EE5585 Data Compression April 11, 2013

Lecture 21
Instructor: Arya Mazumdar Scribe: Zhongyu He

Compressed Sensing

From last lecture, compressed sensing can be boiled down to a simple mathematical problem as the
following equation:
dr=y

where ® is an m x N matrix,  is an N X 1 vector, y is an m x 1 vector. And the linear system is
undetermined.

Given ® and y, we need to solve for z ,which is approximately sparse, i.e.,  has at most k prominent
coordinates. Therefore, we want to design such a matrix ® that can give us stable solutions.

Stable recovery

Suppose I is our estimate. x is a vector with k largest coefficient of x.

123 123 0
6.4 0 0.4
Suppose z = | —2.5 | , a0 = 0 |,thenxz—x,=| —2.5
193 193 0
4.5 0 4.5

The stable solution must satisfy the following:
12 = zlle, < Clla — ke,

where C is some constant.
If x has exactly k non-zero elements, then the equation above will give us the exact solution. If not,
the error will be bounded by some small value. That’s what is called stable recovery.

Basis Pursuit Algorithm(®,y)

Now we have an algorithm called Basis Pursuit, with ® and y as input. It states as following:
min  [|z[le,
Subject to: Pz =y
This is an optimization problem and can be solved by a linear program.
k-RIP
For any k-sparse vector z, if
(1= d)ll=ll7, < 1@2]17, < (1 + w217,

is satisfied with the smallest §;. Then ® will be called (k,d;)-RIP. RIP is short for Restricted Isometry
Property.



Theorem 1(by Candes, Tao 2005/2006)

If & is (2k,0a5 )-RIP with
Sop < V2 —1~0.414

that s
(1—-0.414)||z|7, < [|[®=[|7, < (1+0.414)|[2||7, V 2k-sparse z

Then, basis pursuit solution & will satisfy

I = @lle, < (e/VE)l|lz —zx]le,

This property guarantees that stable recovery would happen.

Theorem 2

If m = c1klog N then there exists mx N matriz ® that has S < V2 — 1.

If we choose an mxN independent zero-mean random Gaussian matrix satisfying the theorem above,
then that matrix with a very high probability will have the RIP. This tells us how to construct ®, but
this is not our concern here.

Proof of Theorem 1

Assume £ =z +h = h =2 —x, where h is the error vector.

We will bound from above |||,

First of all,

[zlle, = 12lle, = llz =+ Alle,

Now assume a vector v and a subset T C {1,2,--- N}. vp is the projection of v on T.
For example:

5 5
3 6
v = 4 |, T={14,5}, then v; = 0
-1 -1
2 2
”fo1 > ||‘rTO + hTo +xT§ + hT(? £y (1)
= |z, + hrylley + |z + hrglle, (2)
>z lley = lhry lley = lloTglley + Nhrs ey (3)
= llzlle, + lz7slle, = Nlomlley — 1hrylley — ez lles + Ihrglles (4)
= ||hTSH€1 < ”hTo Hfl + 2”$T5H51 (5)

where Ty is the k-largest coordinate of x.

*Reasonnings for (2)(4)

For example,



9 9 0

4 0 4

2 0 2

P 3 S — 0 P 3
1 s LTy 0 y LTy 1 ;

-1 0 -1

-9 -9 0
6 6 L0

[Elley = 191+ [4] + 12 + [3] + [1] + [ = 1[ + [ = 9] + |6]
= 1270 lley + 1275 les
**Resonings for (3)

By Triangle Inequality

Lemma

If 2,2’ are two vectors that are ki-sparse and ko-sparse respectively; moreover, the coordinates where
z,2' are non-zero do not overlap. Then

| < (I)Z,@ZI > | < 5k1+k2||z||€2‘|z/”£2

Proof
1
| < @z, 02 > | = 1 [|®z + <I>z’||?2 — || @z — @z’”i}
1
= L0+ 2, — 196 - )]
(1= bkyao)lz £ 27117, < N@(z £ 217, < (14 0kyrro) 12 £ 217,
1
=< 02,0 > | < 1 [+ Ok ama) 2+ 217, = (1= Sy 12 + 2117,
1
= §6k1+k2”2+2/”§2
Now
<0z, P2 > z 2z
= = < e @ |
[[2]lez 1127 e [2llez ™~ 1127 ]les
1 z z
< SOpypks o + —— 117
R EPFIPRC
= 5k1+k2

= | < (I)z7(bzl > | < 6/€1+7€2||Z||@2H2/H£2

Lemma proved. B



Let’s come back to the proof of Theorem 1.

Ty is the k-largest coefficients of x.

T is the k-largest in absolute value coefficients of hre.

T5 is the next k-largest in absolute value coefficients of hT(f.

Next, we will show that both ||hr,ur, || and ||h¢r,ur )| are bounded.
Note that for any j > 2,

o, lle, < Vk max value in hr, (Definition of 12 norm)

< Vk average absolute value in hr,_,

VEk
< T”thfl Hfl

Now

Hh(ToUTl)C ”52 = || Z th ”52

Jj=2

< S lihm e,

j>2
1
= *Z | [ley
\/Ejm
_ L
k

1
< ﬁ(llhnl\zl + 2[|zzg [ler) (6)

lhzelle,

5

Because

zller > ll2lle,
|21] + [22] > V/]21] + |22

2l 2 =l
Vnumber of elements
21|+ |22+ + |2
=>\/Z%—|—Z§+-~~+Z,%Z|l| ‘2| |k|
Vk

So from(6),
2
”h(ToUTl)C”b < ”hTo”Ez + ﬁ“‘xToC”h
2
= ||huryelle. < o) lle. + ﬁHxTOﬁHzl (7)

Now we have

IRy ll7, < |®h(r,ur) |17, (8)

1—dox

|®h(r,ur 17, =< ®hryury)s Ph(Toury) >
=< CI)h(ToUTl)v (ID(h — h(TouTl)C) >



Since Ph=P(Z —2) =Pz —Px=y—y =0

= | ®hir,ur) I7, =< Ph(ryury), —Ph(ryuT)e >
=< ®h(pury), — »_ Phr, >
Jj=>2
< | < ‘I’hTo,—Z(I)th > | + I < q’th,—Z(I)th > |
j=2 i>2
<Y [l < ®hy, Oha, > |+ | < Bhyy, Phr, > |]
j=2
< Z(§2k||hT(} Hfz ||hT1 lle> + b2k llhr, Hfz Hth ||Z2)

Jj=2

Since v/a + Vb < \/2(a + b)

2
= | @h(ryur)ll7, < dar2llhryurylles (1herourlles + ﬁllxnﬂlel)

1

2
from (8) = |[h(r,ury |, [ [52k2||h(TouT1)||22(||h(TouT1)||42 + ﬁHfUTgHel)

V202, 2
1hryurlle. (1 — 1= 5%) < ﬁ”xT&Hel)
1 2
Ihrour lle. < T&kﬁ“xm”el)
(1- 135 )
2%

Alle, < 1hcrourlle. + 1Reoure lles

2
= 2||h(yury)elle, + ﬁHngHzl

2 2
from (9) =< (————— +1)—||@7e
( \/5(52]@ )\/E” 75 ||@1
(1————)
1 — 6o
= & = 2lley < (——e— + )|l —
T—a - — ||z -2
= V2501, vk 2l
(1——)
1 — o,
2 . ..
where| ——————— + 1| is positive for any o, > V2 -1
V2021
(1————)
1 — 0o
QED (End of the Proof for Theorem 1)



