
EE5585 Data Compression February 7, 2013

Lecture 6
Instructor: Arya Mazumdar Scribe: Joshua Krist

Main Topic: Proof that Lampel-Ziv is Optimal

Lampel-Ziv background

Lampel-Ziv is a universal code, and as such does not depend on foreknowledge of the occurrence prob-
ablities of the symbols being sent. The Lampel-Ziv code has two main types- a ”sliding window” and a
”tree structure” algorithm. The proof will focus on the ”tree structure” algorithm.

To encode a message using the Lampel-Ziv algorithm you must:

1) Start at the beginning and break the message into unique chunks (called phrases) truncating each
chunk whenever a unique phrase is found.

For Example:
The Message: 0100011101001001110011010100... would be broken into the following phrases
Phrases: 0, 1, 00, 01, 11, 010, 0100, 111, 001, 10, 101, 0...

2) Each phrase is then encoded with a prefix followed by a final bit. The prefix is the index of a
previous phrase that contains the first part of the current phrase, with the exception of the last bit,
which is contained in the last bit part of the encoded phrase. A zero is used to indicate that there is no
previous phrase.

Consider the above example: 0 1 00 01 11 010 0100 111 001 10 101 0...
The binary encoding would be: (0,0) (0,1) (1,0) (1,1) (2,1) (4,0) (6,0) (5,1) (3,1) (2,0) (10,1) ...

Some Notes:
Let c(n) be the number of distinct phrases
The size of each encoded phrase would then be: log c(n) + 1
To Decode: Just take the encoded message and evaluate in blocks of log c(n) + 1, where the first log c(n)
bits is the reference to a previous phrase and the last bit is the last bit of the decoded phrase.

Proof: Lampel-Ziv is Optimal

Notes on proof:
Length of phrase is log c(n) + 1
Length of compressed file c(n)(log c(n) + 1)

Rate of compression c(n)(log c(n)+1)
n

For this proof we will assume that all the elements in the message are independently identically dis-
tributed (i.i.d.)
Note: there is a broader proof that deals with a stationary ergodic case, but that will not be dealt with
here.

Let x1, x2, ..., xn be i.i.d.

Claim: c(n)(log c(n)+1
n converges to H(X) as n → ∞
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Lemma 1: − 1
n log p(x1, x2, ..., xn) converges to H(X) in probablity

This shows the Asymptotic Equipartition Property (AEP)

Let x1, x2, ..., xn be i.i.d.

Claim: − 1
n log p(x1, x2, ..., xn) converges to H(X) in probability

To show this convereance it needs to be shown that | − 1
n log2 p(x1, x2, ..., xn)−H(x)| < ε,∀ε > 0

Because x1, x2, ..., xn are i.i.d. it can be split thus − 1
n log2 p(x1, x2, ..., xn) = − 1

n

∑n
i=1 log2 p(xi)

Let yi = log2 p(xi) note this is also a random variable and i.i.d. This leads to

− 1
n log2 p(x1, x2, ..., xn) = − 1

n

∑n
i=1 log2 p(xi) = − 1

n

∑n
i=1 yi

Using the Weak Law of Large Numbers we can arrive at

− 1
n log2 p(x1, x2, ..., xn) = − 1

n

∑n
i=1 yi = −EY in probability

= E log2 p(X)

= −
∑
x∈X p(X = x) log2 p(X= x) = H(X)

Lemma 2: c(n) ≤ n
(1−εn) log(n) where εn → 0 as n→∞

Let n be the length of the binary sequence and c(n) be the number of distinct phrases

The sum of the length of distinct phrases that are less then or equal to k is
∑k
j=1 j2

j

This can be summed up like a geometric series where
∑k
i=1 x

i = xk+1−x
x−1∑k

j=1 jx
j = (k+1)xk−1

x−1 − xx
k+1−x
(x−1)2

placing x = 2 into the equation gives
∑k
j=1 j2

j = 2[(k + 1)2k − 1− 2n+1 + 2]

= 2[(k − 1)2k + 1]

= (k − 1)2k+1 + 2

≡ nk

now suppose n = nk

then the maximum number of distinct phrases c(n) =
∑k
j=1 2j = 2k+1 − 2 ≤ 2k+1 ≤ nk

k−1

for some k nk ≤ n ≤ nk+1

So c(n) ≤ c(nk) + n−nk

k+1 ≤
nk

k−1 + n−nk

k+1 ≤
n
k−1
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nk ≤ n = 2k+1 ≤ (k − 1)2k+1 + 2

k ≤ log(n)− 1

n ≤ nk+1 = k2k+2 + 2 ≤ log(n− 1)2k+2 + 2

2k+2 ≥ n−2
log(n)−1

k − 1 ≥ log( n−2
log(n)−1 )− 3

c(n) ≤ n
log n−2

log(n)−1
−3

the denominator expanded out is: log(n− 2)− log(log n− 1)− 3

= (log n)[ log(n−2)log(n) −
log(log(n−1))−3

log(n) ]

≥ (log n)[ log(n)−1)log(n) −
log(log(n−1))−3

log(n) ]

= (log n)(1− log(log(n−1)−4
log(n) ) = (log n)(1− εn)

Note: ε→ 0 as n→∞

Therefore c(n) ≤ n
(1−εn) log(n)

Statement of Lemma 3

Lemma 3 is not proven here, and will be proved in the next set of notes. However, it is stated here for
reference.

Given that z is a random varaiable that takes a non-negative integer value, with an expected value
of E(z) = µ

Then H(z) ≤ H(g) where H(g) is a geometric random variable with an expected value of E(g) = µ

Main Proof: c(n)(log c(n)+1
n converges to H(x) as n → ∞

Starting with − 1
n log p(x1, x2, ..., xn) and x1, x2, ..., xn is i.i.d.

Let them be parsed as described by the Lampel-Ziv method above Let the distinct phrases be called
S1, S2, ..., Sc(n)

So that − 1
n log p(x1, x2, ..., xn) = − 1

n log p(S1, S2, ..., Sc(n))

= − 1
n log

∑c(n)
i=1 p(Si)

= − 1
n

∑c(n)
i=1 log p(Si)

Now by clumping phrases of the same length we can write
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= − 1
n

∑lmax

l=1

∑
∗ log p(S) where

∑
∗ is the summation of phrases that are of length l

= − 1
n

∑lmax

l=1 cl
∑
∗

1
cl

log p(S)

where, cl is the number of phrases of length l. By using Jensen’s Inequality and the fact that the
function is concave we can state that

≥ − 1
n

∑lmax

l=1 cl log
∑
∗

1
cl
p(S)

The rest of the proof will be finished in the next set of notes.
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