EE5585: HOMEWORK 1

(1) Suppose, $\mathcal{X}=\{A, B, C, D\}$. A source produces i.i.d. X symbols from this source, with $\operatorname{Pr}(X=A)=p_{A}, \operatorname{Pr}(X=B)=$ $p_{B}, \operatorname{Pr}(X=C)=p_{C}, \operatorname{Pr}(X=D)=p_{D}$. You are given a file $\mathcal{F}=A A C D D B B B B B C A A B C D A A B A A D C B$ generated by this source.
(a) What is your best guess for $p_{A}, p_{B}, p_{C}, p_{D}$? Reason.
(b) What is the entropy (in bits) of the probability distribution you guessed?
(c) What is the Huffman code for the probability distribution that you guessed? What is the average number of bits per symbol?
(d) Encode the file \mathcal{F} with the Huffman code you have designed. What is the length of the encoded binary file? What is the average number of bits that have been used for a symbol in this file? 5
(2) Consider the code $\{0,01\}$. Is this code uniquely decodable? Why? Is it instantaneous?
(3) Suppose $\mathcal{X}=\{0,1\}$. The random variable (source) X takes value in \mathcal{X}, with $\operatorname{Pr}(X=0)=\frac{3}{4}$ and $\operatorname{Pr}(X=1)=\frac{1}{4}$. What is the probability that the source produce a sequence 0000011111 ?

2
(4) Write the Lempel-Ziv parsing for the file \mathcal{F} of Problem 1. What is the number of bits that you need to write the entire compressed file (with LZ algorithm).

