
EE5585 Data Compression March 14, 2013

Lecture 15
Instructor: Arya Mazumdar Scribe: Khem Chapagain

Scalar Quantization Recap

Quantization is one of the simplest and most general ideas in lossy compression. In many lossy
compression applications, we are required to represent each source output using one of a small number
of codewords. The number of possible distinct source output values is generally much larger than the
number of codewords available to represent them. The process of representing a large - possibly infinite
- set of values with a much smaller set is called quantization.

In the previous lectures, we looked at the uniform and nonuniform scalar quantization and moved on to
vector quantizers. One thing that’s worth mentioning about scalar quanitization is that, for high rate,
uniform quantizers are optimal to use. That can be seen from the following derivation. As its name
implies, scalar quantizer inputs are scalar values (each input symbol is treated separately in producing
the output), and each quantizer output (codeword) represents a single sample of the source output.

• R.V. to quantize: X,

• Set of (decision) boundaries: {bi}Mi=0,

• Set of reconstruction/quantization levels/points: {yi}Mi=1, i.e., if x is between bi−1 and bi, then
it’s assigned the value of yi.

The Optimal Quantizer has following two properties:

1. yi =

bi∫
bi−1

x fX(x) dx

bi∫
bi−1

fX(x) dx

2. bi =
yi + yi+1

2

If we want a high rate quantizer, the number of samples or quantization levels (M) is very large.
Consequently, difference between boundaries bi−1 and bi is very small as they are very closely spaced.

Figure 1: A Gaussian pdf with large number of quantization levels (M).

1



When M is sufficiently large, probability density function (pdf), fX(x), doesn’t change much between
bi−1 and bi. In that case, the first property above can be written as,

yi ≈
fX(a)

bi∫
bi−1

xdx

fX(a)
bi∫

bi−1

dx

, bi−1 ≤ a ≤ bi

=
(b2i − b2i−1) / 2

(bi − bi−1)

=
bi + bi−1

2

Which says that for very large M , reconstruction level is approximately in the midway between two
neighboring boundaries, but we know from the second property above that boundary is exactly between
two neighboring reconstruction levels. This means that we have a uniform quantizer since it has all
reconstruction levels equally spaced from one another and quantization steps (intervals) are equal.
Thus, when we are operating with a large M , it makes sense just to go for the uniform quantizers.

Lloyd Algorithm

In the last class, we talked about Lloyd-Max algorithm to iteratively compute the optimized quantizer
levels (yi’s) and boundaries (bi’s). There is another algorithm called Lloyd algorithm, which also
iteratively calculates yi’s and bi’s, but in a different way. The Lloyd quantizer that is constructed using
an iterative procedure provides the minimum distortion for a given number of reconstruction levels, in
other words, it generates the pdf -optimized scalar quantizer. The Lloyd algorithm functions as follows
(source distribution fX(x) is assumed to be known):

• Initialization:

– Assume an initial set of reconstruction values/levels, {y(0)i }Mi=1, where (0) denotes the 0th

iteration.

– Find decision boundaries, {b(0)i }Mi=0 from the equation b
(0)
i =

y
(0)
i + y

(0)
i+1

2

– Compute the distortion (variance), D(0) =

M∑
i=1

b
(0)
i∫

b
(0)
i−1

(x− y(0)i )2 fX(x) dx

• Update rule: do for k = 0, 1, 2, .....

– y
(k+1)
i =

b
(k)
i∫

b
(k)
i−1

x fX(x) dx

b
(k)
i∫

b
(k)
i−1

fX(x) dx

, new set of reconstruction levels.

– b
(k+1)
i =

y
(k+1)
i + y

(k+1)
i+1

2
, new set of boundaries.
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– D(k+1) =

M∑
i=1

b
(k+1)
i∫

b
(k+1)
i−1

(x− y(k+1)
i )2 fX(x) dx, new distortion.

• Stop iteration if |D(k+1) − D(k)| < ε, where ε is a small tolerance > 0; i.e., stop when distortion
is not changing much anymore.

We will see later that this algorithm can be generalized to vector quantization.

Vector Quantization

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are scalars, we call the
quantizers scalar quantizers. If they are vectors, we call the quantizers vector quantizers. By grouping
source outputs together and encoding them as a single block, we can obtain efficient compression
algorithms. Many of the lossless compression algorithms take advantage of this fact such as clubbing
symbols together or parsing longest phrases. We can do the same with quantization. We will look at
the quantization techniques that operate on blocks of data. We can view these blocks as vectors, hence
the name “vector quantization.” For a given rate (in bits per sample), use of vector quantization results
in a lower distortion than when scalar quantization is used at the same rate. If the source output is
correlated, vectors of source output values will tend to fall in clusters. By selecting the quantizer
output points to lie in these clusters, we have a more accurate representation of the source output.

We have already seen in the prior class that, if we have the data that are correlated, it doesn’t make
sense to do scalar quantization. We looked at the height(H), weight(W ) quantization scheme in two
dimensions. We have two random variables (H, W ) and will plot the height values along the x-axis
and the weight values along the y-axis. In this particular example, the height values are being
uniformly quantized to the five different scalar values, as are the weight values. So, we have a total of
25 quantization levels (M = 25) denoted by •. The two-dimensional representation of these two
quantizers is shown below.

Figure 2: The height, weight scalar quantizers when viewed in two dimensions.
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From the figure, we can see that we effectively have a quantizer output for a person who is very tall
and weighs minimal, as well as a quantizer output for an individual who is very short but weighs a lot.
Obviously, these outputs will never be used, as is the case for many of the other unnatural outputs. A
more sensible approach would be to use a quantizer with many reconstruction points inside the shaded
region shown in the figure, where we take account of the fact that the height and weight are correlated.
This quantizer will have almost all quantization levels (say 23) within this shaded area and no or very
few (say 2) quantization levels outside of it. With this approach, the output points are clustered in the
area occupied by the most likely inputs. Using this methodology provides a much finer quantization of
the input. However, we can no longer quantize the height and weight separately - we have to consider
them as the coordinates of a point in two dimensions in order to find the closest quantizer output point.

When data are correlated, we don’t have any doubt that quantizing data together (vector
quantization) is going to buy us something. It will be shown, when data are independent (no
correlation), we still gain from using vector quantization. Scalar quantization always gives something
like a rectangular grid similar to what we have seen in the above example. Note that for pdf -optimized
or optimal quantizer, unlike above example, grids/cells can be of different sizes meaning boundaries
don’t necessarily have to be uniformly spaced in either dimension. Nevertheless, the fact is that these
rectangles don’t fill up the space most efficiently. There might be other shapes, like a hexagon or
something else, that can fill up the space in a better way with the same number of quantization levels.
This idea is captured in vector quantization, where we have this flexibility of using any shape,
contrasting the scalar case where only choice is rectangle like shapes.

Exercise: A square and a regular hexagon having equal area.

Figure 3: A square and a regular hexagon of same area.

Area of the square,

A = (
√

2D)2

= 2D2

Area of the hexagon is six times the area of the inside triangle shown,

A′ = 6D′ cos(
π

3
)D′ sin(

π

3
)

= 6

√
3

4
D′2

=
3
√

3

2
D′2
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If the areas are equal,

A′ = A

3
√

3

2
D′2 = 2D2

D′2 =
4

3
√

3
D2

D′2 =
4

5.196
D2

D′ = 0.877D

D′ < D

Even though, both the square and hexagon occupy the same area, the worst case distortion in hexagon
(D′) is less than the worst case distortion in square (D). Hence, we can intuitively see that hexagon
can fill up the same space with less distortion (better packing), which is also known as the shape gain.
This is illustrated in the following figure.

Figure 4: 20 square cells and 20 hexagonal cells packing the equal area.

From earlier discussions, it is clear that for correlated data, vector quantizers are better. We just saw
that, even if the the data are not correlated, vector quantizers still offer this shape gain among other
advantages. Without having all this intuition and geometry, this fact was captured previously in the
rate distortion theory as well.

We can try to extend Lloyd algorithm to vector quantizers. Now, we have a space to quantize instead
of a real line. Analogous to scalar case this time we have,

• Given r.v.’s (need not be iid), X1, X2, ..., Xn, Xi ∈ R

• Joint pdf , fX1, ..., Xn
(x1, ..., xn) determines the range (range doesn’t always have to be R).

• {Yi}Mi=1, set of quantization levels (n dimensional vectors).

• {Vi}Mi=1, boundaries are hyper-planes or partitions of Rn, i.e.,

M⋃
i=1

Vi = Rn

Given a set of quantization/reconstruction levels/points, we want find the optimal partitions. Suppose
quantization levels are,

{Yi}Mi=1
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Vi, the Voronoi region of Yi, is the region such that any point in Vi is closer to Yi than any other Yj .

Vi = {X = (x1, ..., xn) ∈ Rn | d(Yi, X) < d(Yj , X) ∀ j 6= i}

Figure 5: Vi is the Voronoi region of Yi.

And the distortion is,

D =

∫
Rn

‖X −Q(X)‖22 fX(X) dX

=

M∑
i=1

∫
Vi

‖X − Yi‖22 fX(X) dX

=

M∑
i=1

∫
Vi

(X − Yi)T (X − Yi) fX(X) dX

Where d(.) is some distance metric, Q(.) is the quantizer function that maps any value in Vi to Yi, and
‖.‖22 is the Euclidean norm (we can use other norms also).

Linde-Buzo-Gray (LBG) Algorithm

Linde, Buzo, and Gray generalized Lloyd algorithm to the case where the inputs are no longer scalars.
It is popularly known as the Linde-Buzo-Gray or LBG algorithm, or the generalized Lloyd algorithm.
For the case where the distribution is known, the algorithm looks very much like the Lloyd algorithm
described earlier for the scalar case.

• Initialization:

– Assume an initial set of quantization/reconstruction points/values, {Yi(0)}Mi=1

– Find quantization/reconstruction/voronoi regions,

V
(0)
i = {X : d(X, Yi

(0)) < d(X, Yj
(0)) ∀ j 6= i}

– Compute the distortion, D(0) =

M∑
i=1

∫
Vi

(0)

(X − Yi(0))T (X − Yi(0)) fX(X) dX

• Update rule: do for k = 0, 1, 2, .....

– Yi
(k+1) =

∫
V

(k)
i

X fX(X) dX∫
V

(k)
i

fX(X) dX
, this represents the point (centroid) that minimizes distortion

within that region.
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– V
(k+1)
i = {X : d(X, Yi

(k+1)) < d(X, Yj
(k+1)) ∀ j 6= i}, new set of reconstruction regions.

– D(k+1) =

M∑
i=1

∫
Vi

(k+1)

(X − Yi(k+1))T (X − Yi(k+1)) fX(X) dX, updated distortion.

• Stop when |D(k+1) − D(k)| < ε, where ε is a small tolerance > 0.

This algorithm is not very practical because the integrals required to compute the distortions and
centroids are over odd-shaped regions (hyper-space) in n dimensions, where n is the dimension of the
input vectors. Generally, these integrals are extremely difficult to compute and trying every vector to
decide whether it’s in the Voronoi region or not is also unfeasible, making this particular algorithm
more of an academic interest. Of more practical interest is the algorithm for the case where we have a
training set available. In this case, the algorithm looks very much like the k-means algorithm.

• Initialization:

– Start with a large set of training vectors, X1, X2, X3, ..., XL from the same source.

– Assume an initial set of reconstruction values, {Yi(0)}Mi=1

– Find quantization/voronoi regions, V
(0)
i = {Xi : d(Xi, Yi

(0)) < d(Xi, Yj
(0)) ∀ j 6= i}, here

we need to partition only L vectors instead of doing it for all vectors.

– Compute the distortion, D(0) =

M∑
i=1

∑
X∈V (0)

i

(X − Yi(0))T (X − Yi(0))

• Update rule: for k = 0, 1, 2, .....

– Yi
(k+1) =

1

|V (k)
i |

∑
X∈V (k)

i

X, find the centroid (center of mass of points), here |.| is the size of

operator.

– V
(k+1)
i = {Xi : d(Xi, Yi

(k+1)) < d(Xi, Yj
(k+1)) ∀ j 6= i}, new set of decision regions.

– D(k+1) =

M∑
i=1

∑
X∈V (k+1)

i

(X − Yi(k+1))T (X − Yi(k+1)), new distortion.

• Stop when |D(k+1) − D(k)| < ε, where ε is a small tolerance > 0.

We didn’t know the pdf of the data or source, all we had was a set of training data. Yet, when this
algorithm stops, we have a set of reconstruction levels (Yi’s) and quantization regions (Vi’s), which
gives us a vector quantizer. This algorithm is a more practical version of the LBG algorithm.
Although, this algorithm forms the basis of most vector quantizer designs, there are few issues with
this algorithm, for example,

1. Initializing the LBG Algorithm: What would be the good set of initial quantization points
that will guarantee the convergence? The LBG algorithm guarantees that the distortion from one
iteration to the next will not increase. However, there is no guarantee that the procedure will
converge to the optimal solution. The solution to which the algorithm converges is heavily
dependent on the initial conditions and by picking different subsets of the input as our initial
codebook (quantization points), we can generate different vector quantizers.
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2. The Empty Cell Problem: How do we take care of a situation when one of the
reconstruction/quantization regions in some iteration is empty? There might be no points which
are closer to a given reconstruction point than any other reconstruction points. This is a problem
because in order to update an output point (centroid), we need to take the average value of the
input vectors.

Obviously, some strategy is needed to deal with these circumstances. This will be the topic of next
class after the Spring Break.

Practical version of LBG algorithm described above is surprisingly similar to the k-means algorithm
used in data clustering. Most popular approach to designing vector quantizers is a clustering procedure
known as the k-means algorithm, which was developed for pattern recognition applications. The
k-means algorithm functions as follows: Given a large set of output vectors from the source, known as
the training set, and an initial set of k representative patterns, assign each element of the training set to
the closest representative pattern. After an element is assigned, the representative pattern is updated
by computing the centroid of the training set vectors assigned to it. When the assignment process is
complete, we will have k groups of vectors clustered around each of the output points (codewords).

Figure 6: Initial state (left) and final state (right) of a vector quantizer.

We have seen briefly how we can make use of the structure exhibited by groups, or vectors, of values to
obtain compression. Since there are different kinds of structure in different kinds of data, there are a
number of different ways to design vector quantizers. Because data from many sources, when viewed as
vectors, tend to form clusters, we can design quantizers that essentially consist of representations of
these clusters.
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