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Kolmogorov Complexity

A major result is that the Kolmogorov complexity of a random sequence on average is close to the
entropy. This captures the notion of compressibility. Also, an algorithmically incompressible binary
sequence as defined by the Kolmogorov complexity has approximately the same numer of 1s and 0s. The
difference between the number of 0s and 1s gives insight into how compressible a signal is. Kolmogrov
complexity can be defined for numbers as well as sequences. For n ∈ Z,

K(n) = min
p:U(p)=n

l(p)

where K(n) denotes the Kolmogorov complexity of n, and l(p) is the minimum length of the computer

program. Some integers have low Kolmogorov complexity. For exmple, let n = 55
55

5

. Even though
this is a very large number, it has a short description. Also, e is easily described. Even though it is an
irrational numer, it has a very short description of the basis of the natural logarithm, so it is actually a
function such that the derivative of the function is itself.

Note,

K(n) ≤ log∗ n+ c

where log∗ n = log n+ log log n+ log log log n+ . . . , so long as the each term is positive.

Theorem 1 There exists an infinite number of integers for which K(n) > log n.

Proof (by contradiction): Assume there exist a finite number of integers for which K(n) > log n.
From Kraft’s Inequality, ∑

n

2−K(n) ≤ 1

If the assumption is true, then there will be only a finite number of integers for which K(n) > log n.
Then there is a number n0 for which all n ≥ n0 =⇒ K(n) ≤ log n. Then∑

n≥n0

2−K(n) ≥
∑
n≥n0

2− logn =
∑
n≥no

1

n

The series
∑
n

1
n doesn’t converge, so

∑
n≥no

1

n
=∞

It follows that ∑
n

2−K(n) =∞

This contradicts with
∑
n

2−K(n) ≤ 1, and thus the assumption is false. ∴ ∃ a finite number of integers

for which K(n) > log n.

This illustrates that there is an infinite number of integers that are not simple to describe, i.e. they
will take more than log n bits to describe. Given a binary sequency, if

|#1s−#0s| ≥ εn
then the sequence can be compressed.
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Transform Coding

Consider a height/weight data set.

Because the data is highly correlated, a clockwise rotation can be done to obtain new axes such that the
line of best fit becomes the new prominent axis.

Thus the difference between any data point and the axis is small, and fewer bits are needed to describe
them. In the new data set, the entries are uncorrelated. Ideally, there will be 0 correlation in the new
coordinates. Note that the correlation between random variables X and Y is E[(X − E(X)) (Y −E(Y ))],
where E(X) denotes the expected value of X. If X and Y are independent, then Cor = 0. Similarly, if
the correlation is large, the variables are highly correlated. Without loss of generality, E(X) = E(Y ) = 0.
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This is just subtracting the mean from each set. Let

X =


x1
x2
...
xN

 ; E(X) =


0
0
...
0


In the height/weight data, there were only two variables, i.e. height is x1 and weight is x2. The rotation
is done by multiplying by a matrix:

Y = AX

Y is another N -dimensional vector, and A is N × N . It is desirable to have A be an orthonormal
matrix, i.e. ATA = I. If this holds, then the result is an orthogonal transformation. For any orthogonal
transformation, Parseval’s Theorem is true. This says that∑

i

σ2
yi =

∑
i

E(y2i )

= E(‖Y ‖22)

= E(Y TY )

= E(XTATAX)

= E(XTX)

= E(‖X‖22)

=
∑
i

E(x2i ) =
∑
i

σ2
xi

If σx is the variance of x, then
∑
i

E(x2i ) =
∑
i

σ2
xi stems from the fact that X is a zero-mean, random

variable. Thus, the transformation conserves the total energy. The transformation should ensure that
the new data are uncorrelated. The correlation is representated by the covariance matrix, Cx, defined
as

Cx = E(XXT ) = E


x1
x2
...
xN

 [x1 x2 . . . xN
]

= E


x21 x1x2 . . . x1xN
x1x2 x22 . . . x2xN

...
...

. . .
...

x1xN x2xN . . . x2N



=


σ2
x1

E(x1x2) . . . E(x1xN )
E(x1x2) σ2

x2
. . . E(x2xN )

...
...

. . .
...

E(x1xN ) E(x2xN ) . . . σ2
xN


Note that this is a symmetric matrix. From the definition of the trace of a matrix,

Trace(Cx) =
∑
i

σ2
xi
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which is the total energy of the signal. The transform matrix A should minimize the off-diagonal ele-
ments of the covariance matrix.

Cy = E(Y Y T )

= E(AXXTAT )

= AE(XXT )AT

= ACxA
T

Because ATA = I and A is an orthogonal matrix, AT = A−1. Thus,

Cy = ACxA
−1

CyA = ACx

The ideal covariance matrix Cy is a diagonal matrix. Suppose

Cy =


λ1 0λ2

. . .

0 λN−1

λN


Thus 

λ1 0λ2
. . .

0 λN−1

λN

A = ACx

Because X is zero mean, Y is also zero mean. Suppose

A =


a11 a12 . . . a1N
a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN



=⇒ CyA =

λ1

a11
a21
...

aN1

 λ2


a12
a22
...

aN2

 . . . λN


a1N
a2N

...
aNN




=

Cx

a11
a21
...

aN1

 Cx


a12
a22
...

aN2

 . . . Cx


a1N
a2N

...
aNN




For ease of notation, let

Ai =


a1i
a2i
...
aNi


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In general,

CxAi = λiAi

λi is an eigenvalue of Cx, and Ai is the corresponding eigenvector.

A =
[
A1 A2 . . . AN

]
Thus, the transform matrix A is

A =
[
eigenvectors of Cx

]
The eigenvalues are simply λi = σ2

yi . This is called the Karhunen-Loève Transform (KLT). The
process for finding the KLT is

1. Subtract off the mean:
x1 → x1 − E(x1)
x2 → x2 − E(x2)
...
xN → xN − E(xN )

2. Find the covariance matrix. If there are M elements in each vector, then the total energy is

σ2
xn =

1

M

M∑
i=1

x2ni

for each n going from 1 to N . The correlations are then

ρxn,xm =
1

M

M∑
i=1

xnxm

The covariance matrix is then

Cx =


σ2
x1

ρx1,x2
. . . ρx1,xN

ρx1,x2
σ2
x2

. . . ρx2,xN
...

...
. . .

...
ρx1,xN ρx2,xN . . . σ2

xN


3. Knowing the covariance matrix Cx, find the eigenvalues and eigenvectors. Form the transform

matrix A as

A =
[
A1 A2 . . . AN

]
where Ai represents the ith eigenvector of Cx.

The process outlined above is called Principal Component Analysis. The goal of this analysis is to
find a matrix that transforms the vectors to a new coordinate system in which they are uncorrelated.
So ideally,

Cy =


λ1 0λ2

. . .

0 λN−1

λN


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Keep only the eigenvalues that are largest. The energy lost in this process is the sum of the eigenvalues
that are not used in the compression scheme. This is the mean square error. Suppose that the eigenvalues
are ordered, i.e. λ1 > λ2 > · · · > λN . If all {λi}Ni=N0

are unused, then the mean square error is

MSE =

N∑
i=N0

λi

This is one measure of the distortion induced by compressing the signal. KLT optimally minimizes
E(yiyj), but it is computationally inefficient because for each new data set, a new transform matrix has
to be computed. Instead, some standard transform matrices are used. One such of these is

F =
1√
N



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN

1 ω2 ω4 ω6 . . . ω2N

1 ω3 ω6 ω9 . . . ω3N

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)


This is an example of a generic transform matrix. Typically, ω = e−i

2π
N . This is the Discrete Fourier

Transform (DFT) matrix. The DFT projects data along the rows, and each row has a frequency kernel.
Thus, it produces the frequency components of the data.

Y = FX

=


Y 1
Y 2
...
YN


The values {Yi}Ni=1 are the frequency components. Compressing a signal by omitting any of the low
amplitude Yis (usually high frequency) effectively filters the signal.

If the low amplitude Yis are scattered about the vector, filtering is still being done, but it is not
necessarily characterizable as a low, high, or band-pass filter. This is a widely used compression scheme.
In the case of images, most frequently a Discrete Cosine Transform (DCT) is used.

Aij =


√

1
N cos

(
jπ(2i+1)

2N

)
i = j√

2
N cos

(
jπ(2i+1)

2N

)
i 6= j

For correlated data that forms a first-order Markov chain, then the energy compaction factor is very close
to the energy compaction factor of KLT. The DCT has very good performance for highly correlated data.

A problem with modern technology is that image capturing systems, for example, lack hardware ca-
pable of these data compression techniques, so much more information is captured than is actually used
after the compression. The process is outlined below.
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Ideally, the sensing and compression would be combined into a compressed sensing step.

The compressed sensing block contains a matrix Φ. If the discrete signal is X, ideally the sensors will be
able to do the transform matrix multiplication ΦX. Given any signal to be sensed, X, there is hardware
to implement the linear combination of the rows of Φ. The multiplication is φ11 φ12 . . . φ1N

...
...

. . .
...

φM1 φM2 . . . φMN


x1...
xN

 =

 y1...
yM


where M � N for compression. Note that Φ is no longer a square matrix; it is short and fat. Thus
only M samples are taken, and compression and sensing occur all in the same step. This can be done in
hardware.

Decoding Transform Codes

In decoding, X needs to be recovered from Y , but there is not a unique solution for X given Φ and Y .
However, some more information is known about X. Given any transform matrix F , FX is a vector
that has few non-zero entries. F is known.

Φ = Φ̃F

Note that Φ is M ×N , Φ̃ is M ×N , and F is N ×N .

Y = ΦX

= Φ̃FX

= Φ̃X̃

where X̃ = FX. X̃ is a sparse vector, i.e. it has few non-zero values. Let k be the number of non-zero
entries of X̃. k � N . Knowing Φ̃ is equivalent to knowing Φ, since F is known. The formulation of the
problem is then: Given Y = ΦX and Φ, find X, where X has k � N non-zero values. Also find the
matrix Φ for which this problem is solvable.
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