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Lecture 14
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Scalar Quantization for Nonuniform Distribution

Suppose we have an input modeled by a random variable X with pdf fX(x) as shown in Figure 1 and
we wished to quantize this source using a quantizer with M intervals. The endpoints of the intervals are
known as decision boundaries and denoted as {bi}Mi=0, while the representative values {yi}Mi=1 are called
reconstructive levels. Then, Q(X) = yi iff bi−1 < X ≤ bi, where the quantization operation is defined
by Q(·).
The mean squared quantization error (quantizer distortion) is given by

σ2
q = E[(X −Q(X))2] (1)

=

∫ ∞
−∞

(x−Q(x))2fX(x)dx (2)

=

∫ bM

b0

(x−Q(x))2fX(x)dx (3)

⇒ σ2
q =

M∑
i=1

∫ bi

bi−1

(x− yi)2fX(x)dx (4)

Thus, we can pose the optimal quantizer design problem as the followings:
Given an input pdf fX(x) and the number of quantization levels M in the quantizer, find the decision

boundaries {bi} and the reconstruction levels {yi} so as to minimize the mean squared quantization error.
If we know the pdf of X, a direct approach to find the {bi} and {yi} that minimize the mean squared

quantization error is to set the derivative of (4) with respect to bj and yj to zero, respectively. Then,

∂σ2
q

∂yj
=

∂

∂yj
[

∫ bj

bj−1

(x− yj)2fX(x)dx] (5)

=
∂

∂yj
[

∫ bj

bj−1

x2fX(x)dx− 2yj

∫ bj

bj−1

xfX(x)dx+ y2j

∫ bj

bj−1

fX(x)dx] (6)

= −2

∫ bj

bj−1

xfX(x)dx+ 2yj

∫ bj

bj−1

fX(x)dx = 0 (7)

⇒ yj =

∫ bj
bj−1

xfX(x)dx∫ bj
bj−1

fX(x)dx
(8)

∂σ2
q

∂bj
=

∂

∂bj
[

∫ bj

bj−1

(x− yj)2fX(x)dx+

∫ bj+1

bj

(x− yj+1)2fX(x)dx] (9)

= (bj − yj)2fX(x)dx− (bj − yj+1)2fX(x)dx = 0 (10)
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Figure 1: Nonuniform distribution of X.

Then,

(bj − yj)2 = (bj − yj+1)2 (11)

bj − yj = −(bj − yj+1) (12)

⇒ bj =
yj + yj+1

2
(13)

⇒ yj+1 = 2bj − yj (14)

The decision boundary is the midpoint of the two neighboring reconstruction levels. Solving these two
equations (8) and (14) listed above will give us the values for the reconstruction levels and decision
boundaries that minimize the mean squared quantization error. Unfortunately, to solve for yj , we need
the values of bj and bj−1, and to solve for bj , we need the values of yj and yj+1. Therefore, the Lloyd-Max
algorithm is introduced how to solve these two equations (8) and (14) iteratively.
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Lloyd-Max Algorithm

Suppose fX(x) and b0 = −α, bM = +α is given, Find {bi}Mi=0 and {yi}Mi=1. Assume a value for y1, then
From (8), find b1
From (14), find y2
From (8), find b2
From (14), find y3
...
From (8), find bM−1

From (14), find yM . Since we know bM = +α, we can directly compute y′M =

∫ bM

bM−1
xfX(x)dx∫ bM

bM−1
fX(x)dx

and

compare it with the previously computed value of yM . If the difference is less than some tolerance
threshold, we can stop. Otherwise, we adjust the estimate of y1 in the direction indicated by the sign of
the difference and repeat the procedure.

Properties of the Optimal Quantizer

The optimal quantizers have a number of interesting properties. We list these properties as follow:
1. Optimal quantizer must satisfy (8) and (14).
2. EX = EQ(X)

proof: Since Q(X) = yi iff bi−1 < X ≤ bi and Pr(Q(X) = yi) = Pr(bi−1 < X ≤ bi), then

EQ(X) =

M∑
i=1

yiPr(Q(X) = yi) (15)

=

M∑
i=1

yiPr(bi−1 < X ≤ bi) (16)

=

M∑
i=1

∫ bi
bi−1

xfX(x)dx∫ bi
bi−1

fX(x)dx

∫ bi

bi−1

fX(x)dx (17)

=

M∑
i=1

∫ bi

bi−1

xfX(x)dx (18)

=

∫ bM

b0

xfX(x)dx (19)

=

∫ +∞

−∞
xfX(x)dx (20)

= EX (21)

The reason of (19) to (20) is that the value of fX(x) beyond b0 and bM is zero.

3. EQ(X)2 ≤ EX2

proof: If gX(x) = fX(x)/(
∫ bi
bi−1

fX(x)dx), then
∫ bi
bi−1

gX(x)dx = 1,
∫ bi
bi−1

xgX(x)dx = EgX, and

Eg(X − EgX)2 ≥ 0 ⇒ (EgX)2 ≤ EgX
2. Thus,

EQ(X)2 =

M∑
i=1

y2i Pr(Q(X) = yi) (22)
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=

M∑
i=1

(

∫ bi
bi−1

xfX(x)dx∫ bi
bi−1

fX(x)dx
)

2∫ bi

bi−1

fX(x)dx (23)

=

M∑
i=1

(

∫ bi

bi−1

x
fX(x)∫ bi

bi−1
fX(x)dx

dx)

2∫ bi

bi−1

fX(x)dx (24)

≤
M∑
i=1

∫ bi

bi−1

x2
fX(x)∫ bi

bi−1
fX(x)dx

dx

∫ bi

bi−1

fX(x)dx (25)

=

M∑
i=1

∫ bi

bi−1

x2fX(x)dx (26)

=

∫ +∞

−∞
x2fX(x)dx (27)

= EX2 (28)

4. σ2
q = EX2 − EQ(X)2

Lloyd Algorithm

The Lloyd algorith is another method to find {bi}Mi=0 and {yi}Mi=1. The distribution fX(x) is assumed
known.
Assume y

(0)
1 , y

(0)
2 , · · · , y(0)M is an initial sequence of reconstruction values {yi}Mi=1. Select a threshold ε.

1.By Eqn (14). Find b
(1)
0 , b

(1)
1 , · · · , b(1)M .

2.By Eqn (8). Find y
(1)
1 , y

(1)
2 , · · · , y(1)M . And compute σ2

q
(1)

=
∑M

i=1

∫ b
(1)
i

b
(1)
i−1

(x− y(1)i )2fX(x)dx.

3.By Eqn (14). Find b
(2)
0 , b

(2)
1 , · · · , b(2)M .

4.By Eqn (8). Find y
(2)
1 , y

(2)
2 , · · · , y(2)M . And computeσ2

q
(2)

=
∑M

i=1

∫ b
(2)
i

b
(2)
i−1

(x− y(2)i )2fX(x)dx.

5.If |σ2
q
(2) − σ2

q
(1)| =

{
< ε, then stop
≥ ε, then continue the procedure

In summary, for each time j, the mean sqaured quantization error σ2
q
(j)

=
∑M

i=1

∫ b
(j)
i

b
(j)
i−1

(x− y(j)i )2fX(x)dx

is calculated and compare it with previously error value σ2
q
(j−1)

. Stop iff |σ2
q
(j)−σ2

q
(j−1)| < ε; otherwise,

continue the same procedure of computing b
(j+1)
0 , b

(j+1)
1 , · · · , b(j+1)

M and y
(j+1)
1 , y

(j+1)
2 , · · · , y(j+1)

M by Eqn
(14) and (8) for next time j + 1.

Vector Quantization

The idea of vector quantization is that encoding sequences of outputs can provide an advantage over the
encoding of individual samples. This indicates that a quantization strategy that works with sequences
or blocks of outputs would provide some improvement in performance over scalar quantization. Here
is an example. Suppose we have two uniform random variables height X1 ∼ Unif [40, 80] and weight
X2 ∼ Unif [40, 240] and 3 bits are allowed to represent each random variable. Thus, the weight range is
divided into 8 equal intervals and with reconstruction levels {52, 77, · · · , 227}; the height range is divided
into 8 equal intervals and with reconstruction levels {42, 47, · · · , 77}. The two dimensional representation
of these two quantizers is shown in Figure 2(a).
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Figure 2: (a)The dimensions of the height/weight scalar quantization. (b)The height-weight vector
quantization

However, the height and weight are correlated. For example, a quantizer for a person who is 80
inches tall and weights 40 pounds or who is 42 inches tall and weights 200 pounds is never used. A more
sensible approach will use a quantizer like the one shown in Figure 2(b). Using this quantizer, we can no
longer quantize the height and weight separately. We will consider them as the coordinates of a point
in two dimensions in order to find the closest quantizer output point.
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