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Abstract—The Chebyshev radius of a set in a metric space
is defined to be the radius of the smallest ball containing the
set. This quantity is closely related to the covering radius of the
set and, in particular for Hamming set, is extensively studied
in computational biology. This paper investigates some basic
properties of radii of sets in n-dimensional Hamming space,
provides a linear programing relaxation and gives tight bounds
on the integrality gap. This results in a simple polynomial-time
approximation algorithm that attains the performance of the best
known such algorithms with shorter running time.

I. INTRODUCTION

A contribution of Sylvester [21] states': “It is required to
find the least circle which shall contain a given system of
points in the plane.” The first fast (linear in the number of
points) algorithm for solving this problem was apparently
found by Megiddo [18]. The corresponding problem in the n-
dimensional Euclidean space is the smallest bounding sphere
problem: compute the smallest n-sphere that encloses all of
the points. Various and increasingly faster algorithms to solve
this problem have been proposed in a number of papers, for
example, [2], [10], [12], [20], [22], [24]. In this paper we
address a similar question in the Hamming space, where the
problem is interesting in its own right.

Consider a subset S of size m of the n-dimensional Ham-
ming space, i.e., S C F%, and |S| = m. Define the following

Teov(S) = max r;leirsld(y, ) (1)
dmin(9) = min  d(z,y) )
diam(S) = myrélkg);#y d(z,y) 3)

rad(S) = ?é%p% {gggd(y, ), 4)

where d(-,-) is the Hamming distance. These quantities are
called covering radius, minimum distance, diameter and radius
of S, respectively. Any point x solving the optimization in (4)
is a Chebyshev center of the set S. In words, rad(S) is the
radius the smallest metric ball (or the circumscribed sphere)
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that fully contains .S and Chebyshev center is its center. Unlike
Euclidean space, center in Hamming space may be non-unique
as example of {(0,0),(1,1)} C F% demonstrates.

The notion of radius and center comes up naturally in many
problems. First, a simple identity

rad(S) =n — reov(S) 5)

relates it to one of the fundamental parameters of any code.
Second, computing the center/radius of a set is an essential op-
eration for the optimal decoder in combinatorial joint source-
channel coding [11]. Third, the center usually yields a good
representative of a set. In computational biology, this is known
as the closest-string problem (see, [14] and the references
therein) and in the theoretical computer science literature,
often shows up as the Hamming center problem [7].

Our contributions are as follows. We study some basic
properties of the center and radius of a set. Namely, we
show existence of sets in Hamming space that have radii
approximately half of the diameter. This rigorously establishes
that the (easily computable) diameter can not serve as a good
approximation of the radius. We show the radius and minimum
distance follow a simple relation. A linear programming
relaxation is given and its integrality gap is analyzed. Finally,
we provide a polynomial-time approximation scheme (PTAS)
that estimates rad(S) to within (1 + €) error in mO(=) time.

We next briefly survey the algorithmic literature related to
rad(S). In [6], the decision problem is shown to be NP-
complete. Then in a number of papers increasingly better
PTAS were proposed. In [7], the center problem was formu-
lated as an integer linear program and a rounding algorithm for
the corresponding linear programming relaxation was given
that approximates the radius within a factor of (3 + ),
€ > 0. The authors in [7] also point out the difficulty of
using independent randomized rounding technique [19], [23]
for this problem when the optimal solution of the linear
program is not so big. According to [7], in that “small” radius
regime, employment of the Chernoff bound, the standard way
of analyzing independent randomized rounding, leads to a
significant deviation of ~ /n. This supposed shortcoming
was overcome by [13] that performs more involved analysis
by carefully studying the structural properties of the center
problem. Specifically they show, that there exists an [-subset
L C S, such that, for any ¢ € [1,n] if all the [ vectors
agree on the ¢th bit, then the ith bit of the computed center
may be set to that same value without increasing the radius
by much. Also, the number of positions where the vectors
in L agree is at least n — [ - rad(S). For the remaining



[ - rad(S) positions, they determine the values of those bits
in the center by doing independent randomized rounding on
the LP-relaxation defined on those bits if rad(S) > % logm,
and by exhaustive enumeration otherwise. In [13] [ is a
polynomial in % This leads to the first PTAS that runs in
time nmOW/<). Subsequently, the size of | was reduced to
O(log %) in [16] and this improved the running time of the
PTAS to nm©(1/€*108(1/€)) [1]. Finally, Ma and Sun proposed
a fixed point tractable algorithm that computes radius in
O(m20t2d(9))) time [14]. Using this result along with [13]
implies a running time of nm 1/ <) [14]. All of these results,
and subsequent works [1], [14], crucially use the algorithm
in [13] as subroutine which needs to solve m©1°8 <) linear
programs even to guarantee an (1 + ¢) approximation when
rad(S) > % logm. Our improvement is specifically on this
front: we obtain the same approximation guarantee without
any dependence on € in the running time, by refining the
analysis of [7].

Specifically, we show that a linear program of [7] approxi-
mates rad(S) within a factor of 1+ ¢ and runs in polynomial
time in m and n (without any dependency on ¢) as long as the
radius rad(S) > % logm. Thus, in our approach one needs
to solve exactly one linear programming instance, as opposed
to [13] where as many as mOUeg 1) different instances are to
be solved. When the radius is strictly smaller than 6% log m,
we resort to the fixed parameter algorithm of [14], and overall
complexity is dictated by this step, yielding the mP=) time.

The organization of the paper is as follows. In Section II
we summarize some identities that the radius of a set must
follow. Section III contains our main algorithms for estimating
the center of a set and the analysis of their correctness.

II. PROPERTIES OF RADIUS

One trivial property? of the radius is the following. Let S; C
F5* and Sy C 52, and define a set S = S @Sy C Fyrt"2 =
F5* @ F5? of cardinality |S1]| - |S2|, then we have

rad(51 D Sg) = rad(Sl) + I‘ad(Sg) . (6)

A. Jung constant
It is evident that for any set S C Fg,

%diam(S) <rad(S) < J(F3) diam(S) (7

< diam(S), 8)

where for any metric space X we define its Jung constant to
be 2 rad(S)

T = 5 Gam(5)

Clearly both inequalities in (7) are tight, and clearly

1< J(X)<2.
The spaces with J(X) = 1 are called centrable, of which
the primary examples are (R™,|| - ||o). It turns out that

asymptotically J(F%) — 2 and thus (7) is (asymptotically)
not an improvement of (8).

2This happens due to an ¢ nature of the Hamming metric.

Theorem 1: For any n for which there exists an (n + 1) x
(n + 1) Hadamard matrix, we have

2n
J(F3") > :
(") 2 =
In particular limsup,,_, ., J(F%) = 2.

Proof: Consider an isometric embedding of the set
{—1,0,1} into F% where

€))

~1-00, 0-10, 1—11, (10)

(this has a simple generalization for the embedding of
{—d,...,d} into F29). Naturally this extends into the isomet-
ric embedding of {—1,0,1}" with ¢; metric into F3".

For any n, satisfying the conditions, a set of n+1 vectors in
{-1,0,1}"™ is constructed in [5] such that the all-zero vector is
its {1-Chebyshev center and the ratio of the radius to diameter
attains right hand side of (9). Since (10) is an isometry, the
claim follows. n

Remark 1: The smallest example of this construction is
the set in IF§ given by the rows in the matrix

11 11 11
11 00 00
00 11 00
00 00 11

whose diameter is 4, radius is 3 and a Chebyshev center is
(10,10,10) (direct argument convinces one that there is no
vector at distance 2 from all of these vectors).

Remark 2: Tt is tempting to conjecture that

2n
n+1’

Indeed, consider an isometric embedding F3 — (R™, ¢;) and
then apply the estimate of Bohnenblust [3]:

J(F3) <

(In

2n
n+1"

This, of course, does not imply (11) as Jung’s constant may
grow under isometric embeddings.

J(R™, any norm) <

B. Radius and minimum distance

In this section we show a relation between the minimum
pairwise distance of a set to its radius. Define the following
quantities:

A(n,d,w) = max |Al, (12)
ACF2 ,dmin(A)>d
VreA,wt(z)=w

B(n,d,w) = max |A], (13)

ACFZ dpmin (A)>d
VeeA,wt(x)<w
where wt(-) denotes the Hamming weight of a vector. The
former is the maximum size of a constant weight code — a
well-studied quantity [15].
An inequality that relates the radius and the minimum
distance of a set is the following.
Lemma 2: For any S C F7,

|S] < B(n,dmin(S), rad(S)). (14)



Proof: Enclose S inside a ball of radius rad(S) and use
definition (13). [ |
A well-known bound on A(n,d,w) is the Johnson Bound
[9]. We can make slight changes in the proof of that bound
such that it remains true for B(n, d, w). Indeed, we can have,
Lemma 3: Suppose, w < n/2. Then,

< dn
~ dn — 2wn + 2w?’
as long as the denominator is positive.
The proof of the above lemma is standard and we omit it here.
As a consequence of the above lemma, we have a corollary
of Thm. 2.
Corollary 4: For any S C F3, if rad(S) < n/2, then
n dmin (S)
N dmin(S) — 2nrad(S) + 2rad(5)?’
as long as the denominator is positive.

This trivially leads us to the following observation:
Theorem 5: For any S C F%, if |\S| > n dpin(S) then

B(n,d,w) (15)

15| <

n 2 2 n n
The term J(0) is known as the Johnson radius [15].

III. COMPUTING THE RADIUS

In this section we show an algorithm to estimate the center
closely and thus also approximating the radius of a set. Note
that, it is easy to compute the diameter of the set S. Indeed,
one just have to compute all possible pairwise distances. The
complexity of this is O(m?n). Hence, in time O(m?n), it is
possible to estimate the radius (and center) of the set within a
factor of 2: simply output one of the points of S as the center
and the distance of the farthest point to this one as the radius.

A simple linear programming algorithm for computation of
radius was proposed in [7]. We rephrase the formulation below
and use a refined analysis of the rounding technique to obtain
our result.

A. An integer programming formulation

Consider map g : Fo - R: 0~ +1;1+— —1. We can
extend this map to ¢g : F§ — {—1,+1}" C R"™ by mapping
each coordinate according to g. For any = € Fg, let us write
& = g(z). Clearly, d(z,y) = 3||& — g1, where || - ||, denotes
the ¢, distance in R™. Observe now that if a € {—1,1}" and
x € [—1,1]™ then we have

le — x|y =n— {(a,z), (17

with (-, -) denoting the standard inner product in R™.
Suppose, the set S = {a1,...,an} C FY has radius d.
Then there exists € FY, such that,

d(z,a;) < d, (18)
for 1 <4 < m. This implies,
(a;,2) >n—2d, 1<i<m. 19)
Note that,
Be{—1,+1}". (20)

The smallest positive integer d such that there exists a non-
empty set of feasible solutions to the Equations (19) and (20),
is the radius of the set. As rad(S) < n, the complexity of
finding the radius (and a center) is at most n times (actually, at
most log diam(.S) times) the complexity of solving the integer
linear program given by Equations (19), (20). The coordinates
of the center can be found to be (1 — £(j))/2,1 < j < n,
which is the inverse map of g.

B. A linear programming relaxation
Let us relax the condition (20) to the following.

~1<d(j) <1, 1<j<n @1

If there exists a feasible & such that Equations (19), (21) are
satisfied, then that & can be found by using an algorithm
that solves linear programs. However, that £ might be a non-
integer point and therefore may not provide a valid center in
the Hamming space.
Define the LP relaxed radius as
n 1

(22)

max  min(z,d;) ,

rLp = 2 2zel-1,1n i

and let z* be a maximizer in (22).
Theorem 6: We have

1 1
rrp <rad(S) <rpp+ §1n|S\ + \/9ln2|5 +2VIn|S|

2
<rrp-+ §1n|S\ + \/8T’LPIH|S|

where V =n — [|2*||3 < 4rpp.

Remark 3: In view of (17), rpp is simply half of the
Chebyshev radius of the set S in (R, ¢;). Thus the theorem
compares the radius in Hamming space vs. radius in the
ambient ¢; space. The result is useful for two reasons. First, in
general r1,p and rad(.S) can be very different: e.g. for S = F}
we have r,p = % while rad(S) = n. Theorem shows that
order-n gaps, however, are only possible for exponentially
large sets. Second, unlike rad(S) relaxation rpp is easy to
compute as a solution of a linear program.

Remark 4: At the same time, the bound in (23) is not
tight for small sets, e.g. |S| = O(1) and n — oo. In fact, it
can be shown that for |S| > 1

(23)

2181=1 _ 9
2

To see this, let m = |.S|. By translation, assume one element of
S to 0. Then all n coordinates can be split into 2™~ groups,
such that elements of S\ {0} are constant inside each group.
Two of the groups are where all elements of .S have zeros and
ones only, and can be ignored. Clearly, the optimal solution
(¢1-center) in (22) maybe assumed to be constant inside each
group. Then its value can be approximated by a zero-one
vector to within i%. Thus, the resulting vector approximates

rad(S) <rpp+

. . . . m_17
the distance to each of the elements in S to within 2———=2.

Proof of Theorem 6 is similar to that of Theorem 9, and we
omit it here.



C. The randomized rounding: RANDRAD

The input of the algorithm is the set S = {a1,...,am} C
F3. Suppose d is the smallest positive integer such that
Equations (19), (21), have a feasible point. Let, z € R" be
a feasible point for that d (can be found by solving a linear
program). Construct a random vector y € F3 from z in the
following way.

y(j) = 1—2(4)

0  with probability 1%(2)
1 with probability —~=.

Each coordinate of y is independent. Output y as the center
and maxi<i;<m d(y, a;) as the radius.
The algorithm runs in polynomial time.

Remark 5: This method of rounding linear programming
solutions to estimate the corresponding integer programming
solution is called independent randomized rounding [19] and
is standard in the literature of approximation algorithms [23].
This rounding technique was used in [7]. In conjunction with
the Hoeffding’s inequality [8], we have the following result,
also present in [7].

Theorem 7: Suppose S C F2 and |S| = m. The ran-
domized polynomial time algorithm RANDRAD(S) outputs
estimate y of the center of S such that for any d’ > 0,

, 2d'?
Pr (1222;1d(y,a1) < rad(S) +d) >1 fmexp(f " )

The radius is thus approximated with high probability within
an additive term d’ = v/nlnm. Hence whenever the true
radius is large RANDRAD produces a quite accurate estimate
with high probability.

Note that there is an additive error term in the approximation
of the radius that grows with y/n. When the true radius of set
is w(y/n) this error can be withstood. But when the radius is
O(4/n) this error term becomes the dominating factor. In the
following section we show a way to overcome this.

D. Refinement of the rounding and analysis

Let us propose a refined rounding algorithm of the linear
programming solution. This rounding uses a mix of deter-
ministic and randomized rounding. We change the algorithm
RANDRAD as follows. Assume the input of the algorithm is
the set S = {a1,...,am} C Fy, and d is the smallest positive
integer such that Equations (19), (21), have a feasible solution.
Let, z € R™ be a feasible point for that d. Construct a random
vector y € 5 from z in the following way. Say, 0 < b < 1,
whose value will be decided in the next section.

(i) = {(1) when z(i) > b

when z(i) < —b.
When 7 is such that —b < z; < b, set independently

(i) = {(j

Output y as the center and maxy<;<n, d(y,a;) as the radius.
The algorithm, called RANDRAD-REF, runs in polynomial
time. Notice that, before resorting to the randomize rounding

with probability I%Z(z)
with probability 1_72(’)

we deterministically round some points that are very close to
integer values. Hence the previous rounding can be thought
of a special case of this algorithm. This gives us an extra pa-
rameter to optimize our algorithm with. Indeed, by computing
the diameter of the set first we can be sure of the range of the
radius and then set b = 1 above when diameter is w(/n).

The following can be said regarding the performance of
RANDRAD-REF.

Theorem 8: Suppose S C F and |S| = m. For any 0 <
e < 3 and b = 1 — 2¢, the algorithm RANDRAD-REF(S)
estimates the center and radius dpg, such that dg > rad(S)
and with probability at least 1 — §, dg is at most

rad(S) N rad(S) . m

1 .
1—c¢ 2¢ n5

It is apparent that the additive error is now proportional to
only /rad(S) and does not depend on n at all. Hence for
relatively smaller values of the radius this algorithm gives a
much better approximation guarantee than the previous naive
rounding algorithm.

Proof of Theorem 8: Remember d is the smallest positive
integer such that Equations (19), (21), have a feasible solution.
Obviously

d < rad(S). (24)

Suppose, I C {1,...,n} be the set such that —b < z; < b.
Let, I = {1,...,n} \ I, and for any vector w and any index
set K, w(K) denotes the projection of w on to K.

Now, d(y,a;) = d(y(I),a:(I)) + d(y(1),a;(I)). Also,
(G;,2) = Z?Zl(l—Q\ai(j)—l%(])\) > n—2d, which means,
it di =3 lai(G) =5 and dy = 32 f lai(5) — 5L,
then d; + d2 < d. Each element in the summation of the

expression for d; is greater than 17_1’ and less than 17'*'1’ Hence,

(25)

Now, because for any j € I, |a;(j) — y(j)| < rplai(d) —

1—Z(47‘)‘
2 )

2ds
d(y(I),a;(1)) < .
(D). aill) < T2
Now just as in the case of RANDRAD, the random variable
d(y(I),a;(I)) is concentrated around its mean, d;. Indeed,
using Hoeffding’s inequality [8],

(26)

2
Pr(d(y(1),a;(I)) > d1 + ) < exp(—m).
But this implies,

2

2
+di+A) < mexp(fm). 27

Hence, with probability at least 1 — 6, the estimated radius dg
is at most,

2d>
i) >
[max Pr(d(y,ai) 2 =

2dy ||
d d — In—
R = 1+b+ 1+ 5 n(S
2d2 dl m
< d In —
R A T



< d+d2(1+b71)+ 1_b1n—
< ﬂ 4+ d In T
- 1+49b 1-b6 6§
Substituting € = % proves the theorem. ]

Remark 6: The optimal value of e that gives the lowest
possible bound 0n2the estimated radius can be found by solving
(153/62) =2 ln%r?/(s'
trade-off we want between the multiplicative approximation
error and the additive error.

The two-stage rounding algorithm RANDRAD-REF, re-
duces the amount of random bits required from the straight-
forward rounding. It is an immediate corollary of the above
theorem that, if rad(S) = Q(lofgm), with probability 1 —o(1),
RANDRAD-REF estimates the radius within a factor of
(1 + €) and runs in polynomial time, independent of e.
Instead of using RANDRAD-REF, we could have used a better
concentration inequality than the Hoeffding’s bound in the
analysis of RANDRAD. Indeed, the above rounding comes
from the intuition that the variables with low variance better
be deterministically rounded to the nearest integer. By using
the Bernstein inequality, we can have the following result.

Theorem 9: Suppose S C Fh and |S| = m. The ran-
domized polynomial time algorithm RANDRAD(S) outputs
estimate y of the center of S such that for any € > 0,

rad(9)e?

In our theorem, e denotes the

the equation

Pr (121%);1 d(y,a;) > rad(S)(1 + e)) < mexp ( -

Proof: Suppose, a € S and z is the solution of the linear
program of (19), (21). Let, X; = a(i)y(¢) where,
142(4)

2 .

with probability *=2%.
Also, let, X = > | X;. We have, X = n — 2d(a,y), and
EX > n — 2d, where d is the radius of the set S. Define,
Yi:w.Wehave,YjglandIEszoforOgjgn.
Now,

1 with probability

i6)=1q_,

n n

1 1
2=Z Y= — ) (1-(EX;)?
o niﬂvar 4n;( (EX:)7)
1 1/1& 2
< __Z(Z
4 4(H;EX1)
1 1/m—2d\2 d
< s
4 4 n n

Using Bernstein inequality [4, Thm. 3], we have,

- d*e?
P E Y; > de) < ( - .
r(izl > de) < exp 2(o%n + de/3))
Using union bound the theorem is proved. ]

As a consequence of the above theorem, when rad(S) >
312#, with probability 1 — o(1), RANDRAD estimates the
radius within a factor of (1 + €) and runs in polynomial time,
independent of e. On the other hand when rad(S) < 31‘2#,
we can use the fixed parameter algorithm of [14], and have

an algorithm that runs in time O(mo(i)).

) [9] S. Johnson.
2(1+ %)

In conclusion, using our results, polynomial time algorithm
for estimating covering radius arbitrarily close, can also be
proposed. One interesting direction of research would be
to come up with approximation algorithms to compute ra-
dius/covering radius of linear codes, in time that is polynomial
in the dimension of the space. It was shown in [17] that this
problem is NP-hard when an exact solution is needed.
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