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Lecture 11
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Rate Distortion Basics

When it comes to rate distortion about random variables, there are four important equations to keep in
mind.

1. The entropy

H(X) =
∑
x∈X

p(x) log p(x)

2. Conditional entropy

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y)

3. Joint entropy

H(X,Y ) =
∑
x∈X

p(x) log p(x)

4. Mutual Information
I(X;Y ) = H(X)−H(X|Y )

We already know from previous lecture that

H(X,Y ) = H(X) +H(Y |X)

But previous proof is a little bit complex, thus we want to prove this equation again in a simpler way
to make it clearer.

Proof:

H(X,Y ) = −
∑

p(x, y) log p(x, y)

= −
∑

p(x, y) log[p(x)p(y|x)]

= −
∑

p(x, y) log p(x)−
∑

p(x, y) log p(y|x)

= −
∑
x

log p(x)
∑
y

p(x, y) +H(Y |X)

= −
∑
x

log p(x)
∑
x

p(x) +H(Y |X)

= −
∑
x

p(x) log p(x) +H(Y |X)

= H(X) +H(Y |X)

Definition :For random variables (X,Y) whose probabilities are given by p(x,y), the conditional entropy
H(Y |X) is defined by

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)
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= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log(p(y|x)

One important thing to notice is that H(X) ≥ H(X|Y ), this means that conditioning always reduces
the entropy. The entropy of a pair of random variables is the summation of the entropy of one plus the
conditional entropy of the other. This is based on Chain rule:

H(X,Y ) = H(X) +H(Y |X)

Thus, I(X;Y ) = H(X) +H(Y )−H(X,Y ). We can understand the mutual information I(X;Y ) as the
reduction in the uncertainty of X because of some of our knowledge of Y. By symmetry, we also have
I(X;Y ) = I(Y ;X). Thus we know that the information X provides us has the ”same amount” that Y
provides us.

Rate Distortion New Materials

Recall that in lossy coding, we cannot compress a file without error, and we want the average distortion
to be bounded above. For a binary file which is of our interest, we use Hamming Distance (probability
of error distortion) for distortion function.
Another important case is Quantization. Suppose we are given a Gaussian random variable, we quantize
it and represent it by bits. Thus we lose some information. What is the best Quantization level that we
can achieve? Here is what we do.
Define a random variable X ∈ X . Our source produces a n length vector and we denote it by
Xn = X1, X2, ......, Xn, where the vector is i.i.d. and produced according to the distribution of ran-
dom variable X and p(x) = Pr(X = x). What we do is to encode the file. After the encoder, the
function fn gives us a compressed string. Then we map the point in the space to the nearest codeword
and we obtain an index which is represented by logMn bits. Finally, we use a decoder to map the index
back which gives us one of the codeword x̂ in the space.

Encoder
fn

Decoder

Xn
ẊnY

fn:Xn-{1,2,…..Mn}

Figure 1: Rate Distortion Encoder and Decoder

Above is a figure of rate distortion encoder and decoder. Where fn = Xn → {1, 2, .......Mn} is the
encoder, and X̂n is the actual code we choose.

Definition : The distortion between sequences xn and x̂n is defined by

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i) (1)

2



entire space

distortion

There are Mn points in the 
entire space, each point is a 
chosen codeword (center). 
We map each data point to 
the nearest center.

Figure 2: Codewords and Distortion

Thus, we know that the distortion of a sequence is the average distortion of the symbol-to-symbol dis-
tortion. We would like d(xn, x̂n) ≤ D. The compression rate we could achieve is R = limx→+∞

logMn

n

bits/symbol.The Rate distortion function R(D) is the minimization of logMn

n such that Ed(xn, x̂n) ≤ D
at the limit of n→∞.

Theorem(Fundamental theory of source coding): The information rate distortion function R(D) for a
source X with distortion measure d(x, x̂) is defined as

R(D) = min
p(x̂|x):

∑
x,x̂

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂)

From the above equation, we could see that no n involved. This is called a single letter characterization.
For the subscript of the summation, we know that

∑
p(x, x̂)d(x, x̂) =

∑
x,x̂ p(x)p(x̂|x)d(x, x̂) ≤ D.

To prove this theorem, we want to show R(D) ≥ min
p(x̂|x):

∑
(x,x̂)

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂) first, and the

R(D) ≤ min
p(x̂|x):

∑
(x,x̂)

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂) will be shown in the next lecture.

First of all, let’s see what is Chain Rule. It is defined as below:

H(X1, X2, X3, ......, Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + ......+H(Xn|X1, X2, ......, Xn−1)

Chain rule can be easily proved by induction.
Besides chain rule, we also so need the fact that

R(D) = min
p(x̂|x):

∑
(x,x̂)

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂)

is convex.

Two Properties of R(D)

We now show two properties of R(D) that are useful in proving the converse to the rate-distortion
theorem.

1. R(D) is a decreasing function of D.

2. R(D) is a convex function in D.
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For the first property, we can prove its correctness intuitively: If R(D) is an increasing function, this
means that the more the distortion, the worse the compression. This is definitely what we don’t want.

Now, let’s prove that second property.

Proof : Choose two points (R1, D1), (R2, D2) on the boundary of R(D) with distributions PX̂1|X and
PX̂2|X . Then, we can construct another distribution PX̂λ|X such that

PX̂λ|X = λPX̂1|X + (1− λ)PX̂2|X

where 0 ≤ λ ≤ 1.The average distortion Dλ can be given as

EPX,X̂λ [d(X, X̂λ)] = λEPX,X̂1
[d(X, X̂1)] + (1− λ)EPX,X̂2

[d(X, X̂2)]

= λD1 + (1− λ)D2

We know that I(X;Y ) is a convex function of pX̂,X() for a given pX(). Therefore,

I(X̂λ;X) ≤ λI(X̂1;X) + (1− λ)I(X̂2;X)

Thus,

R(Dλ) = I(X̂λ) ≤ λI(X̂1;X) + (1− λ)I(X̂2;X)

= λR(D1) + (1− λ)R(D2)

Therefore, R(D) is a convex function of D.

D1 D2

The straight line is
λR(D1)+(1-λ)R(D2)

Figure 3: Function of R(D) and R(D̂)

For the above proof, we need to make the argument that distortion D is a linear function of p(x̂|x). We
know that the D is the expected distortion and it is given as D =

∑
p(x, x̂)d(x̂, x) =

∑
p(x)p(x̂|x)d(x, x̂).

If we treat p(x̂|x) as a variable and both p(x) and d(x, x̂) as known quantities, we know that D is a
linear function of p(x̂|x). Therefore, R(D) is a convex function of p(x̂|x). The proof that I(X; X̂) is a
convex function of p(x̂|x) will not be shown here.
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Converse Argument of R(D)

The converse argument of R(D) tells us that for any coding scheme whose expected distortion is at most
to be D, there doesn’t exist a code such that its rate is less than R(D). Now, let’s prove it.
Proof

logMn ≥ H(X̂n)

≥ H(X̂n)−H(X̂n|Xn)

= I(X̂n;Xn)

= H(Xn)−H(Xn|X̂n)

=

n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂n, X1, X2, ...Xn)

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i)

=

n∑
i=1

I(Xi; X̂i)

Recall that R(D) = min
p(x̂|x):

∑
(x,x̂)

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂), thus

logMn ≥
n∑
i=1

I(Xi; X̂i)

≥
n∑
i=1

R(Ed(Xi; X̂i)

= n

n∑
i=1

1

n
R(Ed(Xi; X̂i))

≥ nR(
1

n

n∑
i=1

Ed(Xi; X̂i))

= nR(
1

n
E[

n∑
i=1

d(Xi, X̂)])

≥ nR(D)

We see from the proof that R = limx→+∞
logMn

n ≥ R(D), thus, our proof is finished.

Example of Rate Distortion Theorem

An interesting example to look at is a binary file. What is R(D) for a given binary file?
We already know from previous lectures that R(D) = 1−H(D). But this equation is too general to use
for our given file.
So given a source X = {0, 1}, suppose X has a Bernoulli(p) distribution, i.e. Pr(X = 1) = p and
Pr(X = 0) = 1− p.Then

I(x; x̂) = H(X)−H(X|X̂)

= h(p)−H(X|X̂)
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= h(p)−H(X ⊕ X̂|X̂)

≥ h(p)−H(X ⊕ X̂) (conditionality reduces entropy)

= h(p)−H(Y )

where Y = X ⊕ X̂. It is clear that Pr(Y = 1) = Pr(X 6= X̂), and∑
p(X, X̂)d(X, X̂) = p(0, 1) + p(1, 0)

= Pr(X 6= X̂)

= Pr(Y = 1) ≤ D

Recall from previous lectures, for any D ≤ 1
2 , the binary entropy function h(D) is increasing. Thus

h(p) −H(Y ) ≥ h(p) − h(D) for D ≤ 1
2 . We have showed that R(D) ≥ h(p) − h(D), and we will show

R(D) = h(p)− h(D). When p = 1
2 , R(D) = 1− h(D).
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Figure 4: Binary Entropy

Up to this point, we want to show H(X ⊕ X̂|X) has the same value as h(D).

1-D

0

1

0 

1

XẊ 

D

D

Pr(0)=1-p

Pr(1)=p

Pr(Ẋ≠X)=D

Figure 5: Binary Encoding Demonstration

We know that Pr(X̂ 6= X) = D. Assume Pr(X̂ = 0) = 1 − r and Pr(X̂ = 1) = r, so Pr(X = 0) =
(1− r)(1−D) + rD = 1− p. Solve this equation for r, we obtain r = p−D

1−2D for D ≤ 1
2 .
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In this case, I(X; X̂) = H(X)−H(Y ) = h(p)− h(D), thus we proved both sides of the main theory for
binary source.

Midterm Solutions

1. 1 − h(D) is the optimal rate of compression that is achievable.1 − h(D) = 1 − h(1/20), where
h(x) = −x log x− (1− x) log(1− x).

2.
π( 1

4 )
2

( 1
2 )

2 = 1
4π

(0,0) (1,0)

(0,1) (1,1)

0.25

Figure 6: Distortion Demonstration

3. p1, p2, p3, ......

∞∑
i=n+1

pi =

∞∑
i=n+1

9

10
(

1

10
)i−1

=
9

10
(

1

10
)n +

9

10
(

1

10
)n+1 + ....

=
9

10
(

1

10
)n[1 +

1

10
+ (

1

10
)2 + .....]

=
9

10

1
9
10

=
1

10
(

1

10
)n−1

pn = 9
10 ( 1

10 )n−1
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Thus pn >
∑∞
i=n+1 pi.
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Huffman Coding

Figure 7: Huffman Coding

So length of the series is 1,2,3,4,.......

4. n(n+1)
2 = 5050→ n = 100

Length is 100X dlog(100) + 1e = 800

R = m(log(m)+1)
m(m+1)/2 = 2(log(m)+1)

(m+1)

5. Covered in the previous course.
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