
EE5585 Data Compression January 24, 2013

Lecture 2
Instructor: Arya Mazumdar Scribe: Trevor Webster

Announcements

• Class Webpage - http://www.ece.umn.edu/ arya/EE5585.htm

• Midterm - February 26th (Open Book)

• Everyone should have received LATEX scribe template via email

Entropy (Review)

Suppose the finite set X is a data source and for any x ∈ X , p(x) denotes the probability distribution
for x. If we know this probability distribution we can define something known as the entropy of this
random variable – this is not a function of the random variable itself but its probabilities.

H(X) = −
∑
p(x) log2(x) (measured in bits)

Example: Suppose X = {1,2,3} and p(1) = 1
2 , p(2) = 1

4 , p(3) = 1
4 . Then,

H(X) = − 1
2 log2( 1

2 )− 1
4 log2( 1

4 )− 1
4 log2( 1

4 ) = 2 bits

Now, let us consider the entropy of the English language. A standard english keyboard contains 96
characters. To represent each of these uniquely will require

dlog2 96e = 7 bits/Char

In order to determine the entropy of the english language we could consider a very large set of text and
calculate p(a), p(b), . . . and so on. Doing this we would find that the entropy of the english language is
∼ 4.5 bits/Char. However, this neglects the fact that the probability of a given letter occurring is not
independent of adjoining letters. For example, if we consider strings of two neighboring characters we
might find p(ab)� p(qu)� p(qn). If we continue this exercise by considering strings up to 8 adjoining
characters, we would find the entropy to be 19 bits. However, this is for 8 characters, so if we consider
our compression the entropy is now 19

8 ∼ 2.4 bits/Char. If you continue this exercise for longer and
longer character strings the entropy per character asymptotically approaches the limit of 1.3 bits/Char.
Now let us consider the entropy achieved by some standard codes:

• Hoffman Coding ∼ 4.7 bits/Char

• Gzip ∼ 2.7 bits/Char

• Unix compress ∼ 3.7 bits/Char

• Most complicated scheme to date ∼ 1.89 bits/Char
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Source Coding (Review)

Suppose the finite set X is a source where x ∈ X and p(x) denotes the probability distribution for x. We
assume an encoder will assign binary {0,1} valued vectors (codewords) for each symbol that is denoted
by C(x). Also let `(x) denote the length of C(x). Our compression is then defined by

Avg. # of bits per source symbol –
∑
x∈X p(x)`(x) = L(C)

Example: Consider the set X = {1,2,3,4} where c(1) = 0, c(2) = 00, c(3) = 1, c(4) = 01. Let us then
decode the following sequence:

0000→ 1111

Note that in this case the sequence can also be decoded as:

0000→ 22

This brings us to our next topic.

Uniquely Decodable Codes

Before formally defining what a uniquely decodable code is we first define what is called a non-singular
code. A non-singular code is a code where

if x 6= x′ then C(x) 6= C(x′)

This leads us to our definition of a uniquely decodable code, which states that an extension of C is
non-singular. Thus, using the codewords from the previous example this would mean that:

C(22) 6= C(1111)

Theorem 1 For any uniquely decodable code C for the source X with source symbols following the
distribution of the random variable X,

L(C) ≥ H(X)

This theorem will be proved in Lecture 3 with the use of the famous Kraft inequality which states that

Kraft Inequality For any u.d. (uniquely decodable) code for source X ,∑
x∈X 2−`(x) ≤ 1

Example: Suppose X = {1,2,3,4} where c(1) = 00, c(2) = 01, c(3) = 11, c(4) = 110. Now let us decode
the bit stream 00011100011 using these codewords

00011100011→ 12413 or 12312 + remaining bit

Thus, we see that this code is NOT uniquely decodable. However, let us consider modifying our code-
words to c(1) = 00, c(2) = 01, c(3) = 11, c(4) = 110. Now suppose we are given the bitstream

00111101000110→ 134214

Now we see that the code is uniquely decodable. However, each codeword cannot be decoded without
looking at adjoining codewords, so in this respect the code is not instantaneous.
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Instantaneous Code (Prefix Code)

An instantaneous code, or prefix code, is a code in which any codeword is not a prefix of any other
codeword.

Example: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111 is an instantaneous code.

Every instantaneous code is uniquely decodable. Using the codewords from the previous example, we
see that Theorem 1 is withheld.

Example: Suppose X = {1,2,3,4} and p(1) = 0.25, p(2) = 0.25, p(3) = 0.25, p(4) = 0.25.

L(C) = 0.25× 2 + 0.25× 2 + 0.25× 2 + 0.25× 3 = 0.25× 9 = 2.25 ≥ H(X) = 2

The Kraft inequality holds for instantaneous codes just as it does for uniquely decodable codes. We
prove this again in a more insightful manner making use of a binary tree

.

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Here the codewords used in the previous example are bolded within the binary tree. Because all of our
codewords have a length no greater than 3 and this binary tree is three layers tall, it is bound to contain
all 3 bit codewords. We notice within the tree the property of an instantaneous code – no codeword is
a descendant of any other within the tree. Now suppose we erase all the unnecessary leaves of the tree

.

0 1

10 11

110 111

This is known as a Huffman tree. Now suppose in the general case that `max is the max of `(x) ∀ x ∈ X .
Then the number of leaves on the tree will be equal to 2`max . Now, consider the number of descendant
leaves in the original tree (before erasing unnecessary codewords) which stem from a given codeword x.
For instance, 100 and 101 would stem from the codeword 10 meaning it had 2 descendant codewords.
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We note that for a given codeword x, the number of descendant leaves is 2`max−`(x). Additionally, the
number of descendant leaves for two separate codewords are disjoint. Now if we sum all of the descendant
leaves for all source symbols we note that we can have at most 2`max (the total number of leaves on the
tree). In other words, ∑

x∈X 2`max−`(x) ≤ 2`max

By dividing both sides of this equation by 2`max we see that this implies the Kraft Inequality∑
x∈X 2−`(x) ≤ 1

Now, suppose that `1, `2, . . . , `m are integers such that the Kraft inequality is satisfied i.e.,∑m
i=1 2−`i ≤ 1

Then ∃ a prefix code C on m source symbols such that the codeword lengths are `1, `2, . . . , `m. We can
assume w.l.o.g. (without loss of generality) `1 ≤ `2 ≤ . . . ≤ `m. This code can be constructed by drawing
a binary tree that is m levels tall, selecting a codeword from the ith level, erasing all of the descendants
of that codeword from the tree (2`max−`i), and then continuing to the ith + 1 level until the mth level is
reached.

Optimal Code

An optimal code would minimize the length of the codewords

L(C) =
∑
x∈X p(x)`(x)

While still remaining uniquely decodable, meaning it is subject to the restraint of Kraft’s inequality∑
x∈X 2−`(x) ≤ 1

Note that `(c) are all integers. This becomes an optimization problem. Looking at Theorem 1 more
closely and rewriting it in terms of `(x) we note∑

x∈X p(x)`(x) ≥
∑
x∈X p(x) log2

1
p(x)

From this it becomes apparent that for an optimal code we are intuitively looking for lengths `(x) ∼
log2

1
p(x) , but we don’t know if these lengths exist. Now suppose |X | = m then say we have `1, `2, . . . , `m.

Then we need to

min
∑m
i=1 pi`i

s.t (subject to)
∑m
i=1 2−`i ≤ 1

We do a relaxation on this problem by assuming `i is real. It then becomes evident that if `i is real
the optimal point will occur when

∑m
i=1 2−`i = 1. We utilize the method of Lagrange’s multiplier to

optimize this problem,

J =
∑m
i=1 pi`i + λ(

∑m
i=1 2−`i − 1)

∂J
∂`i

= pi − λ2−`i ln 2 = 0

Note that above we have made use of the fact that 2−`i = e−`i ln 2. With this partial derivative set to
zero we find the optimal points
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2−`i = pi
λ ln 2

Now we subject this to the restraint imposed by Kraft’s inequality in the optimal case (
∑m
i=1 2−`i = 1)

in order to find the value of lambda. ∑
pi

λ ln 2 = 1⇒ λ = 1
ln 2

It follows that pi = 2−`i ⇒ `i = log2
1
pi

. If these were integers, the average number of bits per symbol
would be ∑

pi log2
1
pi

= H(X)

If we could use the optimal length, meaning it was an integer, then we could achieve the optimal entropy.
However, we cannot guarantee this and instead make use of the Shannon code to find the closest integer
length.

Shannon Code Take `(x) = dlog2
1

p(x)e. Then to find the average number of bits per symbol

∑
x∈X 2dlog2

1
p(x)
e ≤

∑
x∈X 2log2

1
p(x)

=
∑
x∈X p(x)

= 1

Therefore, the average # of bits per symbol

=
∑
p(x)dlog2

1
p(x)e

<
∑
p(x) log2

1
p(x)+1

= H(X) +
∑
p(x)

= H(X) + 1

Shannon coding might not always be optimal. Suppose we have only two symbols X = {1,2} where
p(1) = 0.9999, p(2) = 0.0001. Then, `(1) = dlog2

1
0.9999e = 1 and `(2) = dlog2

1
0.0001e = 14. This is

clearly not optimal, since you only need one bits to represent this (not 14).
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