EE5585: MIDTERM EXAMINATION

FEB 26, 2013 11:15AM - 12:30 PM

Books/notes/electronic calculators: permitted.
Cellular/mobile phones, computers, and internet: strictly prohibited. Make reasonable assumptions to solve the problems if you think important information is missing.
(1) Suppose a binary file of size (length) 10000 needs to be compressed such that it can be recovered with at most 5% Hamming distortion. What do you think is the best rate of compression? Reason.
(2) Consider a two dimensional unit square with corners $(0,0),(0,1)$, $(1,0),(1,1)$. There are four quantization points $(1 / 4,1 / 4),(1 / 4,3 / 4)$, $(3 / 4,1 / 4),(3 / 4,3 / 4)$. That is, any point inside the square can be compressed to 2 bits by mapping to any of these four quantization points (see figure below). Suppose a point is randomly and uni-

Figure 1. Problem 2
formly picked up from this unit square. What is the probability that upon compression the Euclidean distortion is greater than $1 / 4$? What is the worst case distortion?
(3) Find a set of lengths $\left(l_{1}, l_{2}, \ldots\right)$ of binary codewords of a prefix code that minimizes $\sum_{i} p_{i} l_{i}$ for the following probability distribution

$$
P=\left\{\frac{9}{10}, \frac{9}{10} \cdot \frac{1}{10}, \frac{9}{10} \cdot\left(\frac{1}{10}\right)^{2}, \frac{9}{10} \cdot\left(\frac{1}{10}\right)^{3}, \frac{9}{10} \cdot\left(\frac{1}{10}\right)^{4}, \ldots\right\}
$$

(4) Suppose you are given a binary file that is a string of 5050 zeros (i.e., $00 \ldots 0$).
(a) What would be the the number of distinct sequences in the Lempel Ziv parsing?
(b) What will be the length of the compressed sequence after Lempel Ziv encoding?
(c) Now suppose a file of $\frac{m(m+1)}{2}$ consecutive 0's is given. What is the rate of compression achievable by Lempel Ziv algorithm (in terms of m)? 3
(5) An i.i.d. binary- $\{0,1\}$ source is such that $\operatorname{Pr}(0)=2 / 3$.
(a) What is a Huffman code for this source (Hint: club multiple positions together)? With your code, how far away is the average length of codewords from entropy?
(b) Can you use Shannon code for this problem? If yes, what would be the average length for that?

