EE5585: Homework 4

All problems carry equal points. Due date: May 9 (before class starts)
(1) Suppose Z_{1} and Z_{2} are iiid $\operatorname{Bernoulli}(p)$ random variable, i.e. $\operatorname{Pr}\left(Z_{1}=\right.$ $1)=p=\operatorname{Pr}\left(Z_{2}=1\right)$. Say $X_{1}=Z_{1}+Z_{2}$ and $X_{2}=Z_{1} Z_{2}$ are two random sources that are seen by Alice and Bob respectively. What is the achievable rate limits of the distributed data compression for X_{1} and X_{2} sequences in this case?
(2) Following table shows height-weight data of 12 monkeys:

Height	Weight
18	29.5
28	39.2
36	54.5
25	36.0
17	25.0
31	43.8
21	30.4
35	56.1
24	36.0
22	29.9
18	26.9
32	48.2

Find out the Karhunen-Loeve transform matrix to compress this data. Perform PCA.
(3) Assume the range of Height in the data of problem 2 is $[18,36]$ and for weight $[25,57]$. Design a 2 -bit vector quantizer for this data. What would be the 1-bit scalar quantizer for each column? Find out error for the given data for both the quantizers (scalar and vector).

