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Abstract—We investigate the lossy compression of per-
mutations by analyzing the trade-off between the size of
a source code and the distortion with respect to Kendall
tau distance, Spearman’s footrule, Chebyshev distance and
`1 distance of inversion vectors. We show that given two
permutations, Kendall tau distance upper bounds the `1
distance of inversion vectors and a scaled version of Kendall
tau distance lower bounds the `1 distance of inversion
vectors with high probability, which indicates an equivalence
of the source code designs under these two distortion
measures. Similar equivalence is established for all the
above distortion measures, every one of which has different
operational significance and applications in ranking and
sorting. These findings show that an optimal coding scheme
for one distortion measure is effectively optimal for other
distortion measures above.

I. INTRODUCTION

In this paper we consider the lossy compression (source
coding) of permutations, which is motivated by the prob-
lems of storing ranking data, and lower bounding the
complexity of approximate sorting.

In a variety of applications such as college admis-
sion and recommendation systems (e.g., Yelp.com and
IMDb.com), ranking, or the relative ordering of data, is
the key object of interest. Noting that a ranking of n items
can be represented as a permutation on n elements, 1 to
n, storing a ranking is equivalent to storing a permutation.
In general, to store a permutation of n elements, we need
log2(n!) ≈ n log2 n − n log2 e bits. However, if we can
tolerate certain error (instead of the top restaurant, say the
query returns one of the top five), then how many bits are
necessary for storage?

In addition to application on compression, source cod-
ing of the permutation space is also related to the analysis
of comparison-based sorting algorithms. Given a group of
elements of distinct values, comparison-based sorting can
be viewed as the process of finding a true permutation
by pairwise comparisons, and since each comparison in
sorting provides at most 1 bit of information, the log-
size of the permutation set Sn provides a lower bound
to the required number of comparisons, i.e., log n! =
n log n − O (n). Similarly, the lossy source coding of
permutations provides a lower bound to the problem
of comparison-based approximate sorting, which can be
seen as searching a true permutation subject to certain
distortion. Again, the log-size of the code indicates the
amount of information (in terms of bit) needed to specify
the true permutation subject to certain distortion, which
in turn provides a lower bound on the number of pairwise
comparisons needed.
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The problem of approximate sorting has been inves-
tigated in [1], where results for the moderate distortion
regime are derived with respect to the Spearman’s footrule
metric [2] (see below for definition).

On the other hand, every comparison-based sorting
algorithm corresponds to a compression scheme of the
permutation space, as we can treat the outcome of each
comparison as 1 bit. This string of bits is a (lossy) repre-
sentation of the permutation that is being (approximately)
sorted. However, reconstructing the permutation from the
compressed representation may not be straightforward.

In our earlier work [3], a rate-distortion theory for
permutation space is developed, with the worst-case dis-
tortion as the parameter. The rate-distortion functions and
source code designs for two different distortion measures,
Kendall tau distance and the `1 distance of the inversion
vectors, are derived. In Section III of this paper we show
that under average-case distortion, the rate-distortion
problem under Kendall tau distance and `1 distance of
the inversion vectors are equivalent and hence the code
design could be used interchangeably, leading to simpler
coding schemes for the Kendall tau distance case (than
developed in [3]), as discussed in Section IV.

Moreover, the rate-distortion problem under Chebyshev
distance is also considered and its equivalence to the cases
above is established. Operational meaning and importance
of all these distance measures is discussed in Section II.
While these distance measures usually have different
intended applications, our findings show that an optimal
coding scheme for one distortion measure is effectively
optimal for other distortion measures.

II. PROBLEM FORMULATION

In this section we discuss aspects of the problem formu-
lation. We provide a mathematical formulation of the rate-
distortion problem on a permutation space in Section II-B,
introduce the distortions of interest in Section II-C, and
discuss their operational meaning in Section II-D.

A. Notation

Let Sn denote the symmetric group of n elements. We
write the elements of Sn as arrays of natural numbers with
values ranging from 1, . . . , n and every value occurring
only once in the array. For example, σ = [3, 4, 1, 2, 5] ∈
S5. This is also known as the vector notation for permu-
tations. For a permutation σ, we denote its permutation
inverse by σ−1, where σ−1(x) = i when σ(i) = x.
and σ(i) is the i-th element in array σ. For example,
the permutation inverse of σ = [2, 5, 4, 3, 1] is σ−1 =
[5, 1, 4, 3, 2]. Given a metric d : Sn × Sn → R+ ∪ {0},
we define a permutation space X (Sn, d).



Throughout the paper, we denote the set {1, . . . , n} as
[n], and let [a : b] , {a, a+ 1, . . . , b− 1, b} for any two
integers a and b.

B. Rate-distortion problem
Given a permutation space, we define the following

rate-distortion problem.

Definition 1 (Codebook for permutations under average–
case distortion). An (n,D) source code Cn ⊆ Sn for
X (Sn, d) is a set of Mn = |Cn| permutations such that
for a σ that is drawn uniformly at random from Sn, there
exists a permutation π(σ) ∈ Cn that

E [d(π(σ), σ)] ≤ D,

where expected value is taken with respect to the uniform
distribution over Sn. The mapping π : Sn → Cn can be
assumed to satisfy

π(σ) = arg min
σ′∈Cn

d(σ′, σ)

for any σ ∈ Sn. Given a sequence of distortions
{Dn, n ∈ Z+}, let A(n,Dn) be the minimum size of an
(n,Dn) source codes in X (Sn, d), and we define the
minimal rate for distortions Dn as

R(Dn) ,
logA(n,Dn)

log n!
.

As to the classical rate-distortion setup, we are inter-
ested in deriving the trade-off between distortion level Dn

and the rate R(Dn) as n→∞. In this work we show that
for the distortions d(·, ·) and the sequences of distortions
{Dn, n ∈ Z+} of interest, limn→∞R(Dn) exists.

Instead of requiring E [d(π, σ)] ≤ Dn in the above
definition, we may require

lim
n→∞

P [d(π, σ) > Dn] = 0. (1)

This stronger requirement does not change the asymptotic
rate-distortion trade-off.

C. Distortion measures
There are several distortion measures possible in

permutations. Some of the most natural measures in-
clude Kendall-tau distance and `p distances, where p ∈
{1, 2, . . . ,∞}. In this section we introduce the distortion
measures of interest, Spearman’s footrule (`1 distance
between two permutation vectors), Chebyshev distance
(`∞ distance between two permutation vectors), the `1
distance of inversion vectors and Kendall tau distance.

Definition 2 (Spearman’s footrule). Given two permuta-
tions σ1 and σ2, the Spearman’s footrule between σ1 and
σ2 is

d`1 (σ1, σ2) , ‖σ1 − σ2‖1 =

n∑
i=1

|σ1(i)− σ2(i)|

Definition 3 (Chebyshev distance). Given two permuta-
tions σ1 and σ2, the Chebyshev distance between σ1 and
σ2 is

d`∞ (σ1, σ2) , ‖σ1 − σ2‖∞ = max
1≤i≤n

|σ1(i)− σ2(i)|

Inversion vector is a representation of a permutation,
building upon the notion of inversions.

Definition 4 (inversion, inversion vector). An inversion
in a permutation σ ∈ Sn is a pair (σ(i), σ(j)) such that
i < j and σ(i) > σ(j). We use In(σ) to denote the total
number of inversions in σ ∈ Sn, and

Kn(k) , |{σ ∈ Sn : In(σ) = k}| (2)

to denote the number of permutations with k inversions.
A permutation σ ∈ Sn is associated with an inversion

vector xσ ∈ Gn , [0 : 1] × [0 : 2] × · · · × [0 : n − 1],
where for i = 1, . . . , n− 1,

xσ(i) =
∣∣{j ∈ [n] : j < i+ 1, σ−1(j) > σ−1(i+ 1)

}∣∣ .
In words, xσ(i) is the number of inversions in σ in which
i+ 1 is the first element.

It is well known that mapping from Sn to Gn is one-
to-one and straightforward [4].

Definition 5 (`1 distance of inversion vectors). Given two
permutations σ1 and σ2, we define the `1 distance of two
inversion vectors as

dx,`1 (σ1, σ2) ,
n−1∑
i=1

|xσ1
(i)− xσ2

(i)|. (3)

Example 1 (`1 distance of inversion vectors). The
inversion vector for permutation σ1 = [1, 5, 4, 2, 3]
is xσ1 = [0, 0, 2, 3], as the inversions are
(4, 2), (4, 3), (5, 4), (5, 2), (5, 3). The inversion vector for
permutation σ2 = [3, 4, 5, 1, 2] is xσ2

= [0, 2, 2, 2], as
the inversions are (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2).
Therefore,

dx,`1 (σ1, σ2) = d`1 ([0, 0, 2, 3], [0, 2, 2, 2]) = 3

Now we introduce another distortion measure of inter-
est, Kendall tau distance.

Definition 6 (Kendall tau distance). The Kendall tau
distance dτ (σ1, σ2) from one permutation σ1 to another
permutation σ2 is defined as the minimum number of
transpositions of pairwise adjacent elements required to
change σ1 into σ2.

The Kendall tau distance is upper bounded by
(
n
2

)
.

Example 2 (Kendall tau distance). The Kendall tau
distance for σ1 = [1, 5, 4, 2, 3] and σ2 = [3, 4, 5, 1, 2]
is dτ (σ1, σ2) = 7, as one needs at least 7 transpositions
of pairwise adjacent elements to change σ1 to σ2. For
example,

σ1 = [1, 5, 4, 2, 3]

→ [1, 5, 4, 3, 2]→ [1, 5, 3, 4, 2]→ [1, 3, 5, 4, 2]

→ [3, 1, 5, 4, 2]→ [3, 5, 1, 4, 2]→ [3, 5, 4, 1, 2]

→ [3, 4, 5, 1, 2] = σ2

Remark 1 (Bubble-sort). Let e , [1, 2, . . . , n] be the
identity permutation, and given a input sequence of σ,
dτ (σ, e) is the number of swaps needed in a bubble-sort
algorithm [4].



D. Operational meaning of the distortion measures

Spearman’s footrule is a very well-known measure
of disarray (see, [2]), where the sum of the deviations
at different positions is measured. The Chebyshev dis-
tance measures maximum of the deviations at different
positions. Therefore, Spearman’s footrule (`1 distance)
measures the total deviation, while Chebyshev distance
(`∞ distance) measures the worst-case deviation. In ap-
proximate sorting, we may care about one measure over
the other, or both.

In addition, inversion vector provides a measure of
disorder in a sequence. Given a sequence v1, v2, . . . , vn
and permutation π such that vπ(1) < vπ(2) < . . . < vπ(n),
then π(n+1−k) is the index of the k-th largest element,
and xπ (n− k) indicates the number of elements that are
smaller than the k-th largest but have indices larger than
that of the k-th largest element. In particular, the position
of the largest element is n− xπ (n− 1).

Apart from the natural sorting algorithms, Kendall tau
distance has recently attracted substantial interest in the
area of error-correcting codes for Flash memory [5], [6],
Kendall tau distance is also a global measure of disarray
that is very popular in statistics. It is closely related to
the Spearman’s footrule, as we will see next.

III. RELATIONSHIPS BETWEEN DISTORTION
MEASURES

In this section we show all four distortion measures
defined in Section II-C are closely related to each other.

A. Spearman’s footrule and Kendall tau distance

Theorem 1 (Relationship of Kendall tau distance and `1
distance of permutation vectors [2]). Let σ1 and σ2 be
any permutations in Sn, then

d`1(σ1, σ2)/2 ≤ dτ (σ−11 , σ−12 ) ≤ d`1(σ1, σ2). (4)

B. `1 distance of inverse vectors and Kendall tau distance

We show that the `1 distance of inversion vectors and
the Kendall tau distance are closely related in Theorem 2,
and Theorem 3, which helps to establish the equivalence
of the rate-distortion problem later.

The Kendall tau distance between two permutation
vectors provides upper and lower bounds to the `1 dis-
tance between the inversion vectors of the corresponding
permutations, as indicated by the following theorem.

Theorem 2. Let σ1 and σ2 be any permutations in Sn,
then for n ≥ 2,

1

n− 1
dτ (σ1, σ2) ≤ dx,`1 (xσ1 ,xσ2) ≤ dτ (σ1, σ2) (5)

The proof of this theorem is relatively straight-forward
and hence omitted due to space constraint.

Remark 2. The lower bound in Theorem 2 is tight
as there exists permutations σ1 and σ2 that satisfy
the equality. For example, when n = 2m, let σ1 =
[1, 3, 5, . . . , 2m − 3, 2m − 1, 2m, 2m − 2, . . . , 6, 4, 2],
σ2 = [2, 4, 6, . . . , 2m−2, 2m, 2m−1, 2m−3, . . . , 5, 3, 1],
then dτ (σ1, σ2) = n(n− 1)/2 and dx,`1 (σ1, σ2) = n/2.
For another instance, let σ1 = [1, 2, . . . , n− 2, n− 1, n],
σ2 = [2, 3, . . . , n− 1, n, 1] then dτ (σ1, σ2) = n− 1 and
dx,`1 (σ1, σ2) = 1.

Theorem 2 shows that in general dτ (σ1, σ2) is not a
good approximation to dx,`1 (σ1, σ2) due to the 1/(n−1)
factor. However, Theorem 3 shows that it provides a tight
lower bound with high probability.

Theorem 3. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, then

P [c1 · dτ (π, σ) ≤ dx,`1 (π, σ)] = 1−O (1/n) (6)

for any positive constant c1 < 1/2.

Proof: See Section V-A.

C. Spearman’s footrule and Chebyshev distance

Let σ1 and σ2 be any permutations in Sn, then

d`1 (σ1, σ2) ≤ n · d`∞ (σ1, σ2) , (7)

and additionally, the scaled Chebyshev distance lower
bounds the Spearman’s footrule with high probability.

Theorem 4. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, then

P [c2 · n · d`∞ (π, σ) ≤ d`1 (π, σ)] = 1−O (1/n) (8)

for any positive constant c2 < 1/3.

Proof: See Section V-B.

IV. RATE DISTORTION FUNCTIONS

In this section we build upon the results in Section III
and prove the equivalence of lossy source codes under
different distortion measures, which lead to the rate
distortion functions in Theorem 6.

Theorem 5 (Equivalence of lossy source codes under
different distortion measures). Below, any of the source
codes of the left hand side, implies a source code of the
right.

1) (n,Dn) source code for X (Sn, dτ ) ⇒ (n,Dn)
source code for X (Sn, dx,`1),

2) (n,Dn) source code for X (Sn, dx,`1) ⇒
(n,Dn/c1 +O (n)) source code for X (Sn, dτ )
for any c1 < 1/2,

3) (n,Dn) source code for X (Sn, d`1) ⇒ (n,Dn)
source code for X (Sn, dτ ).

4) (n,Dn) source code for X (Sn, dτ ) ⇒ (n, 2Dn)
source code for X (Sn, d`1),

5) (n,Dn/n) source code for X (Sn, d`∞)⇒ (n,Dn)
source code for X (Sn, d`1),

6) (n,Dn) source code for X (Sn, d`1) ⇒
(n,Dn/(nc2)+O (1)) source code for X (Sn, d`∞)
for any c1 < 1/3.

Proof: Statement 1 follow directly from (5). For
statement 2, let

An(π) , {σ : c1 · dτ (σ, π) ≤ dx,`1 (σ, π)}

then Theorem 3 indicates that |An(π)| = (1−O (1/n))n!.
Let C′n be the (n,Dn) source code for X (Sn, dx,`1) and
σ be a permutation chosen uniformly from Sn, then let



πσ be the codeword for σ in C′n,

E [dτ (πσ, σ)]

=
1

n!

∑
σ∈Sn

dτ (σ, πσ)

=
1

n!

 ∑
σ∈An(πσ)

dτ (σ, πσ) +
∑

σ∈Sn\An(πσ)

dτ (σ, πσ)


≤ 1

n!

 ∑
σ∈An(πσ)

dx,`1 (σ, πσ) /c1 +
∑

σ∈Sn\An(πσ)

n2/2


≤ Dn/c1 +O (1/n)n2 = Dn/c1 +O (n) .

Statement 3 and 4 follow directly from Theorem 1.
Statement 5 follows from (7). For statement 6, similar
to the proof for statement 2, define

Bn(π) , {σ : c2 · n · d`∞ (σ, π) ≤ d`1 (σ, π)}

then by Theorem 4,

E [d`∞ (πσ, σ)] =
1

n!

∑
σ∈Sn

d`∞ (σ, πσ)

=
1

n!

 ∑
σ∈Bn(πσ)

d`∞ (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

d`∞ (σ, πσ)


≤ 1

n!

 ∑
σ∈Bn(πσ)

d`1 (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

n


≤ Dn/(nc2) +O (1/n)n = Dn/(nc2) +O (1) .

We obtain Theorem 6 as a direct consequence of
Theorem 5.

Theorem 6 (Rate distortion functions for distortion mea-
sures). For permutation spaces X (Sn, dx,`1), X (Sn, dτ ),
and X (Sn, d`1),

R(Dn) =

{
1 if Dn = O (n)

1− δ if Dn = Θ
(
n1+δ

)
, 0 < δ ≤ 1.

For the permutation space X (Sn, d`∞),

R(Dn) =

{
1 if Dn = O (1)

1− δ if Dn = Θ
(
nδ
)
, 0 < δ ≤ 1.

Proof: (9) follows from [3, Theorem 5 and 6], which
states the rate distortion functions for both permutation
spaces X (Sn, dτ ) and X (Sn, dx,`1) satisfy

R(Dn) =

{
1 if Dn = O (n)

1− δ if Dn = Θ
(
n1+δ

)
, 0 < δ ≤ 1

.

Then the rest follows from Theorem 5.
Theorem 5 indicates that for all the distortion measures

in this paper, the lossy compression scheme for one
measure preserves distortion under other measures, and
hence all compression schemes can be used interchange-
ably under average-case distortion, after transforming
the permutation representation and scaling the distortion
correspondingly.

For the vector representation of permutation, com-
pression based on Kendall tau distance is essentially

optimal, which can be achieved by partitioning each
permutation vector into subsequences with proper sizes
and sorting them accordingly [3]. For the inversion vector
representation of permutation, a simple component-wise
scalar quantization achieves the optimal rate distortion
trade-off, as shown in [3]. In particular, given D =
cn1+δ, 0 < δ < 1, for the (k − 1)-th component of
the inversion vector (k = 2, · · · , n), we quantize k
points in [0 : k − 1] uniformly with mk = dkn/(2D)e
points, resulting component-wise average distortion Dk =
D/n and overall average distortion =

∑n
k=2Dk ≤ D,

and log of codebook size logMn =
∑n
k=2 logmk =∑n

k=2 log dkn/(2D)e = (1− δ)n log n−O (n) .

Remark 3. This scheme is slightly different from the one
in [3] as it is designed for average distortion, while the
latter for worst-case distortion.

Remark 4. While the compression algorithm in
X (Sn, dx,`1) is conceptually simple and has time com-
plexity Θ (n), it takes Θ (n log n) runtime to convert a
permutation from its vector representation to its inversion
vector representation [4, Exercise 6 in Section 5.1.1].
Therefore, the cost of representation transformation of
permutations should be taken into account when selecting
the compression scheme.

Example 3 (Rate distortion trade-off at n = 1024).
We evaluate the rate distortion functions in Theorem 6
by simulation when n = 1024. We randomly draw a
set of permutations uniformly from Sn and define the
normalized distortion as

δ̂ , log2(cD̄)/log2 n− 1, (9)

where D̄ is the average distortion of all generated random
permutations, and c is a constant that depends on the dis-
tortion measure of interest. We also define the normalized
rate as

R̂ , |Cn|/log2 n!. (10)

Then we plot the rate distortion trade-off for both
X (Sn, dx,`1) and X (Sn, τ), using the compression
schemes described above. We choose c = 6 and c = 4
to match the expected distance of two uniformly chosen
permutations respectively.

Fig. 1 shows that for n = 1024, the trade-offs between
δ̂ and R̂ are very close to the theoretical limit R(D).

0.0 0.2 0.4 0.6 0.8 1.0
R̂

0.0

0.2

0.4

0.6

0.8

1.0

δ̂

n=1024,dx,`1

n=1024,dτ

R(D)

Fig. 1. Simulated rate distortion trade-offs for n = 1024 for
X

(
Sn, dx,`1

)
and X (Sn, τ), where normalized rate R̂ and normalized

distortion δ̂ are defined in (10) and (9) respectively. For both distortion
measures, the trade-offs between δ̂ and R̂ are very close to the
theoretical limit R(D) in Theorem 6.



V. PROOFS

A. Proof of Theorem 3

To prove Theorem 3, we analyze the mean and variance
of the Kendall tau distance and `1 distance of inversion
vectors between a permutation in Sn and a randomly
selected permutation, in Lemma 8 and Lemma 9 respec-
tively.

We first state the following fact without proof.

Lemma 7. Let σ be a permutation chosen uniformly from
Sn, then xσ(i) is uniformly distributed in [0 : i], 1 ≤ i ≤
n− 1.

Lemma 8. For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and Xτ , dτ (π, σ), then

E [Xτ ] =
n(n− 1)

4
, (11)

Var [Xτ ] =
n(2n+ 5)(n− 1)

72
. (12)

Proof: Let σ′ be another permutation chosen inde-
pendently and uniformly from Sn, then we have both
πσ−1 and σ′σ−1 are uniformly distributed over Sn.

Note that Kendall tau distance is right-invariant [7],
then dτ (π, σ) = dτ

(
πσ−1, e

)
and dτ (σ′, σ) =

dτ
(
σ′σ−1, e

)
are identically distributed, and hence the

result follows [2, Table 1] and [4, Section 5.1.1].

Lemma 9. For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and Xx,`1 , dx,`1 (π, σ), then

E [Xx,`1 ] >
n(n− 1)

8
,

Var [Xx,`1 ] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

Proof: By Lemma 7, we have Xx,`1 =∑n−1
i=1 |ai − Ui| , where Ui ∼ Unif ([0 : i]) and

ai , xπ (i). Let Vi = |ai − Ui|, m1 = min {i− ai, ai}
and m2 = max {i− ai, ai}, then

P [Vi = d] =


1/(i+ 1) d = 0

2/(i+ 1) 1 ≤ d ≤ m1

1/(i+ 1) m1 + 1 ≤ d ≤ m2

0 otherwise.

Hence,

E [Vi] =

m1∑
d=1

d
2

i+ 1
+

m2∑
d=m1+1

d
1

i+ 1

=
2(1 +m1)m1 + (m2 +m1 + 1)(m2 −m1)

2(i+ 1)

=
1

2(i+ 1)
(m2

1 +m2
2 + i)

≥ 1

2(i+ 1)

(
(m1 +m2)2

2
+ i

)
=
i(i+ 2)

4(i+ 1)
>
i

4
,

Var [Vi] ≤ E
[
V 2
i

]
≤ 2

i+ 1

i∑
d=0

d2 ≤ (i+ 1)2.

Then,

E [Xx,`1 ] =

n−1∑
i=1

E [Vi] >
n(n− 1)

8
,

Var [Xx,`1 ] =

n−1∑
i=1

Var [Vi] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

With Lemma 8 and Lemma 9, now we show that the
event that a scaled version of the Kendall tau distance is
larger than the `1 distance of inversion vectors is unlikely.

Proof for Theorem 3: Let c1 = 1/3, let t = n2/7,
then noting

t = E [c ·Xτ ] +
∣∣Θ (√n)∣∣ Std [Xτ ]

= E [Xx,`1 ]−
∣∣Θ (√n)∣∣Std [Xx,`1 ] ,

by Chebyshev inequality,

P [c ·Xτ > Xx,`1 ] ≤ P [c ·Xτ > t] + P [Xx,`1 < t]

≤ O (1/n) +O (1/n) = O (1/n) .

The general case of c1 < 1/2 can be proved similarly.

B. Proof for Theorem 4
Lemma 10. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, and X`1 , d`1 (π, σ), then

E [X`1 ] =
n2

3
+O (n) , Var [X`1 ] =

2n3

45
+O

(
n2
)
.

Proof: See [2, Table 1].
Proof for Theorem 4: For any c > 0,

cn · d`∞ (π, σ) ≤ cn(n − 1), and for any c2 <
1/3, Lemma 10 and Chebyshev inequality indicate
P [d`1 (π, σ) < c2n(n− 1)] = O(1/n). Therefore,

P [d`1 (π, σ) ≥ c2n · d`∞ (π, σ)]

≥ P [d`1 (π, σ) ≥ c2n(n− 1)]

= 1− P [d`1 (π, σ) < c2n(n− 1)]

= 1−O (1/n) .
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