EE5585 Data Compression

February 7, 2013

Lecture 6

Instructor: Arya Mazumdar

Scribe: Joshua Krist

Main Topic: Proof that Lampel-Ziv is Optimal

Lampel-Ziv background

Lampel-Ziv is a universal code, and as such does not depend on foreknowledge of the occurrence probablities of the symbols being sent. The Lampel-Ziv code has two main types- a "sliding window" and a "tree structure" algorithm. The proof will focus on the "tree structure" algorithm.

To encode a message using the Lampel-Ziv algorithm you must:

1) Start at the beginning and break the message into unique chunks (called phrases) truncating each chunk whenever a unique phrase is found.

2) Each phrase is then encoded with a prefix followed by a final bit. The prefix is the index of a previous phrase that contains the first part of the current phrase, with the exception of the last bit, which is contained in the last bit part of the encoded phrase. A zero is used to indicate that there is no previous phrase.

Consider the above example: 0 1 00 01 11 010 0100 111 001 10 101 0... The binary encoding would be: (0,0) (0,1) (1,0) (1,1) (2,1) (4,0) (6,0) (5,1) (3,1) (2,0) (10,1) ...

Some Notes:

Let c(n) be the number of distinct phrases

The size of each encoded phrase would then be: $\log c(n) + 1$

To Decode: Just take the encoded message and evaluate in blocks of $\log c(n) + 1$, where the first $\log c(n)$ bits is the reference to a previous phrase and the last bit is the last bit of the decoded phrase.

Proof: Lampel-Ziv is Optimal

Notes on proof:

Length of phrase is $\log c(n) + 1$

Length of compressed file $c(n)(\log c(n) + 1)$

Rate of compression $\frac{c(n)(\log c(n)+1)}{r}$

For this proof we will assume that all the elements in the message are independently identically distributed (i.i.d.)

Note: there is a broader proof that deals with a stationary ergodic case, but that will not be dealt with here.

Let $x_1, x_2, ..., x_n$ be i.i.d.

Claim: $\frac{c(n)(\log c(n)+1)}{n}$ converges to H(X) as $n \to \infty$

Lemma 1: $-\frac{1}{n}\log p(x_1, x_2, ..., x_n)$ converges to H(X) in probability

This shows the Asymptotic Equipartition Property (AEP)

Let $x_1, x_2, ..., x_n$ be i.i.d.

Claim: $-\frac{1}{n}\log p(x_1, x_2, ..., x_n)$ converges to H(X) in probability

To show this convergence it needs to be shown that $|-\frac{1}{n}\log_2 p(x_1, x_2, ..., x_n) - H(x)| < \epsilon, \forall \epsilon > 0$ Because $x_1, x_2, ..., x_n$ are i.i.d. it can be split thus $-\frac{1}{n}\log_2 p(x_1, x_2, ..., x_n) = -\frac{1}{n}\sum_{i=1}^n \log_2 p(x_i)$

Let $y_i = \log_2 p(x_i)$ note this is also a random variable and i.i.d. This leads to

 $-\frac{1}{n}\log_2 p(x_1, x_2, ..., x_n) = -\frac{1}{n}\sum_{i=1}^n \log_2 p(x_i) = -\frac{1}{n}\sum_{i=1}^n y_i$

Using the Weak Law of Large Numbers we can arrive at

 $-\frac{1}{n}\log_2 p(x_1, x_2, \dots, x_n) = -\frac{1}{n}\sum_{i=1}^n y_i = -EY \text{ in probability}$ $= E\log_2 p(X)$ $= -\sum_{x \in X} p(X = x)\log_2 p(X = x) = H(X)$

Lemma 2:
$$c(n) \leq \frac{n}{(1-\epsilon_n)\log(n)}$$
 where $\epsilon_n \to 0$ as $n \to \infty$

Let n be the length of the binary sequence and c(n) be the number of distinct phrases

The sum of the length of distinct phrases that are less then or equal to k is $\sum_{j=1}^{k} j2^{j}$ This can be summed up like a geometric series where $\sum_{i=1}^{k} x^{i} = \frac{x^{k+1}-x}{x-1}$ $\sum_{j=1}^{k} jx^{j} = \frac{(k+1)x^{k}-1}{x-1} - x\frac{x^{k+1}-x}{(x-1)^{2}}$ placing x = 2 into the equation gives $\sum_{j=1}^{k} j2^{j} = 2[(k+1)2^{k} - 1 - 2^{n+1} + 2]$ $= 2[(k-1)2^{k} + 1]$ $= (k-1)2^{k+1} + 2$ $\equiv n_{k}$ now suppose n = n_{k}

then the maximum number of distinct phrases $c(n) = \sum_{j=1}^{k} 2^j = 2^{k+1} - 2 \le 2^{k+1} \le \frac{n_k}{k-1}$ for some k $n_k \le n \le n_{k+1}$ So $c(n) \le c(n_k) + \frac{n-n_k}{k+1} \le \frac{n_k}{k-1} + \frac{n-n_k}{k+1} \le \frac{n}{k-1}$

$$\begin{split} n_k &\leq n = 2^{k+1} \leq (k-1)2^{k+1} + 2 \\ k &\leq \log(n) - 1 \\ n &\leq n_{k+1} = k2^{k+2} + 2 \leq \log(n-1)2^{k+2} + 2 \\ 2^{k+2} &\geq \frac{n-2}{\log(n)-1} \\ k - 1 \geq \log(\frac{n-2}{\log(n)-1}) - 3 \\ c(n) &\leq \frac{n}{\log \frac{n-2}{\log(n)-1} - 3} \\ \text{the denominator expanded out is: } \log(n-2) - \log(\log n - 1) - 3 \end{split}$$

$$= (\log n) \left[\frac{\log(n-2)}{\log(n)} - \frac{\log(\log(n-1)) - 3}{\log(n)} \right]$$

$$\ge (\log n) \left[\frac{\log(n) - 1}{\log(n)} - \frac{\log(\log(n-1)) - 3}{\log(n)} \right]$$

$$= (\log n) \left(1 - \frac{\log(\log(n-1) - 4)}{\log(n)} \right) = (\log n) (1 - \epsilon_n)$$

Note: $\epsilon \to 0$ as $n \to \infty$

Therefore $c(n) \leq \frac{n}{(1-\epsilon_n)\log(n)}$

Statement of Lemma 3

Lemma 3 is not proven here, and will be proved in the next set of notes. However, it is stated here for reference.

Given that z is a random varaiable that takes a non-negative integer value, with an expected value of $E(z) = \mu$

Then $H(z) \leq H(g)$ where H(g) is a geometric random variable with an expected value of $E(g) = \mu$

Main Proof: $\frac{c(n)(\log c(n)+1)}{n}$ converges to H(x) as $n \to \infty$

Starting with $-\frac{1}{n}\log p(x_1, x_2, ..., x_n)$ and $x_1, x_2, ..., x_n$ is i.i.d.

Let them be parsed as described by the Lampel-Ziv method above Let the distinct phrases be called $S_1, S_2, ..., S_{c(n)}$

So that
$$-\frac{1}{n}\log p(x_1, x_2, ..., x_n) = -\frac{1}{n}\log p(S_1, S_2, ..., S_{c(n)})$$

= $-\frac{1}{n}\log\sum_{i=1}^{c(n)} p(S_i)$
= $-\frac{1}{n}\sum_{i=1}^{c(n)}\log p(S_i)$

Now by clumping phrases of the same length we can write

 $= -\frac{1}{n} \sum_{l=1}^{l_{max}} \sum_{*} \log p(S) \text{ where } \sum_{*} \text{ is the summation of phrases that are of length } l$ $= -\frac{1}{n} \sum_{l=1}^{l_{max}} c_l \sum_{*} \frac{1}{c_l} \log p(S)$

where, c_l is the number of phrases of length l. By using Jensen's Inequality and the fact that the function is concave we can state that

 $\geq -\frac{1}{n}\sum_{l=1}^{l_{max}}c_l\log\sum_*\frac{1}{c_l}p(S)$

The rest of the proof will be finished in the next set of notes.