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Abstract—In this paper, we study a model of communication
under adversarial noise. In this model, the adversary makes
online decisions on whether to corrupt a transmitted bit based
on only the value of that bit. Like the usual binary symmetric
channel of information theory or the fully adversarial channel
of combinatorial coding theory, the adversary can, with high
probability, introduce at most a given fraction of error.

It is shown that, the capacity (maximum rate of reliable
information transfer) of such memoryless adversary is strictly
below that of the binary symmetric channel. We give new upper
bound on the capacity of such channel – the tightness of this
upper bound remains an open question. The main component
of our proof is the careful examination of error-correcting
properties of a code with skewed distance distribution.

I. INTRODUCTION

Consider the usual definitions of discrete channels in infor-
mation theory. It is assumed that, transmissions of symbols
from a discrete alphabet take place and a fraction of the
transmissions may result in erroneous reception. The sender
is allowed to “encode” information in to an array of symbols,
called a codeword. The collection of all possible codewords
is called a “code” (or “codebook”). Without much loss of
generality, we can assume that all transmitted codewords are
equally likely, in which case the log-size of a code signify the
amount of information that can be transmitted with the code.
In a completely adversarial channel, the adversary is allowed
to see the transmitted set of symbols (codeword) completely
and then decides which of the transmitted symbols are to
be corrupted (it is allowed to corrupt a given fraction of all
symbols).

Recently, in a series of papers [8], [10], [12], the study of
online or causal adversarial channels is initiated, in particular,
for binary-input channels. Let us start by giving an informal
definition of a causal adversarial channel. In the causal adver-
sarial model, an adversary is allowed to see the transmitted
codeword only causally (i.e., at any instance it sees only the
past transmitted symbols), and decides whether to corrupt the
current transmitted symbol. An upper bound on the capacity
(maximum rate of reliable information transfer) of such chan-
nel is presented in [8]. One of the most interesting observation
is that, such channels are limited by the “Plotkin bound,” of
coding theory: whenever the fraction of error introduced by the
adversary surpasses 1

4
, the capacity is zero (assuming binary
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input). On the other hand, by “random coding” method, a
lower bound is established in [10]. This lower bound beats
the famous Gilbert-Varshamov bound, the best available lower
bound for a completely adversarial channel.

We below describe an adversarial channel model that is
weaker (in terms of adversary limitations) than the above
causal channel. In particular, the adversary is not even allowed
to see the past transmitted symbols, but decides whether to
corrupt a symbol based on only the current transmission.
Our initial aim is to see whether the channel capacity is still
dictated by the Plotkin bound.

A. A memoryless (truly online) adversary

In this work we consider the code to be deterministic, in
a sense that is described below. Also, we assume that the
input alphabet to be binary ({0, 1}). A code C is simply a
subset of Fn2 . The size of the code denotes the number of
messages encodable with this code; and therefore the amount
of information encodable is log |C|. In here and subsequently,
all logarithms are base-2, unless otherwise mentioned. The
rate of the code is log |C|

n
.

Given the code, the adversarial channel consists of n
(possibly random) functions fiC : F2 → F2, i = 1, . . . , n.
Suppose a randomly and uniformly chosen codeword

x ” (x1, x2, . . . , xn) P C

is transmitted. At the ith time instant, the adversary will
produce ei = fiC(xi), taking only the current transmitted
symbol xi as argument (and of course, taking into account
the code C, which is known to the adversary). Here, ei is the
indicator of an error at the ith position, i = 1, . . . , n. I.e., the
channel produces yi = xi+ei, at the ith time-instance, where
the addition is of course over F2.

Definition 1: The adversary is called weakly-p-limited, 0 ď
p ď 1, if the expected (with respect to the randomness
in fiCs and x) Hamming weight of the error-vector e =
(e1, e2, . . . , en) = (f1C(xi), . . . , f

n
C(xn)) ” fC(x) is

Ewt(e) ď pn. (1)

A more restrictive adversary (strongly-p-limited) must have,

Pr(wt(e){n ă p+ ε) = 1− o(1),@ε ą 0. (2)

A code is associated with a (possibly randomized) decoder
φ : Fn2 → C. For a given pair of transmitted codeword and
error vector, x P C,e P Fn2 , the decoder makes an error if,



φ(x + e) ‰ x. Given C and p, define Advw(C, p) to be the
collection of all weakly-p-limited adversary strategies. That is,
fC ” {fiC : F2 → F2, i = 1, . . . , n} P Advw(C, p) if and only
if, Ewt(fC(x)) ď pn. Similarly, we can name the collection
of all strongly-p-limited adversary strategies as Advs(C, p).

Our results, as in the case of causal adversarial channels of
[12], holds for the case of average probability of error 1.

The average probability of error is defined to be,

PwC (p) = max
fCPAdvw(C,p)

1

|C|

ÿ

xPC

Pr(φ(x+ fC(x)) ‰ x),

and,

PsC(p) = max
fCPAdvs(C,p)

1

|C|

ÿ

xPC

Pr(φ(x+ fC(x)) ‰ x).

The maximum possible size of “good” codes are:

Mw
ε (n, p) ” max

CĎFn
2
:Pw

C
(p)ďε

|C|, (3)

and,
Ms
ε(n, p) ” max

CĎFn
2
:Ps

C
(p)ďε

|C|. (4)

Now, define the capacities to be,

Cw(p) ” inf
εą0

lim sup
n→∞

logMw
ε (n, p)

n
, (5)

Cs(p) ” inf
εą0

lim sup
n→∞

logMs
ε(n, p)

n
. (6)

It is evident that,

Cw(p) ď Cs(p) ď 1− hB(p), (7)

where hB(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function.

This is true because, a strongly-p-limited adversary strategy
is to flip each symbol with probability p, independently. That
is, the adversary can always simulate a binary symmetric
channel, whose capacity is 1− hB(p).

B. Practical limitations to the model and contributions

It is counterintuitive to assume that the adversary, being
memoryless, cannot store the previously transmitted bits, or
its own actions, however, has access to the entire code and
can do computations on them. But it should be noted that,
the entire computation of the adversary is done offline, and
in each transmission, it just performs according to one of the
two options. Also note that, the adversary knows the time-
instance of the transmission. That is, he knows that the ith
transmission, among the n possible, is taking place. In that
sense the adversary is not completely memoryless. The main
purpose of introducing this model is to see how weak the

1It is relatively easy to see that the worst-case probability of error does not
lead to anything different than the completely adversarial channel. For the
same reason linear codes do not lead to any improvement for these channels
over completely adversarial channel. We refer to [8] for further discussion.
In general, the notion of average vs. worst-case error probability leading
to different capacities for arbitrarily varying channels is well-known (for
example, see [2] or [13]).

adversary can be and still have its capacity dictated by the
Plotkin bound.

On the other hand, the concept of such memoryless ad-
versary appears in principle before in literature. In particular,
general classes of restricted adversarial channels were con-
sidered in the literature of arbitrarily varying channels [2],
[5], [6] or oblivious channels [11]. From [9, Thm. C.1] (see
also, [1]), it is evident that the capacity of weakly-p-limited
adversary is 0 for p ą 1

4
. It is also proved there that, if the

adversary can keep a count of how many bits it has flipped
(a log-space channel), then the same fact holds for strongly
limited adversaries as well.

In Sec. II, we present the above fact regarding weakly-
limited adversary in a way that is amenable to our definitions.
We then attempt to extend this result to the case of strongly-
limited adversary, which forms the main contribution of this
paper. In Sec. III we introduce the important notions of
distance distribution of a code that proves useful in this
context. In Sec. IV, we show that the capacity of a strongly-
p-limited adversary is strictly separated from the capacity of a
BSC(p). In particular we give an upper bound on Cs(p) that
is strictly below 1− hB(p) for all p ą 1

4
. Further discussions

and concluding remarks are presented in Sec. V.

II. WEAKLY-LIMITED ADVERSARY

In this small section, we establish the following fact.
Theorem 1: Cw(p) = 0 for p ě 1

4
.

To prove the theorem, the below lemma, known as the
Plotkin bound, is used crucially.

Lemma 2 (Plotkin Bound): Suppose, C Ď Fn2 is the code
and |C| = M. Randomly and uniformly (with replacement)
choose two codeword x1, x2 from C. Then,

EdH(x1, x2) ď
n

2
, (8)

where dH(¨) is the Hamming distance.
Proof: Consider an M ˆ n matrix with the codewords

of C as its rows. Suppose, λi is the number of 1s in the ith
column of the matrix, i = 1, . . . , n. Then,

ÿ

c1,c2PC

dH(c1, c2) = 2
n

ÿ

i=1

λi(M− λi) ď
nM2

2
.

Hence, EdH(x1, x2) ď
n
2
, where, x1, x2 are two randomly

and uniformly chosen codewords.
Proof of Theorem 1: We show that there exists an

adversary strategy that achieves the claim of the lemma. In this
vein, we use the same adversarial strategy that is used in [8],
[9]. Suppose, C Ă Fn2 is the code and |C| =M. The adversary
(channel) first choses a codeword x = (x1, x2, . . . , xn) P Fn2
randomly and uniformly from C. Now if c = (c1, c2, . . . , cn)
is the transmitted codeword, then,

ei ” f
i
C(xi) =


0, when xi = ci
1, with probability 1

2
when xi ‰ ci

0, with probability 1
2

when xi ‰ ci.



Note that, if c is randomly and uniformly chosen from C, then

Ewt(e) =
n

ÿ

i=1

Pr(ei = 1) =
1

2

n
ÿ

i=1

Pr(xi ‰ ci)

=
1

2
EdH(x, c) ď

n

4
,

where, e = (e1, . . . , en). Hence, the adversary is weakly-1
4

-
limited.

On the other hand, Pr(x = c) = 1
M

. Suppose, y = x + e.
At the decoder, let Pr(y | c 1), c 1 P C, denote the probability
that c 1 is transmitted and y is received. Clearly,

Pr(y | c) = Pr(y | x).

Hence, even the maximum likelihood decoder will have a
probability of error ě 1{2 − 1

M
. Therefore, Cw(p) = 0 for

p ě 1{4.

III. DISTANCE DISTRIBUTION

To extend Thm. 1 to the case of strongly-limited adversary,
we need to show an adversary strategy, that, with high proba-
bility, keep the number of errors within pn. However, for the
adversary strategy of Thm. 1 to do this, we need the result of
Lemma 2 to be stronger, i.e., a high probability statement. Let
us now introduce some notations that help us cast Lemma 2
as a high-probability result.

The distance distribution of a code is defined in the fol-
lowing way. Suppose, C Ď Fn2 be a code. Let, for i =
0, 1, 2, . . . , n,

Ai =
1

|C|
|{(c1, c2) P C

2 : dH(c1, c2) = i}|. (9)

As can be seen, A0 = 1.
The dual distance distribution of a code is defined to be, for

i = 0, 1, . . . , n,

AKi =
1

|C|

n
ÿ

j=0

Ki(j)Aj, (10)

where

Ki(j) =
i

ÿ

k=0

(−1)k
(
j

k

)(
n− j

i− k

)
is the Krawtchouk polynomial. Note that, AK0 = 1. It is known
that AKi ě 0 for all i. The dual distance dK of the code is
defined to be the smallest i ą 0 such that AKi nonzero.

Lemma 3 (Pless power moments): For all r ă dK,

1

|C|

n
ÿ

i=0

(n{2− i)rAi =
1

2n

n
ÿ

i=0

(n{2− i)r
(
n

i

)
. (11)

Proof: For a proof of the lemma, see [14, p. 132].

Lemma 4: Suppose, C Ď Fn2 is the code with dual distance
greater than 2, and |C| = M. Randomly and uniformly (with
replacement) choose two codeword x1, x2 from C. Then,

Pr
(
dH(x1, x2) ă n(1{2+ ε)

)
ą 1−

1

4nε2
. (12)

Proof: From Lemma 3, for any r ă dK,

Pr
(
dH(x1, x2) ě n(1{2+ ε)

)
ď

E(dH(x1, x2) − n{2)
r

nrεr

=
1
2n

řn
i=0(n{2− i)

r
(
n
i

)
nrεr

.

In particular, substituting r = 2 we have,

Pr
(
dH(x1, x2) ě n(1{2+ ε)

)
ď
n{4

n2ε2
=

1

4nε2
.

The implication of the above result is following. For any
code C with dual distance greater than 2, there exists a
strongly-p-limited adversary strategy such that, probability of
error is at least 1

2
− 1

|C|
for all p ě 1

4
. The proof follows along

the lines of Thm. 1. However, this does not mean that the
capacity of strongly-p-limited adversary becomes 0 for p ą 1

4
.

There may exist a code with dual distance less than or equal
to 2 that can reliably transfer information at a nonzero rate for
p ą 1

4
. On the other hand, if the dual distance is that small,

then the code must have a skewed or asymmetric distance
distribution. In the next section, we will (formally) see that
this fact forces the capacity of the strongly limited adversary
to be strictly below that of binary-symmetric channel2.

IV. STRONGLY-LIMITED ADVERSARY

The main result of the paper concerns the capacity of
strongly limited adversary and is given in the following
theorem.

Theorem 5:

Cs(p) ď

{
1− hB(p), p ď 1

4

hB(1− 3p+ 4p
2) − hB(p),

1
4
ă p ď 1

2
.

(13)
To show this, we need to show the existence of an apt
adversarial strategy.

A. The adversary strategy

The adversary uses the following strategy.
‚ p ď 1

4
. The adversary just randomly and independently

flips every bit with probability p.
‚ p ą 1

4
. For the used code C, the adversary calculates

LC(p, n) =
ř

wą2pnAw, where Aw is the distance
distribution of the code. The following two cases may
occur.

1) LC(p,n)
|C|

= o(1). This case can be tested 3 if for any

absolute constant ε, LC(p,n)
|C|

ă ε for sufficiently
large n. In this case, the adversary first choses a
codeword x = (x1, x2, . . . , xn) P Fn2 randomly and
uniformly from C. Now if c = (c1, c2, . . . , cn)

2It is known that the distribution of symbols (and even higher order strings)
in the codebook needs to be close to the mutual information maximizing input
distribution, such as uniform in BSC, for the code to achieve capacity (see
[16]). However, distance distribution is different than input distribution; and
we also want to quantify the gap to capacity.

3Indeed, whenever we talk about a code, we mean a code-family, that is
indexed by n, the length. In this case, the adversary knows this code family.
There is a way to bypass the o(¨) notation, that we omit here for clarity.



is the transmitted codeword, then, errors are intro-
duced in the following way

ei ” f
i
C(xi) =


0, when xi = ci
1, with Prob. 1

2
when xi ‰ ci

0, with Prob. 1
2

when xi ‰ ci.

Let, e = (e1, e2, . . . , en). The received codeword
is c+ e.

2) LC(p,n)
|C|

ě c for some absolute constant c for all
n. In this case, the adversary just randomly and
independently flips every bit with probability p.

B. Proof of Thm. 5

The following lemma will be useful in proving the theorem.
Lemma 6 (Capacity of constrained input): Let R˚(p,ω)

denote the supremum of all achievable rates for a code (of
length n) as n→∞ such that:

1) Each codeword has Hamming weight at most ωn, ω ď
1
2

.
2) The average probability of error of using this code over

BSC(p) goes to 0 as n→∞.
Then

R˚(p,ω) = hB(ω˚ p) − hB(p),

where ω˚ p = (1−ω)p+ω(1− p).
Sketch of proof: To prove this lemma, we calculate

the mutual information between the input and output of
the BSC(p), when the inputs are i.i.d. Bernoulli(ω) random
variables. It is not difficult to show that, such random code
must contain almost as large a subset with weight of all
codewords less than or equal to ωn. The converse follows
from an application of Fano’s inequality and noting that,
asymptotically, log

(
n
λn

)
« nhB(λ).

Proof of Thm. 5: If p ď 1
4

then the adversary just
simulates the binary symmetric channel. Below we consider
the situation when p ą 1

4
.

In what follows, we treat the two different scenarios for the
adversary, based on the adversary strategy sketched above. Let
C is the code that is used for transmission and {Aw} is the
distance distribution of the code, as usual.

Case 1: Let, x is the codeword adversary has initially chosen.
Note that, if c is randomly and uniformly chosen from C, then,
the random variable W = dH(c, x) is distributed according to
{Aw{|C|, w = 0, . . . n}.

We have,

Pr
(
W ą 2pn

)
= o(1).

Using Chernoff bound,

Pr
(

wt(e) ě n(p+ ε)
∣∣∣dH(c, x) ď 2pn

)
ď e−2nε

2

.

Hence, for any ε ą 0,

Pr
(

wt(e) ă n(p+ ε)
)
ą 1− o(1),

which implies that the adversary is strongly-p-limited.
Now, just following the arguments of Thm. 1 we conclude

that the code C will result in a probability of error at least
1
2
− 1
M

with this adversary. Therefore, If Cs(p) ą 0, then the
next case must be satisfied for a code.

Case 2: In this case, there exists absolute constant 0 ă c ă 1
such that,

ÿ

wą2pn

Aw ě c|C|. (14)

For any codeword x P C, let Ax
w, w = 0, . . . , n be the local

weight distribution, i.e., the number of codewords that are at
distance w from x. Now as,

ÿ

wą2pn

Aw =
1

|C|

ÿ

xPC

(
ÿ

wą2pn

Ax
w

)
,

it is clear that there must exist a codeword x such that
ÿ

wą2pn

Ax
w ě c|C|.

This ensures that, there are at least c|C| codewords that belong
within a Hamming ball of radius n − 2pn = n(1 − 2p). In
particular, consider the ball of radius n − 2pn centered at x̄,
where x̄ is the complement of c (all zeros are changed to ones,
and vice versa). All the codewords of C that are distance more
than 2pn away from x must belong to this ball; let us call the
set of such codewords B Ă C. Clearly |B| ě c|C|.

Consider the average probability of error, when B is used
to transmit a message over a BSC(p). Because, the Hamming
space is translation invariant, the probability of error of such
code is equal to the probability of error of a code B̂ that have
the Hamming weight of each codeword bounded by n(1−2p).
But from Lemma 6, the maximum possible rate for which
the probability of error of using B in BSC(p) goes to 0 is
R˚(p, 1− 2p).

However, if we randomly pick up a codeword from C,
with probability at least c ą 0, the codeword belong to B.
Hence 1

n
log |B| must be less than R˚(p, 1 − 2p), otherwise

the average probability of error for C will be bounded away
from 0. Hence, the rate of C is at most

R˚(p, 1− 2p) = hB(1− 3p+ 4p
2) − hB(p).

The capacity of strongly-limited adversary is strictly
bounded away from the capacity of BSC. Indeed, hB(1−3p+
4p2) ă 1 for all 1

4
ă p ă 1

2
. This is shown in Figure 1.

C. Erasure Channel

The entire analysis of the above section can be extended for
the case of a memoryless adversarial erasure channel, where
instead of corrupting a symbol, the adversary introduces an
erasure. Recently, an extension (that results in rather nontrivial
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Fig. 1. The upper bound of Thm. 5 on the strongly-limited adversary.

observations) of the results of [8], [10] for the case of erasures
have been performed in [3].

We refrain from formally defining a binary-input memory-
less adversarial erasure channel; however, that can be done
easily along the lines of the introductory discussions of this
paper. For the case of weakly-p-limited adversary the capacity
is zero for all p ě 1

2
. On the other hand, we note that, for

strongly-p-limited adversarial erasure channel the capacity is
upper bounded by

(1− p)hB(p),

for all p ě 1
2

. The analysis is similar to that of this section,
and uses the capacity of a constrained input erasure channel
as a component of the proof (for example, see Eq. 7.15 of
[4]).

V. A CODE WITH SKEWED DISTANCE DISTRIBUTION

In conclusion we outline a possible route through which an
improvement on the upper bound on Cs(p) might be possible.

From the proof of Thm. 5 it is evident that a code C that
has nonzero rate can achieve a zero probability of error for the
strongly-p-limited adversary only if the distance distribution
{Aw, w = 0, . . . , n} satisfies, for some absolute constant c ą
0,

ÿ

wą2pn

Aw ě c|C|. (15)

From, Delsarte’s theory of linear-programming bounds [7], it
is possible to upper bound the maximum possible size of such
code C. Indeed, this is given in the following theorem .

Theorem 7: Suppose, a code C is such that its distance
distribution {Aw, w = 0, . . . , n} satisfies (15) for some c ą 0.
Assume there exist a polynomial f(x) of degree at most n
with,

f(x) =
n

ÿ

k=0

fkKk(x), (16)

and some β ą 0, that satisfy,
1) f0 = 1, fk ě 0 for k = 1 . . . , n;
2) f(j) ď cβ for j = 1, . . . , 2pn and f(j) ď −(1− c)β for
j = 2pn+ 1, . . . , n.

Then
|C| ď f(0) − cβ.

Proof: We note that, AKi ě 0 for all i = 0, . . . , n, a
set of linear constraints on the distance distribution whose
sum we want to maximize. Moreover we have the extra linear
constraint of (15). We omit the proof here, but if follows from
standard arguments of linear programming bounds for codes.

If one could find a polynomial that satisfies the above con-
ditions then that gives bounds on the capacity of strongly-p-
limited adversary. Our current approach involves tweaking the
existing polynomials that bound error-correcting codes (i.e.,
the MRRW polynomials [15]) to construct a polynomial that
satisfy the criteria of Thm. 7.
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