EE5585 Data Compression February 7, 2013

Lecture 6

Instructor: Arya Mazumdar Scribe: Joshua Krist

Main Topic: Proof that Lampel-Ziv is Optimal

Lampel-Ziv background

Lampel-Ziv is a universal code, and as such does not depend on foreknowledge of the occurrence prob-
ablities of the symbols being sent. The Lampel-Ziv code has two main types- a "sliding window” and a
"tree structure” algorithm. The proof will focus on the ”tree structure” algorithm.

To encode a message using the Lampel-Ziv algorithm you must:

1) Start at the beginning and break the message into unique chunks (called phrases) truncating each
chunk whenever a unique phrase is found.

For Example:
The Message: 0100011101001001110011010100... would be broken into the following phrases
Phrases: 0, 1, 00, 01, 11, 010, 0100, 111, 001, 10, 101, O...

2) Each phrase is then encoded with a prefix followed by a final bit. The prefix is the index of a
previous phrase that contains the first part of the current phrase, with the exception of the last bit,
which is contained in the last bit part of the encoded phrase. A zero is used to indicate that there is no
previous phrase.

Consider the above example: 0 1 00 01 11 010 0100 111 001 10 101 0...
The binary encoding would be: (0,0) (0,1) (1,0) (1,1) (2,1) (4,0) (6,0) (5,1) (3,1) (2,0) (10,1) ...

Some Notes:

Let ¢(n) be the number of distinct phrases

The size of each encoded phrase would then be: logc(n) + 1

To Decode: Just take the encoded message and evaluate in blocks of log ¢(n) 4 1, where the first log ¢(n)
bits is the reference to a previous phrase and the last bit is the last bit of the decoded phrase.

Proof: Lampel-Ziv is Optimal

Notes on proof:
Length of phrase is logc(n) + 1
Length of compressed file ¢(n)(logc(n) + 1)
Rate of compression M
For this proof we will assume that all the elements in the message are independently identically dis-
tributed (i.i.d.)
Note: there is a broader proof that deals with a stationary ergodic case, but that will not be dealt with
here.

Let x1, xo,...,z, be ii.d.

c(n)(logc(n)+1

Claim: converges to H(X) as n — oo



Lemma 1: —% log p(x1,x9, ..., z,) converges to H(X) in probablity
This shows the Asymptotic Equipartition Property (AEP)

Let z1, 29, ..., 2, beii.d.

Claim: —% log p(z1, z2, ..., ) converges to H(X) in probability

To show this convereance it needs to be shown that | — £ log, p(z1, 22, ..., z,) — H(z)| < €,Ve > 0

Because 1, x9, ..., x, are i.i.d. it can be split thus —% logy p(w1, T2, .. Tn) = — 7 ?:1 logy p(x;)

Let y; = log, p(x;) note this is also a random variable and i.i.d. This leads to

—%bgz p(x1, @25y Tn) = — 5 i1 logy p(x;) = _% i1 Yi

Using the Weak Law of Large Numbers we can arrive at
—Llog, p(z1, 22, ..., ) = =2 37" | y; = —EY in probability
= E'log, p(X)

= zex P(X =) log, p(X= x) = H(X)

Lemma 2: ¢(n) < g—

mWhereﬁn—)()asn%OO

Let n be the length of the binary sequence and c(n) be the number of distinct phrases

The sum of the length of distinct phrases that are less then or equal to k is 25:1 j2J

Zk+17$

This can be summed up like a geometric series where ) ;| 2* = ¥—

k . ] (k+1):vk—1 ;1;k+1—3;
J = _
Zj:l Jr o] T Z_1)2

placing x = 2 into the equation gives Z?Zl j20 =2[(k +1)2F — 1 — 2n+1 4 9]
= 2[(k — 1)2F +1]
= (k—1)2F1 42
= ny
NOW SUppose n = 7,
k-1

then the maximum number of distinct phrases c(n) = 2?21 20 = gktl _ 9 < okF1 < i

for some k ni, <n < ngyq

S0 c(n) < e(m) + U < i+ A <



ng <n =21 < (k—1)2k1 42
k <log(n) —1

n < nppi = k282 +2 <log(n — 1)28+2 + 2

2k+2 > n—2

= log(n)—1
k=12 log(rhmiy) — 3
c(n) < +_3

— 1og oatm o1

the denominator expanded out is: log(n —2) —log(log n — 1) — 3

o log(n—2) log(log(n—1))—3
= (log [ — E )

log(n)— log(log(n—1))—
> (log n)] ifg()ml) — el i(g(ml)) °)

= (log n)(1 — “EUSERSD) — (log n)(1 - e,)
Note: ¢ > 0 as n — oo

Therefore ¢(n) < T oam)

Statement of Lemma 3

Lemma 3 is not proven here, and will be proved in the next set of notes. However, it is stated here for
reference.

Given that z is a random varaiable that takes a non-negative integer value, with an expected value
of E(z) =

Then H(z) < H(g) where H(g) is a geometric random variable with an expected value of E(g) = u

. I 1
Main Proof: M converges to H(x) as n — oo
Starting with f% log p(x1,xa, ..., xy,) and x1, x2, ..., x, is i.1.d.

Let them be parsed as described by the Lampel-Ziv method above Let the distinct phrases be called
Sla S?a D) Sc(n)

So that f% log p(x1,xa, ..., x,) = f% log p(S1, 82, s Sen))
= L1035 p(S)
—5 i log p(S))

Now by clumping phrases of the same length we can write



max

=-1 25:1 > log p(S) where Y, is the summation of phrases that are of length [

—LIymra Y, 2log p(S)

where, ¢; is the number of phrases of length [. By using Jensen’s Inequality and the fact that the
function is concave we can state that

lmaz
> -2 yr alog Y, £p(S)

The rest of the proof will be finished in the next set of notes.



