
EE5585 Data Compression March 8, 2013

Lecture 13
Instructor: Arya Mazumdar Scribe: Artem Mosesov

Scalar Quantization

Basics

Being a subset of vector quantization, scalar quantization deals with quantizing a string of symbols
(random variables) by addressing one symbol at a time (as opposed to the entire string of symbols.)
Although, as one would expect, this is not ideal and will not approach any theoretical limits; scalar
quantization is a rather simple technique that can be easily implemented in hardware. The simplest
form of scalar quantization is uniform quantization.

Given a string, x1,x2,...xn, we first pick a symbol to quantize and disregard the rest. We then quantize
this continuous variable to a uniform set of points, as follows:

Figure 1: Uniform quantization

So we have M+1 boundaries bi, and M quantization levels yi (which fall in the middle of the boundary
points). So a continuous number that falls between the boundaries bi−1 and bi gets assigned a quantized
value of yi. Naturally, this introduces signal distortion - an error. The error measure typically used for
this is mean squared error (Euclidean distance, as opposed to Hamming distance that’s used for binary
strings). We call this the quantization error, and recognize that it takes log2(M) bits to store the
symbol.

Optimization

We note that uniform quantization is only optimal (in the minimum MSE sense) for a uniform distribu-
tion. Given an arbitrary PDF (not necessarily uniform), we would like to find an optimal quantization.Let
us consider a random variable X with a PDF f X(x).

The MSE is, ∫ ∞
−∞

(x−Q(x))
2
fX(x) dx

where Q(x) is the quantized output of X, that is

Q(x) = yi if bi−1 ≤ x ≤ bi

Simplifying the expressions for the error, we have

σ2
q ≡ MSE =

M∑
i=1

∫ bi

bi−1

(x− yi)
2fX(x)dx

1



This, then, becomes an optimization problem - given a maximum distortion rate, we would like to find
the optimal location of the quantization points (yi’s and bi’s). Of course, we can always have a very large
number of quantization points to keep the distortion low; however, we would like to keep this number
low, as to save memory space when storing these values.

Referring back to a uniform distribution, we note that (for a non-uniform pdf), the probability of different
yi’s is not the same. That is, at the quantizer output we may see a lot more of a certain quantization
point than another. This makes the points a candidate for Huffman coding, as seen earlier in the course.
The probability of a particular quantization point is

P (Q(x) = yi) =

∫ bi

bi−1

fX(x)dx

Now we can begin to optimize the average length of the code for the quantization points, which is

M∑
i=1

li

∫ bi

bi−1

fX(x)dx ,

where li is the length of the code for yi. This optimization must occur subject to the following two
constraints:

Constraint 1: li’s satisfy Kraft’s inequality.

Constraint 2: σ2
q ≡ MSE =

M∑
i=1

∫ bi
bi−1

(x− yi)
2fX(x)dx ≤ D

To see how to simplify this problems, we look again at a uniform quantizer. Lets assume that X (the
symbol we want to quantize) is a uniform ∼ U [−L,L] variable. The quantization ‘lengths’ are then
∆ = 2L

M , as shown in figure 2.

Figure 2: Uniform quantization for uniform random variable

The quantization error then becomes,

σ2
q =

M∑
i=1

∫ −L+i∆

−L+(i−1)∆

(x− yi)
1

2L
dx

The optimal yi is then bi−1+bi
2 . Of course, this is only for a uniform random variable, as initially assumed.

We may also notice that the quantization error plot is merely a sawtooth wave with wavelength ∆ and

amplitude ∆
2 . The integral of this is then, σ2

q = ∆2

12 .

2



We may think of the quantization error produced by the system as an additive noise - the ‘quantization
noise’. The power of this noise is then σ2

q . The idea is shown in Figure 3, below.

Figure 3: Uniform quantization for uniform random variable

From the figure, we note that the power of the input signal is,

σ2
x =

∫ L

−L
x2fX(x)dx =

L2

3

Hence, we have, SNR = 10 log10 (
σ2
x

σ2
q
) = 20 log10M , where M is, as before, the number of quantization

levels. Since this is a uniform distribution, Huffman coding will not get us anywhere, and we have the
maximum entropy of 20 log10M . For an n-bit quantizer then, we get 20 log10 2n = 20n log10 2 ≈ 6n dB.
So the SNR is directly proportional to the number of bits used for quantization - with an increase of one
bit correspond to about a 6dB increase of SNR.

Now we take a look at optimum quantization for non-uniform distributions. Similarly, we have

σ2
q =

M∑
i=1

∫ bi

bi−1

(x− yi)
2fx(x)dx

which we would like to minimize. Often, however, we don’t know the exact PDF of the symbols, nor do
we know the variance. To overcome this, we use adaptive quantization. As we’ve seen before, one way
to do this is to estimate the PDF by observing a string of symbols. This is known as forward adaptive
quantization.

Going back to minimizing σ2
q , we want

δσ2
q

δyi
=

δ

δyi

∫ bi

bi−1

(x− yi)
2fx(x)dx =

=
δ

δyi
[

∫ bi

bi−1

x2fx(x)dx− 2yi

∫ bi

bi−1

xfx(x)dx+ y2
i

∫ bi

bi−1

fx(x)dx] =

= −2

∫ bi

bi−1

xfx(x)dx+ 2yi

∫ bi

bi−1

fx(x)dx = 0

And then we have,

yi =

∫ bi
bi−1

xfx(x)dx∫ bi
bi−1

fx(x)dx
(1)

3



So this is the optimal location of the reconstruction points, given the quantization points. Now we have
to find the quantization points. We do this similarly,

δσ2
q

δbi
= 0

which gives us the optimal points

bi−1 =
yi−1 + yi

2
(2)

So what we can do with this is an iterative procedure, where we first initialize the variables, then go
back and forth optimizing each one, and (ideally) arriving very close to an optimality point.

Lloyd-Max Algorithm

The Lloyd-Max algorithm is an iterative method that does just that. The crude steps (of one of the
versions of this algorithm) are as follows:

1. Knowing b0, assume y1.
2. Using (1), find b1.
3. Using (2), find y2.

and so on...

We also note that since we know the (approximate) signal statistics, we know bM . Then we have an
idea of how much of the error the algorithm made by seeing how close it is to the known value of bM
after the last iteration. If it is too far off, we reinitialize and try again until we are within the accepted
tolerance.

Later, we will see a more complex, but better performing method of vector quantization.

4


