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Review of Compressed Sensing

Consider a general linear measurement process that produces an m × 1 observation vector y in terms
of a N × 1 signal vector x and the columns of a m × N(m � N) measurement matrix Φ. It can be
expressed as

Φx = y (1)

It is noted that the signal vector x is an approximately k-sparse vector which has at most k(� N)
non-zero entries.

Basic Pursuit

Given y and Φ, recovery of the unknown signal vector x can be pursued by finding the sparsest estimate
of x which has the constraint Φx = y, i.e.,

minimize
x

||x||l0
subject to Φx = y.

However, this is an NP-hard problem. Convex relaxation methods cope with the intractability of the
above formulation by approximating the l0 norm by the convex l1 norm. This is a well-known algorithm
which is called basic pursuit. The above formulation is changed to

minimize
x

||x||l1
subject to Φx = y.

(2)

Many linear programmings can solve this problem, such as the simplex method or interior point methods.

Stable Recovery and Restricted Isometry Property (RIP)

The RIP imposes that there exists a 0 < δ2k < 1 such that for any z that has at most 2k nonzero entries,

(1− δ2k)||z||2l2 ≤ ||Φz||2l2 ≤ (1 + δ2k)||z||2l2 (3)

Candes et al. (2006) have shown that if Φ satisfies RIP with δ2k ≤
√

2 − 1, then the solution x̂ to
equation (2) will achieve the stable recovery,

||x̂− x||2l2 ≤
c√
k
||x̂− xk||2l1 , (4)

where xk is the restriction of x to its k largest entries.

Design Good Measurement Matrices Φ

One of main issues is to find a matrix Φ with RIP: δ2k <
√

2 − 1. Given the N × 1 vector x and
m×N(m� N) measurement matrix Φ, we denote a m× 2K matrix ΦI , and a 2k × 1 vector z = xI ,
where I ⊆ {1, · · · , N}, |I| = 2k. Since δ2k <

√
2− 1, the RIP becomes as the following:

0.586 = (1− δ2k) ≤
||Φz||2l2
||z||2l2

≤ (1 + δ2k) = 1.414. (5)
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We want any 2k columns of Φ satisfying the above inequalities (5). Actually, (5) is also equivalent to

0.586 ≤ eigenvalues of ΦTI ΦI ≤ 1.414. (6)

or

0.586 ≤ sigular values of ΦI ≤ 1.414. (7)

But the question is what kind of matrix Φ has this property of (7)?
The answer is that the matrix Φ can be a random matrix chosen in the following way:

Φ =
1√
m

φ11 · · · φ1N
...

. . .
...

φm1 · · · φmN

 ,where φij
iid∼ N (0, 1). (8)

with high probability for any I such that ΦI satisfies

0.586 ≤ eigenvalues of ΦTI ΦI ≤ 1.414.

In particular the high probability is 1− e−αm, for some α > 0.
Then,

Pr(RIP-2k isn’t satisfied) (9)

= Pr(∃ a set of 2k columns for which (7) is not satisfied) (10)

≤
(
N

2k

)
e−αm (11)

= (
Ne

2k
)
2k

e−αm (12)

= e2k log (Ne2k )−αm (13)

if αm ≥ 2 · 2k log (
Ne

2k
) (14)

≤ e
−αm

2 → 0 as m→∞ (15)

In summary, suppose that the entries of the m × 2k matrix ΦI are i.i.d. Gaussian with zero mean and
variance 1

m . Then, with high probability, Φ satisfies the required RIP condition for stable recovery to
hold, provided that

m >
4

α
k log (

Ne

2k
). (16)

Moreover, sensing matrices whose entries are iid from a Bernoulli distribution (+ 1√
m

with prob. 1/2

and − 1√
m

with prob. 1/2), columns normalized to a unit norm, also obey the RIP given equation (16).

It is noted that since m > 4
αk log (Ne2k ), the observation signal’s dimension is m = O(k log N

k ), while the
dimension of input signal is N .

Differential Encoding

In many sources we are interested in, the sampled source output {xn} does not change a lot from one
sample to the next. This means that the variance of the sequence of difference {dn = xn − xn−1} are
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Figure 1: Compressed sensing

substantially smaller than that of the source output sequence. In other words, for the correlated data
the distribution of dn is highly peaked at zero. It is useful to encode the difference from the sample to
the next rather than encoding the actual sample values since the variance of quantization error in the
differences is less than in the actula output samples. This technque is called differential encoding.

Quantize with Differential Encoding

Consider a sequence {xn} in Figure 2. A difference sequence {dn} is generated by taking the difference

xn − xn−1. The difference sequence is quantized to obtain the sequence {d̂n}. So,

d0 = x0 (17)

d1 = x1 − x0 (18)

d2 = x2 − x1 (19)

... (20)

dn = xn − xn−1. (21)

The above equations can be written as a matrix form, i.e.,
1
−1 1

−1 1
. . .

−1 1




x0

...

xn

 =


d0

...

dn

 or


1
1 1
1 1 1
...

...
. . .

. . .

1 1 · · · 1 1




d0

...

dn

 =


x0

...

xn

 (22)

And

d̂n = Q[dn] = dn + qn, where qn is the quantization error. (23)

At the receiver, the reconstructed sequence {x̂n} is obtained by adding d̂n to the previous recon-
structed value x̂n−1 :

x̂n = x̂n−1 + d̂n. (24)
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Figure 2: Output samples {xn} and difference samples {dn}

Let us assume that both transmitter ans receiver start with the same value x0, that is, x̂0 = x0. Then,
follow the quantization and reconstruction process:

x̂0 = d0 + q0 (25)

x̂1 = x̂0 + d̂1 = d0 + q0 + d1 + q1 = x1 + q0 + q1 (26)

x̂2 = x̂1 + d̂2 = d0 + d1 + q0 + q1 + d2 + q2 = x2 + q0 + q1 + q2 (27)

... (28)

x̂n = d0 + d1 + · · ·+ dn + q0 + q1 + · · ·+ qn = xn +

n∑
i=0

qi (29)

So, at the ith iteration we get

x̂i = xi +

i∑
j=0

qj . (30)

We can see that the quantization error accumulates as the process continues. According to central limit
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Figure 3: Quantizer of differential encoding

theorem, the sum of these quantization error is Gaussian noise and its mean is zero, but in fact, before
that happens, the finite precision of machines causes the reconstructed value to overflow.
Therefore, instead of dn = xn−xn−1, we use dn = xn− x̂n−1. By use of this new differencing operation,
we repeat the quantization and reconstruction process. Assume that x̂0 = x0,

d1 = x1 − x0 (31)

d̂1 = d1 + q1 (32)

x̂1 = x0 + d̂1 = x0 + d1 + q1 = x1 + q1 (33)

d2 = x2 − x̂1 (34)

d̂2 = d2 + q2 (35)

x̂2 = x̂1 + d̂2 = x̂1 + d2 + q2 = x2 + q2 (36)

So, at the ith iteration, we have

x̂i = xi + qi, (37)

and there is no accumulation of the quantization error. The quantization error qi is the quantization
noise incurred by the quantization of the ith difference and it is significantly less than the quantization
error for the original sequence. Thus, this procedure leads to an overall reduction of the quantization
error and then we can use fewer bits with a differential encoding to attain the same distortion.

Subband Coding

Consider the sequence {xn} in the Figure 4. We see that while there is a significant amount of sample-to-
sample variations, there’s also an underlying long-term trend shown by the blue line that varied slowly.
One way to extract this trend is to use moving window to average the sample value. Let us use a window
of size two and generate a new sequence {yn} by averaging neighboring values of xn:

yn =
xn + xn−1

2
. (38)

The consecutive values of yn will be closer to each other than the consecutive values of xn. Thus, the
{yn} can be coded more efficiently using differential encoding than the sequence {xn}. However, we
want to encode the sequence {xn}, not {yn}. Therefire, we need another sequence {zn}:

zn = xn − yn = xn −
xn + xn−1

2
=
xn − xn−1

2
. (39)
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Figure 4: A rapidly changong source output that contains a long-run component with slow variations.

Then, the sequences {yn} and {zn} can be coded independently of each other.
Notice that we use the same number of bits for each value of yn and zn, but the number of elements in
each of the sequences {yn} and {zn} is the same as the number of elements in the original sequence {xn}.
Although we are using the same number of bits of bits per sample, we are transmitting twice as many
samples ans doubling the bit rate. We can avoid this by sending every other value of yn and zn. Let’s
divide the sequences {yn} into {y2n} and {y2n−1}, and similarly, divide {zn} into {z2n} and {z2n−1}. If
we transmit either the even-numbered subsequencse or odd-numbered subsequences, we would transmit
only as many elements as in the original sequence.
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