
EE5585 Data Compression March 5, 2013

Lecture 12
Instructor: Arya Mazumdar Scribe: Shreshtha Shukla

1 Review

In the last class we studied the fundamental theorem of source coding, where R(D) is the optimal rate
of compression, given the normalized average distortion D. Our task was to find this optimal rate, for
which we had the theorem stated as

R(D) = min
p(x̂|x):

∑
p(x̂|x)p(x)d(x̂,x)≤D

I(X, X̂)

We also proved R(D) ≥ min I(X, X̂), known as the converse part of the theorem. The direct part of
the theorem known as achievability result is proved using Random Coding method. Also recall, For
Bernoulli(p) Random Variables: R(D) = h(p) − h(D) where h(·) is the binary entropy function, when
D = 0, R(D) = h(p) that is, the source can be compressed to h(p) bits.

2 Continuous Random Variables:

Suppose we have a source that produce the i.i.d. sequence

X1, X2, X3 . . . Xn

these can be real or complex numbers.

2.1 1 Bit Representation:

For example: we have gaussian random variable, X ∼ N (0, σ2).
Its pdf is then:

f(x) =
1√

2πσ2
e−x

2/2σ2
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Figure 1: gaussian pdf with 1 bit partition

Now, how can you represent this using 1 bit? With 1 bit, at most we can get the information whether
x ≥ 0 or x < 0.

After compressing the file to 1 bit, the next question is: how do we decode it?
For this, some criteria has to be selected, example, we set our codewords based on MSE (mean square

error) i.e find the value of ’a’ that will minimize the expected squared error

min E[(X − X̂)2]

=

∫ 0

−∞
f(x)(x+ a)2dx +

∫ ∞
0

f(x)(x− a)2dx

= 2

∫ ∞
0

f(x)(x− a)2dx

= 2 [

∫ ∞
0

x2f(x)dx − 2a

∫ ∞
0

xf(x)dx + a2
∫ ∞
0

f(x)dx ]

= (a2 + σ2) − 4a

∫ ∞
0

x
1√

2πσ2
e−x

2/2σ2

dx
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Let y = x2/2σ2,
⇒ dy = xdx

σ2 .
So,

−4a

∫ ∞
0

x
1√

2πσ2
e−x

2/2σ2

dx = −2a
√

2σ2/π

∫ ∞
0

e−ydy

= −2a
√

2σ2/π

hence, E[(X − X̂)2] = a2 + σ2 − 2a
√

2σ2/π
to minimize this, differentiate with respect to a and set it to 0.

=⇒ 2a− 2
√

2σ2/π = 0

or a = σ

√
2

π

which is what we choose our codeword.

2.2 2 Bit Representation:

Similarly, for a 2 bit representation,we need to divide the entire region into 4 parts:

Figure 2: Divided into four parts

Further, it is always good to take a vector instead of a single random variable (i.e a scalar RV). The
vector then, lives in an n-dimensional space. In this case also, we need to find the appropriate regions
and their associated optimal reconstruction points.
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Figure 3: Voronoi Regions in Rnspace

These regions are called the Voronoi Regions and the partitions are known as Dirichlet’s Parti-
tions.To find the optimal partitions and associated centers, there is an algorithm known as the Llyod’s
Algorithm.

Briefly the Llyod’s algorithm:
We start with some initial set of quantized points, Eg : for 10 bit; 210 = 1024 points and then find

the Voronoi regions for these points. The expected distribution is then optimized. Update the points
to those optimal points and again find the Voronoi regions for them. Doing this iteratively converges to
optimal values.This algorithm has several names, such as Llyod’s Algorithm also known as Expectation
Maximization Algorithm. (we know the optimal values using the rate distortion theory so can compare
to the convergence result ). More detailed study on this will be done in later classes.

3 Entropy for continuous Random Variables

For discrete RVs we have:

H(x) = −
∑
x∈χ

p(x) log p(x)

similarly for continuous RVs : instead of the pmf we have the pdf fX(x)
Eg, X = R; X ∼ N (0, σ2)
We define Differential Entropy of a continuous random variable as

H(X) = −
∫ ∞
−∞

fX(x) ln(fX(x))dx

All the other expressions of conditional entropy, mutual information can be written analogously.
Conditional Entropy: H(X|Y ) =

∫∞
−∞ f(x, y) ln f(x|y)dxdy.

Mutual Information: I(X;Y ) = H(X) − H(X|Y )
Also we can have the similar Rate Distortion Theorem for the continous case.

3.1 Examples:

Example 1: Entropy of a gaussian RV:
X ∼ N (0, σ2) f(x) = 1/

√
2πσ2e−x

2/2σ2

then
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H(X) = −
∫ ∞
−∞

1/
√

2πσ2e−x
2/2σ2

loge(1/
√

2πσ2e−x
2/2σ2

)dx

= −
∫ ∞
−∞

f(x)(loge(1/
√

2πσ2) − x2/2σ2)dx

= −[loge(1/
√

2πσ2)− 1/2σ2

∫ ∞
−∞

x2f(x)dx]

= −[loge(1/
√

2πσ2) − 1/2σ2σ2]

= 1/2(loge 2πσ2) + 1/2

=
1

2
ln 2πeσ2.

i.e., H(X) = 1
2 log(2πeσ2) bits. which is the differential entropy of a gaussian random variable.

3.2 Theorem

claim: A gaussian Random Variable X ∼ N (0, σ2) maximizes the differential entropy among all con-
tinuous random variables that have variance of σ2.

proof:
Suppose Z is any random variable with var(Z) = σ2 and pdf = g(z),
then H(X)−H(Z) can be written as

= −
∫
f(x) ln(f(x))dx +

∫
g(x) ln(g(x))dx

= −
∫
f(x)(ln(1/

√
2πσ2) − x2/2σ2)dx +

∫
g(x) ln(g(x))dx

= −
∫
g(x) ln(f(x))dx +

∫
g(x) ln(g(x))dx

=

∫
g(x) ln(g(x)/f(x))dx

= D(f ||g)

> 0

Thus H(X)−H(Z) > 0, i.e., H(X)>H(Z).
This method of proof, is called the Maximum Entropy Method.
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4 Rate Distortion for gaussian Random Variables:

Suppose we have a gaussian source X : X1, X2X3...Xn are iid.
To compress this data, according to the Rate distortion Theorem:

R(D) = min
f(x̂|x)

I(X; X̂) s.t.

∫
x

∫
x̂

f(x̂|x)f(x)d(x, x̂) ≤ D

where d(x̂,x) is the euclidean distance. (Proof for this is similar to the discrete case.)
To evaluate, R(D),
Step1: Find a lower bound for I(X; X̂)
Step2: Find some f(x) that achieves the bound and hence is optimal.

I(X; X̂) = H(X) − H(X|X̂)

now, H(X/X̂) = H(X − X̂|X̂)

=
1

2
ln 2πeσ2 − H(X − X̂|X̂)

as conditioning always reduces entropy,

≥ 1

2
ln 2πeσ2 − H(X − X̂)

and var(X − X̂) = E[(X − X̂)2]

≥ 1

2
ln 2πeσ2 − H(N(0, E[(X − X̂)2]))

≥ 1

2
ln 2πeσ2 − 1

2
ln 2πeE[(X − X̂)2]

≥ 1

2
ln(σ2/E[(x− x̂)2]

and since we know that E[(X − X̂)2] ≤ D, always
it implies that for Gaussian,

R(D) ≥ 1

2
ln(σ2/D) for D ≤ σ2

= 0 for D > σ2

After finding a lower bound, we now show that ∃ one f(x) for which this bound is achievable (which is
the limit of compression for the gaussian RV)i.e we would like to back track and find how the inequalities
meet the equality condition.

Suppose we have,
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Figure 4: Generating X
where X ′ is X̂

for this case I(X; X̂)= 1
2 ln σ2

D . i.e it achieves the bound.
Hence if there is a Gaussian source producing iid symbols then to encode a vector of length n
with resulting quantization error ≤ nD,
we need at least : n

2 ln(σ2/D) nats or n
2 log(σ2/D) bits to represent it.
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