead to increased cost for the LQR controller.

Finite variation follows since

Var

(∫ τs

0

Ftdt

)
≤
∫ τs

0

‖Ft‖dt <∞ almost surely.

To prove the martingale property, note that for 0 ≤ r ≤ s we have

E
[∫ τs

0

GtdWt Fτ,Wr
]

=

∫ τr

0

GtdWt + E
[∫ τs

τr

GtdWt Fτ,Wr
]

=

∫ τr

0

GtdWt.

Furthermore,

E
[∥∥∥∥∫ τs

0

GtdWt

∥∥∥∥]2

≤ E

[∥∥∥∥∫ τs

0

GtdWt

∥∥∥∥2
]
<∞,

where the inequality follows from Jensen’s inequality. Thus 2) holds.
Now (10) must be proved. For more compact notation, define the

processes Ht and Zt as

Ht =
[
Ft Gt

]
Zt =

[
t
Wt

]
so that Xs may be written as

Xs =

∫ τs

0

HtdZt. (22)

Note that Z(τs) = [τs,W (τs)
T]T. Since τs is a subordinator,

W (τs) is a Lévy process on Rd, with Lévy symbol

ηWτ (z) = −1

2
bzTz +

∫
Rd

(eiz
Tx − 1)µW,τ (dt),

for some Lévy measure µW,τ . (See Theorem 1.3.25 and Theorem
1.3.33, respectively, in [20].) Thus, the continuous part of W (τs) is
a Brownian motion with E

[
W (τs)W (τs)

T
]

= bI .
Define the Z̃s by removing the jumps from Z(τs).

Z̃s = Z(τs)−
∑

0≤r≤s

(
Z(τr)− Z(τ−r )

)
.

It follows that Z̃s = [bs,
√
bW̃T

s ]T, where W̃s is the Brownian motion
from the theorem statement. Thus, (10) can be equivalently written
as

Xs =

∫ s

0

H(τr−)dZ̃s +
∑

0≤r≤s

∫ τr

τ
r−

HsdZt (23)

So, the proof will follow by deriving (23) from (22). If b = 0,
then Z̃s = 0 and τs =

∑
0≤r≤s τr − τr− . Thus,

Xs =
∑

0≤r≤s

∫ τr

τ
r−

HsdZt,

so, in this case, (10) holds.
Now assume b > 0. The cases when τs has finite rate (λ((0,∞)) <
∞) and infinite rate (λ((0,∞)) =∞) will be treated separately.

Finite Rate. Let r0 = 0 and let r1, r2, . . . be the jump times of
τs. With probability 1, there exist a finite (random) integer L such
that L jumps occur over [0, s]. Note that (22) may be expanded as

Xs =

∫ τs

τ(rL)

HtdZt (24)

+

L−1∑
k=0

[∫ τ(r−
k+1

)

τ(rk)

HtdZt +

∫ τ(rk+1)

τ(r−
k+1

)

HtdZt

]
Let sn0 ≤ sn1 ≤ · · · ≤ snKn be a sequence of partitions such that

limn→∞ s
n
Kn =∞ a.s.

limn→∞ sup{|snk+1 − snk | : k = 0, . . . ,Kn − 1} = 0 a.s.
{ri : ri ≤ snKn} ⊂ {s

n
0 , . . . , s

n
Kn}.

The last condition ensures that the jump times are contained in the
partition.

Note that between jumps (i.e. s ∈ [rk, rk+1)), τs = bs+ τd(rk),
where τds is the discontinuous part of τs. Since b > 0 follows that the
sequence τ(sn0 ), τ(sn1 ), . . ., satisfies the following properties, almost
surely:

limn→∞ τ(snKn) =∞
limn→∞ sup{|τ(sni+1)− τ(sni )| : ∃k s.t. rk ≤ sni < rk+1} = 0

Using a standard argument from stochastic integration (see Theorem
II.21 of [28]), the integral from τ(rk) to τ(r−k+1) may be evaluated
as ∫ τ(r−

k+1
)

τ(rk)

HsdZt

= lim
n→∞

∑
rk≤sni <rk+1

H(τ(sni )) (Z(τ(si+1))− Z(τ(si)))

= lim
n→∞

∑
rk≤sni <rk+1

H(τ(sni ))
(
Z̃(si+1)− Z̃(si)

)
=

∫ rk+1

rk

H(τs−)dZ̃s. (25)

The second equality uses the fact that no jumps occur over (rk, rk+1).
Equation (23) now follows by combining (24) and (25).

Infinite Rate. Let εn > 0 be a sequence decreasing to 0, at a rate
to be specified later. Define τns to be the process by removing all
jumps of size at most εn from τs:

τns = bs+

∫ ∞
εn

tN(s, dt). (26)
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Let rn0 = 0, and let rn1 , rn2 , . . . be the jump times of τns . Let Lns =
sup{k : rnk ≤ s}. With probability 1, Lns <∞. If εn are chosen as
in Lemma 3 from Appendix A, then Xs may be computed as a limit

Xs = lim
n→∞

∫ τs

τ(rn
Lns

)

HtdZt (27)

+

Lns−1∑
k=0

H(τ(rnk ))
(
Z(τ(rn−k+1))− Z(τ(rnk ))

)
+

Lns−1∑
k=0

∫ τ(rnk+1)

τ(rn−
k+1

)

HtdZt

 .
Note that Z(τ(rn−k+1))− Z(τ(rnk )) may be expressed as

Z(τ(rn−k+1))− Z(τ(rnk ))

= Z̃(rnk+1)− Z̃(rnk ) +
∑

rnk<r≤r
n
k+1

∆τr≤εn

(Z(τr)− Z(τr−)) .

Note that the terms in the summation all vanish as εn → 0.
Furthermore, rnLns ↑ s, almost surely. Thus, (27) can be expressed
as

Xs = lim
n→∞

Lns−1∑
k=0

H(τ(rnk ))
(
Z̃(rk+1)− Z̃(rk)

)

+

Lns−1∑
k=0

∫ τ(rnk+1)

τ(rn−
k+1

)

HtdZt

 ,
and (23) now follows using Theorem II.21 of [28].

B. Proof of Theorem 2

Theorem 2 is a special case of finite-horizon dynamic programming
for controlled Markov processes (Theorem III.8.1 of [26]), provided
that the following two conditions hold for all h ∈ D:

(i) The backward evolution operator, defined in (12) is given by
the formula in (15).

(ii) If h satisfies

E [|h(S,XS)| |Xs = x] <∞, and

E
[∫ S

s

∣∣∣AUrh(r,Xr)
∣∣∣ dr Xs = x

]
<∞,

then the Dynkin formula holds:

E [h(S,XS) Xs = x]− h(s, x)

= E
[∫ S

s

AUrh(r,Xr)dr Xs = x

]
. (28)

First, using Theorem 1, a more explicit formula for Xs is derived,
and then using Itô’s formula for semimartingales, a formula for
h(s,Xs) is given. Using the formula for h(s,Xs), equations (15)
and (28) are then proved.

Note that Y (τr−) = Xr− and for all t ∈ [τr− , τr], ζt = r.
Therefore

F (ζ(τr−), Y (τr−), U(ζ(τr−))) = F (r,Xr− , Ur), and

F (ζt, Yt, U(ζt)) = F (r, Yt, Ur) for all t ∈ [τr− , τr].

The expressions for G are similar. Thus, Theorem 1 implies that Xs
is given by

Xs = X0 + b

∫ s

0

F (r,Xr− , Ur)dr+
√
b

∫ s

0

G(r,Xr− , Ur)dW̃r

+
∑

0≤r≤s

(∫ τr

τ
r−

F (r, Yt, Ur)dt+

∫ τr

τ
r−

G(r, Yt, Ur)dWt

)
. (29)

Now a formula for h(s,Xs) will be derived. Note that for
any càglàd, Fτ,W -adapted process, Zs, the stochastic integral with
respect to Xs is given by∫ s

0

ZrdXr =

∫ s

0

ZrbF (r,Xr− , Ur)dr

+

∫ s

0

Zr
√
bG(r,Xr− , Ur)dW̃r +

∑
0≤r≤s

Zr(Xr −Xr−).

Furthermore, the continuous part of the quadratic variation is given
by

[X,X]cs =

∫ s

0

1

2
bG(r,Xr− , Ur)G(r,Xr− , Ur)

Tdr.

Thus Itô’s formula for semimartingales (see [28]) implies that
h(s,Xs) is given by

h(s,Xs) = h(0, X0)

+

∫ s

0

(
∂h(r,Xr−)

∂r
+ b

∂h(r,Xr−)

∂x
F (r,Xr− , Ur)

)
dr

+

∫ s

0

1

2
bTr

(
G(r,Xr− , Ur)

T ∂
2h(r,Xr−)

∂x2
G(r,Xr− , Ur)

)
dr

+

∫ s

0

√
b
∂h(r,Xr−)

∂x
G(r,Xr− , Ur)dW̃r

+
∑

0≤r≤s

(h(r,Xr)− h(r,Xr−)) . (30)

Now (15) will be derived from (30). Assume that Xs = x and
Ur = u for r ∈ [s, s+ h]. Then (30) implies that

E[h(s+ h,Xs+h)] = h(s, x)

+ E
[∫ s+h

s

(
∂h(r,Xr−)

∂r
+ b

∂h(r,Xr−)

∂x
F (r,Xr− , u)

)
dr

]
+ E

[
1

2
bTr

(
G(r,Xr− , u)T

∂2h(r,Xr−)

∂x2
G(r,Xr− , u)

)
dr

]

+ E

 ∑
s<r≤s+h

(h(r,Xr)− h(r,Xr−))

 . (31)

If r > s, the Brownian motions Wt for t ∈ [τr− , τr] and Ŵt for
t ∈ [0,∆τr] are identically distributed and independent of Fτ,Ws .
Therefore, using (13), and given that Xs = x and Ur = u, the
expectations of the jump terms may be written as

E [h(r,Xr)− h(r,Xr−)] =

E
[
EŴ

[
h
(
r, Y

X
r−u

r,∆τr

)]
− h(r,Xr−)

]
.

Thus, the term at the bottom of (31) may be evaluated as a Poisson
integral:

E

 ∑
s<r≤s+h

(h(r,Xr)− h(r,Xr−))

 (32)

= E
[∫ s+h

s

∫ ∞
0

(
EŴ

[
h
(
r, Y

X
r−u

rt

)]
− h(r,Xr−)

)
N(dr, dt)

]
= EW

[∫ s+h

s

∫ ∞
0

(
EŴ

[
h
(
r, Y

X
r−u

rt

)]
− h(r,Xr−)

)
λ(dt)dr

]
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where the second is equation follows from Fubini’s theorem and (14).
Now, (15) results from combining (12) with (31) and (32).
Turning to (28), since Xs is Fτ,Ws measurable, it suffices to prove

that

E
[
h(S,XS)− h(s,Xs)−

∫ S

s

AUsh(r,Xr)dr Fτ,Ws
]

= 0.

Since Xr(ω) = Xr−(ω) for almost all (r, ω) ∈ [s, S]×Ω, it follows
that

E
[∫ S

s

AUsh(r,Xr)dr Fτ,Ws
]

=

E
[∫ S

s

AUsh(r,Xr−)dr Fτ,Ws
]
.

Combining (15) and (30) and, for brevity, omitting Fτ,Ws from the
expectations, implies that

E
[
h(S,XS)− h(s,Xs)−

∫ S

s

AUrh(r,Xr−)dr

]
=

E

 ∑
s<r≤S

(h(r,Xr)− h(r,Xr−))

−
E
[∫ S

s

∫ ∞
0

(
EŴ [h(r, Y

X
r−Ur

t )]− h(r,Xr−)
)
λ(dt)dr

]
, (33)

As in the proof of (15), the two terms at the bottom of (33) are equal
in expectation. Thus (28) holds and the proof is complete.

C. Proof of Theorem 3

Assume that V (s, x) = xTPsx + hs. Applying the backward
evolution operator corresponding to (19) to V (s, x) results in

AuV (s, x) = xTṖsx+ ḣs + bxT(ATPs + PsA)x+ 2bxTPsBu

(34)

+ bTr
(
PsMMT

)
+

∫ ∞
0

(
EŴ

[
Y xut

TPsY
xu
t

]
− xTPsx

)
λ(dt).

Note that EŴ
[
Y xut Y xut

T
]

may be evaluated as

EŴ
[
Y xut Y xut

T
]

= yxut yxut
T + Σt,

where yxut is the mean of Y xut and Σt is the covariance. A standard
argument in linear stochastic differential equations shows that the
mean and covariance are given by

yxut = eAtx+

∫ t

0

eArdrBu,

Σt =

∫ t

0

eArMMTeA
Trdr.

Thus, the integral in (34) may be written as∫ ∞
0

(
EŴ

[
Y xut

TPsY
xu
t

]
− xTPsx

)
λ(dt) = (35)∫ ∞

0

[
x
u

]T [
F̂ (t, Ps) Ĝ(t, Ps)B

BTĜ(t, Ps)
T BTĤ(t, Ps)B

] [
x
u

]
λ(dt)

+

∫ ∞
0

∫ t

0

Tr
(
Pse

ArMMTeA
Tr
)
drλ(dt),

where the matrices F̂ , Ĝ, and Ĥ are defined by

F̂ (t, P ) = eA
TtPeAt − P,

Ĝ(t, P ) = eA
TtP

∫ t

0

eAρdρ,

Ĥ(t, P ) =

∫ t

0

eA
TrdrP

∫ t

0

eAρdρ.

Combining (34) and (35), and using the linear operators from
Lemma 2 gives

AuV (s, x) =

[
x
u

]T [
Ṗs + F (Ps) G(Ps)B

BTG(Ps) BTH(Ps)B

] [
x
u

]
+ḣs+g(Ps).

Therefore, adding the cost gives

xTQx+ uTRu+AuV (s, x) = ḣs + g(Ps)

+

[
x
u

]T [
Q+ Ṗs + F (Ps) G(Ps)B

BTG(Ps) R+BTH(Ps)B

] [
x
u

]
.

The result now follows from quadratic minimization.

V. DISCUSSION

The work in this paper lays a theoretical foundation for future
research on biological motor control [29], [30], finance [31], and
multi-agent control [32], [33] in context that the controller is un-
certain about the time of the plant. To reason about these problems,
theoretical extensions will include time estimation from sensory data,
optimal control control with different time horizons, and control with
multiple noisy clocks. It will also be useful to consider alternative
clock models, and practical methods for controller computation for
nonlinear systems.

Time Estimation

This paper focuses on state feedback problems and the optimal
solution from dynamic programming only depends on the value of the
current state. If the state cannot be perfectly measured, or the clock
τs does not have independent increments, then control performance
might be improved by using the measurement history to estimate
time. For example, in option pricing, inferences about the “business
time” can be used to estimate the volatility of stock prices [34]. To
perceive time, humans appear to integrate sensory cues about the
passage of time in a Bayesian manner [35]; humans also appear to
incorporate sensory information about the timing of events to improve
state estimation [36].

It would also be interesting to test if well-chosen control strategies
could improve time estimation. For example the amount that a mass
moves in response to a force gives information about how much
time has passed. If an improved time estimate could improve control
performance, then it is likely that actions which improve timing could
be helpful for control.

Variations on the Horizon

This paper studies a controller horizon [0, S], which is an interval
of time with respect to the clock measured by the controller. For
portfolio optimization, in which the controller measures calendar
time, such a horizon is sensible. In human movements, however,
different tasks call for different time horizons. When reaching to
an object, a natural horizon would be the stopping time describing
when the object is touched. For rhythmic movements coordinated
with external stimuli such as a metronome, a horizon over real time
might be sensible.

Multiple Clocks

In this paper, we assumed that the plant dynamics evolve according
to one clock, while the controller can measure a different clock. If the
plant consists of numerous subsystems, then each could potentially
evolve according to a different clock. This scenario arises in portfolio
problems, in which the goal is to allocate wealth between a bank
process which accrues interest at known, fixed rate and a stock
process that evolves in a variable rate market [22]. Here, the bank
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process may be interpreted as evolving with respect to a perfect clock,
while the stock process may be viewed as evolving with respect to
a noisy clock. In engineering applications, such as mobile sensor
networks, multiple autonomous agents with their own clocks solve
cooperative control problems. Currently, problems arising from drift
between clocks are mitigated by using expensive clocks and time
synchronization protocols. The work in this paper will be extended
to reduce the need for precision timing and synchronization.

Alternative Clock Models

This paper modeled clocks with Lévy processes largely for mathe-
matical convenience. It would be interesting to develop similar control
frameworks based on jitter [12], [13], phase noise [37], stochastic
integrals [4], or biological timing models [38].

Efficient Computation

Currently, the dynamic programming method in this paper is
limited to special problems that can be solved exactly. It may
be possible to solve a broader class of problems by integrating
approximate dynamic programming techniques [39]–[41].

VI. CONCLUSION

This paper gives basic results on control with uncertainty in time.
The technical backbone of the paper is Theorem 1 which expresses
the original plant dynamics in terms of the controller’s clock index.
Using the new representation, the system becomes a controlled
Markov process, and thus existing dynamic programming theory can
be applied. Given the dynamic programming equations, time changed
versions of linear quadratic control and a nonlinear portfolio problem
problem are solved explicitly.

APPENDIX A
A TECHNICAL LEMMA FOR THEOREM 1

Lemma 3: Let τs be an infinite rate subordinator. Let rn0 = 0
and let rn1 ≤ rn2 ≤ · · · be the jump times of τns , from (26). For any
sequence Sn →∞ there is a sequence εn ↓ 0 such that the following
limits hold, almost surely

lim
n→∞

sup{rni : rni ≤ Sn} =∞ (36)

lim
n→∞

sup{τrni : rni ≤ Sn} =∞ (37)

lim
n→∞

sup{rni+1 − rni : rni ≤ Sn} = 0 (38)

lim
n→∞

sup{τ
rn−i+1
− τrni : rni ≤ Sn} = 0. (39)

Proof: First it will be shown that for any sequence Sn →∞, a
sequence εn ↓ 0 can be chosen such that (38) and (39) hold. Then it
will be shown that (36) and (37) hold.

Consider (38). Using the Borel-Cantelli lemma, it is sufficient to
prove that for some constant R > 0, and εn sufficiently small,

P

(
sup

rni ≤Sn
|rni+1 − rni | ≥

1

2n

)
<

R

2n
. (40)

For ease of notation, the superscripts on rni and the subscripts on
εn and Sn will be dropped.

With probability 1, τns has only a finite number of jumps over
[0, S], so let K = max{i : ri ≤ S}.

Consider (40). Define the function g(ε) by

g(ε) =

∫ ∞
ε

λ(dt).

Note that the differences are ri+1 − ri are exponential random vari-
ables with rate parameter g(ε). Thus, the event that ri+1−ri ≥ 1/2n

is a Bernoulli random variable with probability p(ε) given by

p(ε) = P
(
ri+1 − ri ≥

1

2n

)
= g(ε)

∫ ∞
1/2n

e−g(ε)xdx = e−g(ε)/2
n

.

Let J be the geometric random variable defined by

J = min

{
i : ri+1 − ri ≥

1

2n

}
Then the probability of J is given by

P(J = k) = (1− p(ε))kp(ε).

Using the definitions of K and J , the probability in (40) may be
written as

P
(

sup
ri≤S

|ri+1 − ri| ≥
1

2n

)
= P(J ≤ K).

Furthermore, given any constant M > 0,

P(J ≤ K) ≤ P(J ≤M) + P(M ≤ K). (41)

Thus, (40) may be bounded by bounding the terms on the right of
(41) separately.

Now P(M ≤ K) will be bounded. Note that K is a Poisson
random variable with parameter Sg(ε). Markov’s inequality thus
shows that

P(M ≤ K) ≤ 1

M
E[K] =

Sg(ε)

M
(42)

The term P(J ≤M) can be computed exactly as

P(J ≤M) = p(ε)

M∑
k=0

(1− p(ε))k = 1− (1− p(ε))M+1.

Thus, (40) will hold if M can be chosen such that

Sg(ε)/M < 1/2n and 1− (1− p(ε))M+1 < 1/2n. (43)

Rearranging terms, (43) is equivalent to

2nSg(ε) < M <
log
(
1− 1

2n

)
log(1− p(ε)) − 1.

Therefore, a suitable constant M exists if

(2nSg(ε) + 1) log(1− p(ε)) > log

(
1− 1

2n

)
. (44)

It will be shown that (44) holds provided that ε is sufficiently small.
Since τs has infinite rate, limε→0 g(ε) = ∞. Thus, the limit of the
left side of (44) may be evaluated by L’Hôspital’s rule:

lim
ε→0

(2nSg(ε) + 1) log(1− p(ε)) = lim
g→∞

log(1− e−g/2
n

)

(2nSg + 1)−1

= lim
g→∞

e−g/2
n
/2n

1−e−g/2n

−2nS (2nSg + 1)−2

= − 1

4nS
lim
g→∞

(2nSg + 1)2

eg/2n − 1

= 0.

Thus, when ε is sufficiently small, (40) must hold.
Now consider (39). Note that τ

rn−i+1
− τrni can be expressed as

τ
rn−i+1
− τrni = b(rni+1 − rni ) +

∑
rni <u≤r

n
i+1

∆τu≤εn

∆τu
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Thus

sup
rni ≤Sn

|τ
rn−i+1
− τrni | ≤ b sup

rni ≤Sn
|rni+1 − rni |+ sup

ri≤Sn

∑
rni <u≤r

n
i+1

∆τu≤εn

∆τu

It has already been shown that the first term on the right converges
to 0 almost surely. Thus to prove (39), it suffices to prove that

lim
n→∞

sup
rni ≤Sn

∑
rni <u≤r

n
i+1

∆τu≤εn

∆τu = 0, (45)

almost surely, when εn ↓ 0 sufficiently quickly. Again, by the Borel-
Cantelli lemma, (45) will follow if εn is chosen such that

P

 sup
rni ≤Sn

∑
rni <u≤r

n
i+1

∆τu≤εn

∆τu ≥
1

2n

 <
R

2n
, (46)

for some R > 0.
As before, suppress the superscripts on rni and the subscripts on

εn and Sn. Recall that ri+1 − ri are exponential random variables
with rate parameter g(ε). Furthermore, the jump times of τns are
independent of the small-jumps process

τs − τns =
∑

0≤r≤s
∆τr≤ε

∆τr.

Define h(ε) by

h(ε) =

∫ ε

0

tλ(dt).

Let q(ε) be the probability that
∑
ri<u≤ri+1

∆τu≤ε
∆τu ≥ 1

2n
. Define q̂(ε)

as the upper bound on q(ε) given by Markov’s inequality:

q(ε) = P

 ∑
ri<u≤ri+1

∆τu≤ε

∆τu ≥
1

2n

 ≤ (47)

2nE

 ∑
ri<u≤ri+1

∆τu≤ε

∆τu

 = 2nE
[∫ ri+1

ri

∫ ε

0

tN(dr, dt)

]
=

2nh(ε)

g(ε)
.

As in the proof of (40), the bound in (46) will be recast as a more
tractable inequality.

Let L be the geometric random variable defined by

L = min

i :
∑

ri<u≤ri+1
∆τu≤ε

∆τu ≥
1

2n

 .

So L has probability given by P(L = k) = (1 − q(ε))kq(ε). As in
the proof of (40), for any constant M > 0,

P

 ∑
ri<u≤ri+1

∆τu≤ε

∆τu ≥
1

2n

 =

P(L ≤ K) ≤ P(L ≤M) + P(M ≤ K).

The first term on the right can be bounded as

P(L ≤M) = 1− (1− q(ε))M+1 ≤ 1− (1− q̂(ε))M+1.

Furthermore, as in the proof of (40), if

(2nSg(ε) + 1) log(1− q̂(ε)) < log

(
1− 1

2n

)
, (48)

the constant M can be chosen such that

P(L ≤M) + P(M ≤ K) ≤ 2

2n
.

Thus, if (48) holds, then so does (46). Note that q̂(ε)→ 0 as ε→ 0,
and thus log(1 − q̂(ε)) → 0 as well. Thus, for (48) to hold for
sufficiently small ε, it suffices to show that g(ε) log(1 − q̂(ε)) → 0
as ε→ 0.

Using the power series expansion of log(1− q̂(ε)) implies that

|g(ε) log(1− q̂(ε))| = g(ε)

∞∑
k=1

q̂(ε)k

k
= g(ε)

∞∑
k=1

2nkh(ε)k

g(ε)kk

= 2nh(ε)

∞∑
k=0

q̂(ε)k

k + 1
≤ 2nh(ε)

∞∑
k=0

q̂(ε)k =
2nh(ε)

1− q̂(ε) .

Now limε→0 h(ε) = 0 implies that limε→0 g(ε) log(1 − q̂(ε)) = 0.
Therefore (48) holds for sufficiently small ε and so (39) is proved.

Now (36) and (37) will be proved. As long as Sn →∞, the limit
in (36) is immediate from (38) since

Sn − sup{rni : rni ≤ Sn} ≤ sup{rni+1 − rni : rni ≤ Sn}.

Now (37) will be proved. If b > 0, then (37) follows for any
sequence with Sn → ∞. Thus, assume that b = 0. There exists
ε̂ > 0 such that λ((ε̂,∞)) > 0. For all n such that εn ≤ ε̂, the
following holds.

sup{τrni : rni ≤ Sn} ≥ τnSn ≥ ε̂N(Sn, (ε̂,∞)).

Here N(s, (ε̂,∞)) is a Poisson process with rate λ((ε̂,∞)) > 0.
Thus, the lower bound goes to ∞ almost surely as Sn → ∞.
Therefore (37) holds.

APPENDIX B
PROOF OF LEMMA 1

First note that β is analytic at z if
∫∞

0
(ezt − 1)λ(dt) is. Further-

more, by the Lévy-Itô decomposition,

E[ezτs ] = ezbsE
[
exp

(
z

∫ ∞
0

tN(s, dt)

)]
.

Thus, it suffices to prove the lemma for the case that b = 0.
It will be shown that β is analytic. Let y : [0, 1] → C be a

continuous, piecewise continuously differentiable curve with y(s) ∈
dom(β), with derivative y′(s) continuous on all but a finite set. Since
y is arbitrary, Morera’s theorem implies that β is analytic, provided
that ∮

C

∫ ∞
0

(
eyt − 1

)
λ(dt)dy = 0. (49)

For any t ≥ 0, eyt − 1 is analytic, and so
∮
C

(
eyt − 1

)
dy = 0.

Thus, (49) will hold, provided that the order of integration can be
switched. This will be justified by Fubini’s theorem.

Since dy(s)
dr

= y′(s) almost everywhere, Fubini’s theorem can be
applied if the following holds:∫ 1

0

∫ ∞
0

∣∣∣ey(s)t − 1
∣∣∣ |y′(s)|λ(dt)ds <∞. (50)

Since y′(s) is continuous, except on a finite set, it follows that
there is a constant M such that |y′(s)| < M almost everywhere.
Now ey(s)t − 1 will be bounded. For t ∈ [0, 1], the following bound
holds ∣∣∣ey(r)t − 1

∣∣∣ ≤ ∞∑
k=1

tk|y(r)|k

k!
≤ t

(
e|y(r)| − 1

)
. (51)
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Let r = sup{Re y(s) : s ∈ [0, 1]}. By continuity, r < rmax. The
function ey(s)t−1 can also be bounded using the triangle inequality:

∣∣∣ey(r)t − 1
∣∣∣ ≤ |ey(s)t|+ 1 ≤ ert + 1. (52)

Thus, the integral in (50) can be bounded as

∫ 1

0

∫ ∞
0

∣∣∣ey(s)t − 1
∣∣∣ |y′(s)|λ(dt)ds ≤∫ 1

0

(∫ 1

0

tλ(dt)
(
e|y(r)| − 1

)
+

∫ ∞
1

(
ert + 1

)
λ(dt)

)
Mds.

Note that the integral on the right is finite since r < rmax. Thus,
(49) holds and β is analytic.

Since β is analytic, the integral in (5) converges for any matrix A
with spec(A) ⊂ dom(β). See [21].

Now (4) will be proved. The proof is similar to the proof of
Theorem 2.3.8 in [20].

First, the function t will be approximated by step functions over
(0,∞). The construction is similar to the approach in the proof of
Theorem 1.17 in [42]. Consider a sequence a sequence of integers
jn → ∞ so that γn = 2−jn ↓ 0 at a rate to be specified later. Let
kn(t) be the unique integer such that kγn ≤ t < (k + 1)γn. Define
the function ϕn(t) by

ϕn(t) =

{
kn(t)γn t ∈ (0, n)

n t ≥ n.

Then ϕn(t) is a simple function such that ϕn(t) = 0 for t ∈ (0, γn),
t − γn < ϕn(t) ≤ t for t ∈ [γn, n], and ϕn(t) ≤ t for t > 0. The
formula, (4), is a consequence of the following chain of equalities

E
[
exp

(
z

∫ ∞
0

tN(s, dt)

)]
= lim
n→∞

E
[
exp

(
z

∫ ∞
0

ϕn(t)N(s, dt)

)]
(53)

= lim
n→∞

exp

(
s

∫ ∞
0

(
ezϕn(t) − 1

)
λ(dt)

)
(54)

= exp

(
s

∫ ∞
0

(
ezt − 1

)
λ(dt)

)
. (55)

The first equation is the most challenging, and will be handled last.
To prove (54), note that zϕn(t) is a simple function. Thus, there are
constants ci ∈ C and disjoint λ-measurable sets, Ai, such that

zϕn(t) =

q∑
i=1

ci1Ai(t).

Since ϕn(t) = 0 over (0, γn), it follows that 0 is not in the closure
of any Ai. Thus, the integral on the right of (53) may be written as

∫ ∞
0

zϕn(t)N(s, dt) =

q∑
i=1

ciN(s,Ai),

where N(s,Ai) are independent Poisson processes with rate λ(Ai).

Thus, the expectation on the right of (53) may be calculated as

E
[
exp

(
z

∫ ∞
0

ϕn(t)N(s, dt)

)]
=

q∏
i=1

E [exp(ciN(s,Ai))]

=

q∏
i=1

exp(−sλ(Ai))

∞∑
k=0

(sλ(Ai))
k

k!
ecik

=

q∏
i=1

exp (sλ(Ai) (eci − 1))

= exp

(
s

q∑
i=1

(eci − 1)λ(Ai)

)

= exp

(
s

∫ ∞
0

(
ezϕn(t) − 1

)
λ(dt)

)
.

Thus, (54) holds.
To prove (55), note that the construction of ϕn implies that

ezϕn(t) − 1 is 0 for t < γn and constant for t ≥ n. Thus, it
is absolutely integrable, so by Lebesgue’s dominated convergence
theorem,

lim
n→∞

∫ ∞
0

(
ezϕn(t) − 1

)
λ(dt) =

∫ ∞
0

(
ezt − 1

)
λ(dt).

Therefore, (55) holds.
Now (53) will be proved. First, it will be shown that

lim
n→∞

∫ ∞
0

ϕn(t)N(s, dt) =

∫ t

0

tN(s, dt), a.s. (56)

Then, dominated convergence will be applied.
Assume that γn−1 is fixed. The difference of the right and left of

(56) may be bounded as

0 ≤
∫ ∞

0

(t− ϕn(t))N(s, dt) ≤ (57)∫ γn−1

0

tN(s, dt) + γn

∫ n

γn−1

N(s, dt) +

∫ ∞
n

(t− n)N(s, dt).

To bound the first term on the right of (57), note that∫ γ1

0

tN(s, dt) =

∞∑
i=1

∫ γi

γi+1

tN(s, dt) <∞, almost surely.

Thus, the the first term on the right of (57) may be expressed as the
tail sum: ∫ γn−1

0

tN(s, dt) =

∞∑
i=n−1

∫ γi

γi+1

tN(s, dt)

which converges to 0 almost surely, provided that γn ↓ 0 sufficiently
quickly. (See [20].)

Now consider the second term on the right of (57). For fixed
γn−1, the next term γn may be chosen sufficiently small to give
the following probability bound:

P

(
γn

∫ n

γn−1

N(s, dt) ≥ 2−n
)

=

e−sλ([γn−1,n))
∑

k≥ 1
γn2n

(sλ([γn−1, n)))k

k!
<

1

2n
.

The Borel-Cantelli lemma implies that the second term converges to
0 almost surely.

The last term on the right of (57) is 0 if τs < n, which holds for
sufficiently large n almost surely. Thus (56) holds.
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Now it will be shown that Lebesgue’s dominated convergence
applies to (53). Let r = Re z. Note that the function on the right has
magnitude given by∣∣∣∣exp

(
z

∫ ∞
0

ϕn(t)N(s, dt)

)∣∣∣∣ = exp

(
r

∫ ∞
0

ϕn(t)N(s, dt)

)
.

(58)
Thus, it suffices to show that the term on the right has finite
expectation. If r ≤ 0, then the term is bounded above by 1 and
so finiteness is immediate. So, consider the case that r > 0.

The expectation will be bounded using monotone convergence.
Note that ϕn(t) ≤ ϕn+1(t). Indeed, recall that γn = 2−jn for
an integer jn. Thus γn = 2jn+1−jnγn+1. By construction kn(t)
satisfies kn(t)γn = kn(t)2jn+1−jnγn+1 ≤ t. It follows that
kn(t)2jn+1−jn ≤ kn+1(t). It follows that ϕn(t) ≤ ϕn+1(t) for
all t ≥ 0.

The monotone convergence theorem now implies that (53) holds
for z = r. Since (54) and (55) have already been proved, it follows
that the magnitude from (58) has expectation bounded by esβ(r),
which is finite.

Finally, (6) will be proved. Since β is analytic on dom(β), it
follows that both sides of (4) must be analytic as well. Say that
spec(A) ⊂ dom(β) and consider a contour C, contained in dom(β),
which encloses spec(A). Using the holomorphic functional calculus
(see [21]), (6) can be derived as follows:

E
[
eAτs

]
=

1

2πi

∮
C

E [eyτs ] (yI −A)−1dy

=
1

2πi

∮
C

esβ(y)(yI −A)−1dy

= esβ(A).

APPENDIX C
PROOF OF LEMMA 2

Define the matrix Z by

Z =

[
I
0

]
P
[
I 0

]
and define the matrix Ã by

Ã =

[
A I
0 0

]
.

Note that eÃt is given by

eÃt =

[
eAt

∫ t
0
eArdr

0 I

]
.

Thus, the matrix-valued mappings may be written as[
F (P ) G(P )

G(P )T H(P )

]
=

b
(
ÃTZ + ZÃ

)
+

∫ ∞
0

(
eÃ

TtZeÃt − Z
)
λ(dt)

Since eÃ
Tt ⊗ eÃ

Tt = eÃ
T⊕ÃTt, the equation may be vectorized as

vec

([
F (P ) G(P )

G(P )T H(P )

])
=

(
bÃT ⊕ ÃT +

∫ ∞
0

(
eÃ

T⊕ÃTt − I
)
λ(dt)

)
vec(Z)

= β(ÃT ⊕ ÃT)vec(Z).

Thus according to Lemma 1, F , G, and H are well defined, as long
as spec(ÃT⊕ÃT) ⊂ dom(β). By construction, the spectrum is given
by

spec(ÃT ⊕ ÃT) = spec(ÃT) + spec(ÃT)

= {0} ∪ spec(A) ∪ (spec(A) + spec(A)).

Let r = max{Re µ : µ ∈ spec(A)}. If r ≤ 0, then the
maximum real part of any eigenvalue of ÃT ⊕ ÃT is 0. If r > 0,
then the corresponding maximum real part must be 2r. Since {0} ∪
spec(2A) ⊂ dom(β), it follows that spec(ÃT ⊕ ÃT) ⊂ dom(β),
and so the mappings are defined.

Furthermore, the relevant expectations may be vectorized and
evaluated using (6):

vec
(
E
[
eÃ

TτsZeÃ
Tτs
])

= E
[
eÃ

T⊕ÃTτs
]

vec(Z)

= vec(Z) + sβ(ÃT ⊕ ÃT)vec(Z) +O(s2).

The proof for g is similar, noting that

vec

(∫ t

0

eAtMMTeA
Ttdt

)
=
[
I 0

] (
eÂt − I

)[0
I

]
vec(MMT),

where
Â =

[
A⊕A I

0 0

]
.
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Journal of Financial Economics, vol. 71, pp. 113–141, 2004.

[8] D. M. Eagleman, “Human time perception and its illusions,” Current
Opinion in Neurobiology, vol. 18, no. 2, 2008.

[9] M. Jazayeri and M. N. Shadlen, “Temporal context calibrates interval
timing,” Nature Neuroscience, vol. 13, no. 8, 2010.

[10] T. E. Hudson, L. T. Maloney, and M. S. Landy, “Optimal compensation
for temporal uncertainty in movement planning,” PLoS Computational
Biology, vol. 4, no. 7, 2008.

[11] H. J. Kushner and L. Tobias, “On the stability of randomly sampled
systems,” IEEE Transactions on Automatic Control, vol. 14, no. 4, pp.
319–324, 1969.

[12] B. Wittenmark, J. Nilsson, and M. Törngren, “Timing problems in real-
time control systems,” in American Control Conference, 1995.

[13] J. Skaf and S. Boyd, “Analysis and synthesis of state-feedback con-
trollers with timing jitter,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 652–657, 2009.

[14] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[15] M. Adès, P. E. Caines, and R. P. Malhamè, “Stochastic optimal control
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