
EE5585 Data Compression April 02, 2013

Lecture 18
Instructor: Arya Mazumdar Scribe: Shashanka Ubaru

Solutions for problems 1 - 4 and 6 of HW2 were provided in the previous lecture and also the concepts
of Turing machines and Kolmogorov Complexity were introduced . In this lecture,

1. Solution for the fifth problem of HW2 is provided.

2. Kolmogorov Complexity is defined.

3. Properties (Theorems related to) Kolmogorov Complexity are stated and proved.

4. Concept of Incompressible Sequences is introduced.

(Reference for these topics : Chapter 14, “Elements of Information Theory” 2nd ed - T. Cover, J.
Thomas (Wiley, 2006). )

Solution for Problem 5 of Homework 2

Given: A source X uniformly distributed on the set {1, 2, . . . . . . ,m}. That is, Pr(x = i) = 1
m .

R(D) =? with Hamming distortion,

d(x, x̂) =

{
0 if x = x̂

1 if x 6= x̂

We know that the rate distortion is given by,

R(D) = min
p(x̂|x):E{d(x,x̂)≤D}

I(X; X̂)

This optimization equation seems difficult to solve. So, a good trick is to find a lower bound for
I(X; X̂) subjected to the constraint mentioned and come up with an example that achieves this lower
bound given the constraint on p(x̂ | x). (Recall : This technique was used to find R(D) for Binary and
Gaussian random variables also)

By definition,

I(X; X̂) = H(X)−H(X | X̂)

= logm−H(X | X̂)

For binary random variable, we had equaled H(X | X̂) to H(X − widehatX | X̂), but here this is
not true. So, we define a new random variable Y ,

Y =

{
0 if X = X̂

1 if X 6= X̂

H(X | X̂) is the uncertainity in X if X̂ is known and we have,

H(X | X̂) ≤ H(X,Y | X̂)

= H(Y | X̂) +H(X | X̂, Y ).

Substituting,
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I(X; X̂) ≥ H(X)−H(Y | X̂)−H(X | X̂, Y )

≥ logm−H(Y )−H(X | X̂, Y )

as H(Y ) ≥ H(Y | X̂). Now consider H(X | X̂, Y ),

H(X | X̂, Y ) = Pr(Y = 0)H(X | X̂, Y = 0) + Pr(Y = 1)H(X | X̂, Y = 1)

If Y = 0 ⇒ X = X̂ ⇒ H(X | X̂, Y = 0) there is no uncertainity and for a given X̂, there are only
M-1 choices for X.

H(X | X̂, Y ) = Pr(Y = 1) log(M − 1)

= Pr(X 6= X̂) log(M − 1)

and H(Y ) = h
(

Pr(X 6= X̂)
)

then,

I(X; X̂) ≥ logm− h
(

Pr(X 6= X̂)
)
− Pr(X 6= X̂) log(M − 1)

Ed(x; x̂) = 1.Pr(X 6= X̂) + 0.Pr(X = X̂)

= Pr(X 6= X̂) ≤ D
I(X; X̂) ≥ logm− D log(M − 1)− h(D)︸ ︷︷ ︸

both are increasing functions

Example to show that, this lower bound is achieved

Figure 1: System that achieves the lower bound

Consider the system shown in Figure 1. X̂ ∈ {1, 2, . . . . . . ,M} with Pr(X̂) = 1
M . If the distortion is D

then, Pr(X = i | X̂ = i) = 1 − D and Pr(X = i | X̂ = j) = D
M−1 ∀i 6= j as shown in the figure. The

probability X is,

2



Pr(X = i) = Pr(X̂ = i) Pr(X = i | X̂ = i) +
∑
i 6=j

Pr(X̂ = j) Pr(X = i | X̂ = j)

=
1

M
(1−D) +

∑
i 6=j

1

M

D

M − 1

=
1−D
M

+
D

M

=
1

M

So, X are equiprobable. The mutual information is given by,

I(X; X̂) = logm−H(X | X̂)

H(X | X̂) = −
M∑
i=1

Pr(X̂ = i)H(X | X̂ = i)

=
1

M

M∑
i=1

H(X | X̂ = i)

= H(X | X̂ = i)

We have, Pr(X = i | X̂ = i) = 1−D and Pr(X = i | X̂ = j) = D
M−1 ∀i 6= j. So,

H(X | X̂ = i) = −(1−D) log(1−D)−
∑
i6=j

D

M − 1
log

(
D

M − 1

)

= −(1−D) log(1−D)−D log

(
D

M − 1

)
= h(D) +D log(M − 1)

Substituting,

I(X; X̂) = logm− h(D)−D log(M − 1)

R(D) = logm− h(D)−D log(M − 1)

Digression:

What happens, if we use scalar quantizer for the above mentioned system (quantizeX ∈ {1, 2, . . . . . . ,M})?
Suppose we use an uniform quantizer.∣∣∣∣∣∣ 1, 2,︸ ︷︷ ︸

←∆→

∣∣∣∣∣∣
∣∣∣∣∣∣ . . . . . .︸ ︷︷ ︸
←∆→

∣∣∣∣∣∣ . . . . . .
∣∣∣∣∣∣, M − 1, M︸ ︷︷ ︸

←∆→

∣∣∣∣∣∣
The reconstruction points will be i

(
4+1

2

)
for i=1,3,....M-1 odd no.s

Find average distortion D: This will be same for each points (uniform quantizer). We are using

hamming distortion. d =

{
1 ∆ 6= i

0 ∆ = i
. Thus,
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D =
∆− 1

∆
.1 +

1

∆
.0

=
∆− 1

∆

Rate-Distortion trade-off: we have M
∆ possible outputs. So, log M

∆ number of bits. Then,

R(D) = log
M

∆

But, D = ∆−1
4 = 1− 1

∆ implies, 1
∆ = 1−D

Thus the rate-distortion for this scheme is,

R = logM(1−D)

= logM − log
1

1−D

Figure 2: Rate distortion function and performance of and scalar quantization

From Figure 2 , it is evident that, the rate for scalar quantizer is always higher than the rate-distortion
function. Thus, this scheme is suboptimal.

Kolmogorov Complexity

Introduction

So far, a given sequence of data (object) X was treated as a random variable with probability mass
function p(x). And the attributes (properties) defined for the sequence like entropy H(X), average length
L(C), relative entropy divergence D(p ‖ q), Rate-distortion R(D) etc., depended on the probability
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distribution of the sequence. Most of the coding techniques and quantization techniques that we saw,
also depended on the probability distribution of the sequence. We can define a descriptive complexity of
the event X = x as log 1

p(x) . But, Andrey Kolmogorov (Soviet mathematician) defined an algorithmic

(descriptive) complexity of an object X to be the length of the shortest binary computer program
that describes the object. He also observed that, this definition of complexity is essentially computer
independent. Here, the object X is treated as strings of data that enter a computer and Kolmogorov
Complexity is analogous to Entropy of this sequence.

Figure 3: A Turing machine

An acceptable model for computers that is universal, in the sense that they can mimic the actions of
other computers is ‘Turing Machine’ model. This model considers a computer as a finite-state machine
operating on a finite symbol set. A computer program is fed left to right into this finite-state machine
as a program tape (shown in Figure 2). The machine inspects the program tape, writes some symbols
on a work tape and changes its state according to its transition table and outputs a sequence Y . In this
model, we consider only a program tape containing a halt command (ie,. when to stop the program). No
program leading to a halting computation can be the prefix of another program. This forms a prefix-free
set of programs. Now the question is, given a string/sequence, can we compress it or not?

Answer: Kolmogorov Complexity and its properties.

Kolmogorov Complexity: Definitions and Properties

Definition:

The Kolmogorov complexity KU (x) of a string x with respect to a universal computer U is defined as

KU (x) = min
p:U(p)=x

l(p)

the minimum length over all programs that print x and halt. Thus, KU (x) is the shortest description
length of x over all descriptions interpreted by computer U .

Conditional Kolmogorov complexity knowing l(x) is defined as

KU (x | l(x)) = min
p:U(p,l(x))=x

l(p)
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This is the shortest description length if the computer U has the length of x made available to it.

Property 1:

If U is a universal computer, for any other computer A there exists a constant C such that,

KU (x) ≤ KA(x) + C
The constant C does not depend on x. All universal computers have same K(x) so they differ by C .

Property 2:
K(x|l(x)) ≤ l(x) + c.

Conditional complexity is less than the length of the sequence. That is, the length of a program will be
atmost length of our string x.

Example: “Print the following l length sequence : x1 . . . . . . xl”
Here l is given so the program knows when to stop.

Property 3:

K(x) ≤ K(x|l(x)) + log∗(l(x)) + c.

where log∗(n) = log n+ log log n+ log log log n+ · · · · · ·
Here we do not know the length l(x) of the sequence. The length of a sequence is represented as

log l(x). But log l(x) is unknown. So, we need log log l(x) and so on. Hence the term log∗ l(x).

Property 4:

The number of binary sequence x with complexity K(x) < k is < 2k,

| {x ∈ {0, 1} : K(x) < k} | < 2k

The total length of any program of binary sequence is,

1 + 2 + 22 + 24 + .........+ 2k−1 = 2k − 1 < 2k

Property 5:

The Kolmogorov complexity of a binary string X is bounded by

K(x1x2 · · · · · ·xn | n) ≤ nH

(
1

n

n∑
i=1

xi

)
+ log∗ n+ c

Suppose our sequence X has ‘k’ ones. Can we compress a sequence of n bits with k ones? Given a
table of X with k ones, our computer produces an index of length, log

(
n
k

)
. But we do not know ‘k’. So,

to know ‘k’ we need log∗ k . So, the worst case length will be,

log

(
n

k

)
+ log∗ n+ c

By Sterling’s approximation,

log

(
n

k

)
≤ nH

(
k

n

)
= nH

(
1

n

n∑
i=1

xi

)
and we know, K(X) ≤ l(X),
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K(x1x2 · · · · · ·xn | n) ≤ nH

(
1

n

n∑
i=1

xi

)
+ log∗ n+ c

Property 6:

The halting programs form a prefix-free set, and their lengths satisfy the Kraft inequality,∑
p:p halts

2−l(p) ≤ 1

Theorem:

Suppose {Xi} is an iid sequence with X ∈ X . Then,

1

n

∑
x1x2······xn

K(x1x2 · · · · · ·xn | n) Pr(x1x2 · · · · · ·xn) −→ H(X)

For large sequence, the Kolmogorov complexity approaches entropy.

Proof:

∑
x1x2······xn

K(x1x2 · · · · · ·xn | n) Pr(x1x2 · · · · · ·xn) ≥ H(x1x2 · · · · · ·xn)

= nH(X)

Here K(x1x2 · · · · · ·xn | n) is the smallest length for any program and because the programs are
prefix free, this is the length of prefix-free codes. Then the LHS of above equation is nothing but the
average length of the symbol. And we have L(C) ≥ H(X). Thus,

1

n

∑
x1x2······xn

K(x1x2 · · · · · ·xn | n) Pr(x1x2 · · · · · ·xn) ≥ H(X)

next we have to prove this is less than H(X).
From property 5, we have

1

n
K(x1x2 · · · · · ·xn | n) ≤ H

(
1

n

n∑
i=1

xi

)
+

1

n
log∗ n+

c

n

E

{
1

n
K(x1x2 · · · · · ·xn | n)

}
≤ E

[
H

(
1

n

n∑
i=1

xi

)]
+

1

n
log∗ n+

c

n

H(X) is a concave function, so using Jensen’s inequality,

E

{
1

n
K(x1x2 · · · · · ·xn | n)

}
≤ H

[
1

n

(
E

n∑
i=1

xi

)]
+

1

n
log∗ n+

c

n

= H

[
1

n

(
n∑

i=1

Exi

)]
+

1

n
log∗ n+

c

n

= H [E(X)] +
1

n
log∗ n+

c

n
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but

E(X) = 1.Pr(x = 1) + 0.Pr(x = 0)

= Pr(x = 1)

then

E

{
1

n
K(x1x2 · · · · · ·xn | n)

}
≤ H [Pr(x = 1)] +

1

n
log∗ n+

c

n

= H [X] +
1

n
log∗ n+

c

n
−→ H(X)

as n −→∞, Kolmogorov complexity approaches entropy

Incompressible Sequences

There are certain large numbers that are simple to describe like,

22222

or (100!)

But most of such large sequences do not have a simple description. That is, such sequences are
incompressible. Given below is the condition for incompressible sequence.

A sequence X = {x1x2x3 . . . xn}is incompressible if and only if,

lim
n→∞

K(x1x2x3 . . . xn|n)

n
= 1.

Thus, Kolmogorov complexity tells us given a sequence, how much we can compress. (Answering
our question posted in the Introduction). That is, if K(X) is of the order of length n then clearly, the
sequence is incompressible.

Theorem:

For binary incompressible sequence X = {x1, x2, x3, . . . . . . , xn},

1

n

n∑
i=1

xi −→
1

2

i.e., approximately same # of 1’s and 0’s or the proportions of 0’s and 1’s in any incompressible
string are almost equal.

Proof:
We have by definition,

K(x1x2x3 . . . xn|n) ≥ n− cn
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where cn is some number. Then by Property 5, we have

n− cn ≤ K(x1x2 · · · · · ·xn | n) ≤ nH

(
1

n

n∑
i=1

xi

)
+ log∗ n+ c

1− cn
n
≤ H

(
1

n

n∑
i=1

xi

)
+

log∗ n

n
+
c

n

H

(
1

n

n∑
i=1

xi

)
≥ 1− (cn + c+ log∗ n)

n

= 1− εn

and εn −→ 0 asn −→∞,

Figure 4: H(p) vs p

By inspecting the above graph, we see that,

1

n

n∑
i=1

xi ∈
{

1

2
− δn,

1

2
+ δn

}
where δn is chosen such that,

H

(
1

2
− δn

)
= 1− εn

this implies, δn −→ 0 asn −→∞ and

1

n

n∑
i=1

x
i
−→ 1

2
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