
EE5585 Data Compression April 18, 2013

Lecture 23
Instructor: Arya Mazumdar Scribe: Trevor Webster

Differential Encoding

Suppose we have a signal that is slowly varying. For instance, if we were looking at a video frame by
frame we would see that only a few pixels are changing between subsequent frames. In this case, rather
than encoding the signal as is, we would first sample it and look at the difference signal and encode this
instead:

dn = xn − xn−1

This dn would then need to be quantized, creating an estimate (d̂n) which would contain some quanti-
zation noise (qn)

Q(dn) = d̂n

d̂n = dn + qn

What we are truly interested in recovering are the values of x. Unfortunately, the quantization error will
get accumulated in the value of x. The reason being, that the operation forming dn is of the following
matrix form

1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
...

... 0
. . .

. . . 0
0 0 0 0 −1 1

Inverting this matrix we obtain the accumulator matrix

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
...

...
...

...
. . . 0

1 1 1 1 . . . 1

1

If you make an error in the dn the noise in xn will be accumulated as follows

x̂n = x0 +
∑n
i=0 qn

The quantization noise qn can be positive or negative and in the long term we expect it to add up to
zero, but what happens with high probability is that the range of the error becomes too great for us to
handle. Therefore, we adopt the following strategy

dn = xn − x̂n−1

We can then implement this technique using the following encoder

The corresponding decoder will look as follows

This encoder/decoder scheme shown is governed by the relationship introduced previously. Rearranged
it looks as follows

x̂n = d̂n + x̂n−1

Walking through an example using this scheme we would have the following sequence

x̂0 = x0 (1)

x̂1 = d̂1 + x̂0 (2)

= d1 + q1 + x̂0 (3)

= x1 + q1 (4)

x̂2 = d̂2 + x̂1 (5)

= d2 + q2 + x̂1 (6)

= x2 + q2 (7)

(8)

2

We see that in general

x̂n = d̂n + x̂n−1

= dn + qn + x̂n−1

= xn + qn

Notice that while the quantization noise qn was originally accumulated in xn, by adopting the aforemen-
tioned strategy we have made each estimate of xn dependent on only its own respective quantization
error. This type of method is known as a Differential Pulse Coded Modulation Scheme (DPCM).

Differential Pulse Coded Modulation Scheme

Generalizing the method described above, we see that we use a previous predicted value of xn, denoted
by pn, to construct the difference sequence which is then quantized and used to predict the current value
of xn. Furthermore, the predicted xn is operated on by a Predictor (P) which provides an estimate of
the previous xn in order to recursively find the difference signal. This is shown in the respective encoder
and decoder figures below

Formalizing this procedure, we write

pn = f(x̂n−1, ˆxn−2, ˆxn−3, . . . , x̂0)
dn = xn − pn

= xn − f(x̂n−1, ˆxn−2, ˆxn−3, . . . , x̂0)

We are hopeful that the values of dn are much smaller than the values of xn, given that it is a difference
signal for a slowly varying signal. So if we were looking at the energy in dn we would guess it to be
much smaller than the energy in xn. When we are dealing with the energy of a signal it is analogous to
its variance, which we define as follows
So if we were to optimize something in this DPCM scheme, we would want to find f such that we
minimize the energy in dn

3

Find f(x̂n−1, ˆxn−2, ˆxn−3, . . . , x̂0) such that σd
2 is minimized.

σd
2 = E[(xn − f(x̂n−1, ˆxn−2, ˆxn−3, . . . , x̂0))2]

Since it is necessary to know previous estimates of xn in order to calculate f , but we also need to know
f in order to calculate previous estimates, we find ourselves in a roundabout and difficult situation.
Therefore, we make the following assumption. Suppose,

pn = f(xn−1, xn−2, xn−3, . . . , x0)

In other words, we design the predictor assuming there is no quantization. This is called a Fine Quan-
tization assumption. In many cases this makes sense because the estimate of xn is very close to xn, as
the difference signal is very small, and the quantization error is even smaller. Now we have

σd
2 = E[(xn − f(xn−1, xn−2, xn−3, . . . , x0)2]

Considering the limitations on f , we note that f can be any nonlinear function. But we often don’t know
a way to implement many nonlinear functions. So we assume further that the predictor f is linear and
seek the best linear function. By definition, a linear function expressing f(xn−1, xn−2, xn−3, . . . , x0) will
merely be a weighted sum of previous values of xn. Assuming we are looking back through a “window”
at the first N samples of a signal, the predictor can then be expressed as follows

pn =
∑N
i=1 aixn−i

Now the variance of dn becomes

σd
2 = E[(xn −

∑N
i=1 aixn−i)

2]

Now we need to find the coefficients ai which will minimize this variance. To do this we take the
derivative with respect to ai and set it equal to zero.

∂σd
2

∂a1
= E[−2(xn −

∑N
i=1 aixn−i)xn−1]

= −2E[xnxn−1 −
∑N
i=1 aixn−ixn−1] = 0

...
∂σd

2

∂aj
= 2E[xnxn−j −

∑N
i=1 aixn−ixn−j] = 0

By setting the derivative above to zero and rearranging, we see that the coefficients we are looking for
are dependent upon second order statistics

E[xnxn−j] =
∑N
i=1 aiE[xn−ixn−j]

We make the assumption that x is stationary, wich means that the correlation between two values of xn
is only a function of the lag between them. Formally, we denote this by the fact that the expectation of
the product of two values of xn separated in time by k samples (also known as the autocorrelation) is
purely a function of the time difference, or lag, k

E[xnxn+k] = Rxx(k)

The relationship governing the coefficients ai can then be rewritten using this notation as

Rxx(j) =
∑N
i=1 aiRxx(i− j) for 1 ≤ j ≤ N

Thus, looking at the autocorrelation functions for each j we have

4

Rxx(1) =
∑N
i=1 aiRxx(i− 1)

Rxx(2) =
∑N
i=1 aiRxx(i− 2)

...

Rxx(N) =
∑N
i=1 aiRxx(i−N)

Now that we have N equations and N unknowns we can solve for the coefficients ai in matrix form
Rxx(0) Rxx(1) . . . Rxx(N − 1)

Rxx(1) Rxx(0)
...

...
. . .

...
Rxx(N − 1) . . . Rxx(0)

a1
a2
...
an

 =

Rxx(1)
Rxx(2)

...
Rxx(N)

Rewriting this more compactly where R is a matrix and a and P are column vectors we have

Ra = P
a = R−1P

Thus, we see in order to determine the coefficients for a linear predictor for DPCM we must invert the
autocorrelation matrix and multiply by the autocorrelation vector P . Once we have determined the
coefficients we can design the predictor necessary for our DPCM scheme.

Now suppose that our signal is rapidly changing as shown below

We see that since the signal varies significantly over short intervals the difference signal dn would be
very large and DPCM might not be a very good scheme. Suppose instead that we passed this rapidly
changing signal through both a low pass and high pass filter as shown below

Low Pass High Pass

5

Let us create two signals based off the values of xn to emulate this low pass and high pass response. Let
yn represent an averaging operation that smoothes out the response of xn (low pass) and let zn represent
a difference operation which emulates the high frequency variation of xn (high pass).

yn = xn+xn−1

2

zn = xn−xn−1

2

Applying this method for each xn we would send or store two values (yn and zn). This is unnecessary.
Instead, what we can do is apply the following strategy

y2n = x2n+x2n−1

2

z2n = x2n−x2n−1

2

Then we can recover both even and odd values of xn as follows

y2n + z2n = x2n
y2n − z2n = x2n−1

This process of splitting signal components into multiple portions is called decimation and can be
extrapolated out further until a point at which you perform bit allocation. This method is called
sub-band coding. We note that DPCM is well suited for the yn low pass components whereas another
technique would likely suite the zn high pass components more effectively.

Distributed Storage

Today’s storage systems often utilize distributed storage. In such a system, data will be stored in many
separate locations on servers. Suppose we want to do data compression in such a system. What we
would like to do is query a portion of our data set - this could be 1 page out of an entire document for
instance. Rather than having to sift through the entire data set to find 1 page, we would like to be able
to go directly there. In other words, we would like such a system to be query efficient. For this reason
suppose we divide data out into sections, such as by page, before compressing it in an effort to preserve
information about where the data came from. Such a partitioning of a data set is shown below

(101|010|011| . . . | . . .)

Next we define query efficiency as the # of bits we need to process to get back a single bit. Suppose
that the partitioned bit stream shown above has length N and we have partitioned it in chunks of m = 3
bits. In this instance, the query efficiency would be m.

Suppose we have a binary vector of length n represented by x which we can compress to H(x) + 1. Our
compression would then be

Compression Rate =
H(xn

1)+1
n

=
H(xn

1)
n + 1

n

= nH(x)
n + 1

n
= H(x) + 1

n

Now, in the case of our previous example regarding query efficiency. The compression rate will be

Rate = H(x) + 1
m

= H(x) + 1
query efficiency

6

If we were able to compress the file as a whole the query efficiency would be huge and the Compression
Rate would be

Rate = H(x) + 1
N

Difference in rate from optimal = 1
Query Efficiency

Thus we see there is a trade off between Compression Rate and Query Efficiency. Let us end the lecture
by propose a research problem were we find a better relation between query efficiency and redundancy.

7

