Lecture 6

Instructor: Arya Mazumdar
Scribe: Joshua Krist

Main Topic: Proof that Lampel-Ziv is Optimal

Lampel-Ziv background

Lampel-Ziv is a universal code, and as such does not depend on foreknowledge of the occurrence probablities of the symbols being sent. The Lampel-Ziv code has two main types- a "sliding window" and a "tree structure" algorithm. The proof will focus on the "tree structure" algorithm.

To encode a message using the Lampel-Ziv algorithm you must:

1) Start at the beginning and break the message into unique chunks (called phrases) truncating each chunk whenever a unique phrase is found.

For Example:
The Message: 0100011101001001110011010100... would be broken into the following phrases
Phrases: 0, 1, 00, 01, 11, 010, 0100, 111, 001, 10, 101, $0 \ldots$
2) Each phrase is then encoded with a prefix followed by a final bit. The prefix is the index of a previous phrase that contains the first part of the current phrase, with the exception of the last bit, which is contained in the last bit part of the encoded phrase. A zero is used to indicate that there is no previous phrase.

Consider the above example: $010001110100100111001101010 \ldots$
The binary encoding would be: $(0,0)(0,1)(1,0)(1,1)(2,1)(4,0)(6,0)(5,1)(3,1)(2,0)(10,1) \ldots$
Some Notes:
Let $c(n)$ be the number of distinct phrases
The size of each encoded phrase would then be: $\log c(n)+1$
To Decode: Just take the encoded message and evaluate in blocks of $\log c(n)+1$, where the first $\log c(n)$ bits is the reference to a previous phrase and the last bit is the last bit of the decoded phrase.

Proof: Lampel-Ziv is Optimal

Notes on proof:
Length of phrase is $\log c(n)+1$
Length of compressed file $c(n)(\log c(n)+1)$
Rate of compression $\frac{c(n)(\log c(n)+1)}{n}$
For this proof we will assume that all the elements in the message are independently identically distributed (i.i.d.)
Note: there is a broader proof that deals with a stationary ergodic case, but that will not be dealt with here.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be i.i.d.
Claim: $\frac{c(n)(\log c(n)+1}{n}$ converges to $\mathrm{H}(\mathrm{X})$ as $\mathrm{n} \rightarrow \infty$

Lemma 1: $-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ converges to $\mathbf{H}(\mathbf{X})$ in probablity

This shows the Asymptotic Equipartition Property (AEP)
Let $x_{1}, x_{2}, \ldots, x_{n}$ be i.i.d.
Claim: $-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ converges to $\mathrm{H}(\mathrm{X})$ in probability
To show this convereance it needs to be shown that $\left|-\frac{1}{n} \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)-H(x)\right|<\epsilon, \forall \epsilon>0$
Because $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. it can be split thus $-\frac{1}{n} \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i}\right)$
Let $y_{i}=\log _{2} p\left(x_{i}\right)$ note this is also a random variable and i.i.d. This leads to
$-\frac{1}{n} \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i}\right)=-\frac{1}{n} \sum_{i=1}^{n} y_{i}$
Using the Weak Law of Large Numbers we can arrive at
$-\frac{1}{n} \log _{2} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\frac{1}{n} \sum_{i=1}^{n} y_{i}=-E Y$ in probability
$=E \log _{2} p(X)$
$=-\sum_{x \in X} p(X=x) \log _{2} \mathrm{p}(\mathrm{X}=\mathrm{x})=\mathrm{H}(\mathrm{X})$
Lemma 2: $c(n) \leq \frac{n}{\left(1-\epsilon_{n}\right) \log (n)}$ where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$
Let n be the length of the binary sequence and $\mathrm{c}(\mathrm{n})$ be the number of distinct phrases
The sum of the length of distinct phrases that are less then or equal to k is $\sum_{j=1}^{k} j 2^{j}$
This can be summed up like a geometric series where $\sum_{i=1}^{k} x^{i}=\frac{x^{k+1}-x}{x-1}$
$\sum_{j=1}^{k} j x^{j}=\frac{(k+1) x^{k}-1}{x-1}-x \frac{x^{k+1}-x}{(x-1)^{2}}$
placing $\mathrm{x}=2$ into the equation gives $\sum_{j=1}^{k} j 2^{j}=2\left[(k+1) 2^{k}-1-2^{n+1}+2\right]$
$=2\left[(k-1) 2^{k}+1\right]$
$=(k-1) 2^{k+1}+2$
$\equiv n_{k}$
now suppose $\mathrm{n}=n_{k}$
then the maximum number of distinct phrases $\mathrm{c}(\mathrm{n})=\sum_{j=1}^{k} 2^{j}=2^{k+1}-2 \leq 2^{k+1} \leq \frac{n_{k}}{k-1}$
for some $\mathrm{k} n_{k} \leq n \leq n_{k+1}$
So $c(n) \leq c\left(n_{k}\right)+\frac{n-n_{k}}{k+1} \leq \frac{n_{k}}{k-1}+\frac{n-n_{k}}{k+1} \leq \frac{n}{k-1}$
$n_{k} \leq n=2^{k+1} \leq(k-1) 2^{k+1}+2$
$k \leq \log (n)-1$
$n \leq n_{k+1}=k 2^{k+2}+2 \leq \log (n-1) 2^{k+2}+2$
$2^{k+2} \geq \frac{n-2}{\log (n)-1}$
$k-1 \geq \log \left(\frac{n-2}{\log (n)-1}\right)-3$
$c(n) \leq \frac{n}{\log \frac{n-2}{\log (n)-1}-3}$
the denominator expanded out is: $\log (n-2)-\log (\log n-1)-3$
$=(\log n)\left[\frac{\log (n-2)}{\log (n)}-\frac{\log (\log (n-1))-3}{\log (n)}\right]$
$\geq(\log n)\left[\frac{\log (n)-1)}{\log (n)}-\frac{\log (\log (n-1))-3}{\log (n)}\right]$
$=(\log n)\left(1-\frac{\log (\log (n-1)-4}{\log (n)}\right)=(\log n)\left(1-\epsilon_{n}\right)$
Note: $\epsilon \rightarrow 0$ as $n \rightarrow \infty$
Therefore $c(n) \leq \frac{n}{\left(1-\epsilon_{n}\right) \log (n)}$

Statement of Lemma 3

Lemma 3 is not proven here, and will be proved in the next set of notes. However, it is stated here for reference.

Given that z is a random varaiable that takes a non-negative integer value, with an expected value of $E(z)=\mu$

Then $H(z) \leq H(g)$ where $H(g)$ is a geometric random variable with an expected value of $E(g)=\mu$

Main Proof: $\frac{c(n)(\log c(n)+1}{n}$ converges to $\mathbf{H}(\mathbf{x})$ as $\mathbf{n} \rightarrow \infty$

Starting with $-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x_{1}, x_{2}, \ldots, x_{n}$ is i.i.d.
Let them be parsed as described by the Lampel-Ziv method above Let the distinct phrases be called $S_{1}, S_{2}, \ldots, S_{c(n)}$

So that $-\frac{1}{n} \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\frac{1}{n} \log p\left(S_{1}, S_{2}, \ldots, S_{c(n)}\right)$
$=-\frac{1}{n} \log \sum_{i=1}^{c(n)} p\left(S_{i}\right)$
$=-\frac{1}{n} \sum_{i=1}^{c(n)} \log p\left(S_{i}\right)$
Now by clumping phrases of the same length we can write
$=-\frac{1}{n} \sum_{l=1}^{l_{\max }} \sum_{*} \log p(S)$ where \sum_{*} is the summation of phrases that are of length l
$=-\frac{1}{n} \sum_{l=1}^{l_{\max }} c_{l} \sum_{*} \frac{1}{c_{l}} \log p(S)$
where, c_{l} is the number of phrases of length l. By using Jensen's Inequality and the fact that the function is concave we can state that
$\geq-\frac{1}{n} \sum_{l=1}^{l_{\max }} c_{l} \log \sum_{*} \frac{1}{c_{l}} p(S)$
The rest of the proof will be finished in the next set of notes.

