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Summary

This report discusses recent research on high resolution spectral and coherence analysis and outlines
directions we are actively pursuing. The focus is on developing quantitative tools for spectral analysis
and system modeling, extend current resolution techniques to the case of multidimensional signals, and to
fill an apparent need for robust, efficient, and high resolution tools for use in sensor networks and arrays,
data mining, and spectral analysis. Signal analysis is often the hidden technology behind a wide range of
applications. In particular, techniques that we have recently developed have have been applied to non-
invasive temperature sensing via ultrasound (intended to facilitate computer guided tumor ablation and
therapy) in collaboration with E. Ebbini, and tested for the purpose of vibration tracking and isolation
in collaboration with D. Herrick. Such application areas underscore the need for the proposed research
and for further improvements of the relevant tools.

A fundamental issue discussed in this report is the question of how to quantify uncertainty in spectral
analysis and how to assess/improve resolution. The need for robustness and high resolution in signal
analysis is self evident. Yet, at the present time, traditional assessment of such properties remains largely
ad-hoc. The development of suitable metrics for quantifying distances between statistics and power
spectra is the initial focus. Section 1.1 presents a model for the uncertainty in estimating covariance
statistics, and outlines steps for improving the reliability and consistency of such statistical estimates.
Section 1.2 presents certain (new) metrics for quantifying distances between power spectral densities.
The approach mimics the development of the Fischer information metric and Kullback-Leibler distance
of Information Geometry. It gives rise to a Riemannian geometry for spectral density functions rooted
in prediction theory. The subsequent sections suggest improvements and generalizations of techniques
in spectral analysis that are being studied. In particular, Section 1.3 seeks to transport the efficiency of
periodogram-like methods and of the time-tested contribution of Blackman and Tukey, to multi-variable
and multi-dimensional signal analysis. Section 1.4 seeks to explore convex optimization for the analysis of
multivariable & multidimensional power spectra. Section 1.5 discusses the classical concept of coherence,
and possible generalizations to an angular distance that reflects causal dependence as well. Such causal
dependence is central in control applications as suggested by certain feed-forward control problems that
one encounters when seeking noise suppression and disturbance rejection. The merit of the new approach
relies on the metric concepts introduced, and in suggesting the possible integration of such metrics for
developing robust high resolution analysis tools.

Our goal is enhance technological advances which, themselves, have a direct impact on human lives.
Recent collaborative work with E. Ebbini and A.N. Amini on noninvasive temperature sensing via ul-
trasound (intended to facilitate computer controlled tumor ablation and therapy) identified as the single
most important obstacle the task of translating the ultrasound echo into the map of a temperature field
inside the tissue. Resolution and efficiency of the signal processing algorithms are the key. The steps
discussed herein address a number of shortcomings in earlier techniques of signal analysis. The tools that
we develop have the potential to impact a range of application areas involving distributed sensor arrays,
identification, modeling and data mining.
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Background

Our recent research has led to a range of tools for high resolution analysis of signals. The analysis helps
identify a wide range of underlying physical causes and dynamical dependencies. On the application side,
we have explored the relevance of our techniques in two main areas. First, we conducted case studies in
measuring the temperature of (artificial) tissue in a noninvasive manner by analysing ultrasound echo.
The purpose of such “non-invasive sensing” is to provide reliable measurement of tissue temperature for
computer guided tumor ablation and therapy [48]. The results have been encouraging and substantially
better than earlier state-of-the art. Second, we explored the use of such high resolution techniques in
synthetic apperture radar (SAR) with similar results [51].

The most recent development, bearing on our present research plan, is a breakthrough in analyz-
ing data from distributed sensor arrays (e.g., see [17]). Interestingly, this advancement shares the same
basic framework with our techniques for high resolution spectral analysis. Identifying power distribu-
tions consistent with given measurements is treated as an inverse problem. The family of such distri-
butions is suitably parametrized, and the size of the family represents a measure of uncertainty. The
data/measurements may represent radar/sonar echo, a speech recording, etc., and may be sampled non-
uniformly with gaps on the record. Our computational theory allows solving general such multivariable
and multidimensional moment problems. Besides the relevance of these techniques in analysis, they also
impact on the design and optimal distribution of sensors.

Our joint work with C. Byrnes and A. Lindquist [5], where foundations of our framework were first
laid out, received the G.S. Axelby outstanding paper award from the IEEE Control Systems Society in
1993, and a U.S. patent [63] which was based on this and subsequent work. We wish to mention that
earlier joint work with M.C. Smith on metrics for robust control, supported by NSF, received the G.S.
Axelby outstanding paper award twice, in 1992, and again in 1999 (for a linear and a nonlinear theory,
respectively). The most recent work can be broadly classified into the following categories with some
overlaps. It has been supported by the AFOSR, the NSF, and the Vincentine Hermes-Luh endowment.

High resolution spectral analysis and applications

Publications: [48, 52, 49, 19, 32, 13, 33, 16, 22, 23, 24, 50, 42, 26, 27, 62, 53]

Our framework was initiated in [28, 30, 31]. It was influenced by collaborative work with C. Byrnes and A.
Lindquist in [5, 6] and led to a U.S. patent [63] on tunable high-resolution spectral estimators. Publication
[49] explores basic tradeoffs between resolution and robustness of such estimators, and outlines how to
tune these for optimal performance. In [52, 53, 62, 51] we explain advantages of the new techniques and
insight in antenna arrays, SAR, and in multi-rate signal processing. In [48, 50] we demonstrated the use of
our new methods in non-invasive ultrasound temperature sensing for computer controlled tumor ablation.
In [22, 23, 24] we pointed out that a key step in spectral analysis, the step of estimating statistics, may not
provide data which are consistent with underlying dynamics. In this case, resolution can be dramatically
improved if care is taken to adjust the statistics so as to conform with known underlying dynamics.
Publications [42, 33, 19, 32, 27] deal with assessing the level of spectral uncertainty, and then presenting
canonical decompositions for use in spectral analysis problems.

Multi-variable & multi-dimensional moments

Publications: [17, 19, 32, 16, 20, 22, 23, 26]

In these publications we solve the general multi-variable and multi-dimensional moment problem. Data
for modeling, identification, spectral analysis, etc. often specify moment constraints on a power density
function —possibly multivariable (matrix-valued) and multidimensional (spatio-temporal). The develop-
ment in [17] gives a way to determine and parametrize all consistent distributions. Publications [32, 19]
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develop further a very important “boundary” case of singular data sets. Publications [20, 22, 23] are
mostly on a static but multivariable version of such problems and corresponding numerical issues.

Analytic interpolation with degree constraint: Publications: [7, 32, 16, 17, 26]

The problem of analytic interpolation with degree constraint was introduced in the early 1980’s (Geor-
giou’s 1983 Ph.D. thesis). Important contributions by Chris Byrnes and Anders Lindquist re-kindled
interest in the problem, and in recent work [7] a rather complete theory for the (scalar version) of the
problem was finally completed. Interest in this problem stems from applications in control and signal
processing. The theory in [32, 16, 17, 26] is relevant in addressing the multivariable version of the problem
(which is essential for multivariable control applications). Work on the multivariable problem is still in
progress along the lines of [17] and will appear shortly [61]. This work entails a complete parametrization
of all solutions to a multivariable Nehari type of interpolation problem, which have a Macmillan degree
≤ to the generic degree prescribed by the problem data.

1 High resolution tools

The goal has been to develop theory and techniques for robust & high resolution spectral analysis and
system identification. The approach seeks a quantitative assessment of uncertainty as well as suitable
models/spectra that are optimal with respect to suitable criteria. The data are typically statistics of
multivariable time-series. The main tools consist of suitable distance measures and convex optimization.
We finally focus on certain disturbance isolation experiments and issues on how to utilize information
from distributed sensor arrays.

There are several analogies and a certain compatibility of our framework with that of modern robust
control. In particular, certain of the results that we have already obtained echo analogous constructions
in robust control (e.g. cf. [5, 30]). Then, also, the main focus in our study is on metric uncertainty
and how this depends on the data and the underlying (physical) assumptions about their origin. This
“systems viewpoint” has very much been underlying our recent work on high resolution spectral analysis
which was funded by a previous NSF grant.

We present our basic framework in the context of spectral analysis of time-series. In particular, we
underscore the relevance of our approach on several basic questions in signal analysis and identification.

1.1 Distance measures between statistics and related approximation problems

Consider a zero-mean, stationary random process uk and let Rk := E{u`u
∗
`+k}, k = 0, 1, . . . denote its

autocorrelation function. Most modern nonlinear spectral analysis techniques rely on estimates of the
autocorrelation matrix

T : = E{xkx
∗
k} =


R0 R1 . . . R`

R−1 R0 . . . R`−1
...

...
. . .

...
R−` R−(`−1) . . . R0

 (1)

where xk :=
[
u′k u′k+1 . . . u′k+`

]′, and prime (resp. star) denotes transposition (resp. complex conju-
gation and transposition). When uk is a scalar-process T has a Toeplitz structure, and when uk is a
(column-)vectorial process T has a block-Toeplitz structure. Estimates of such statistical quantities are
typically obtained via sample averaging, e.g. using

T̂ :=
1
N

N−1∑
k=0

xkx
∗
k, (2)
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and relying on a finite observation record {u0, u1, . . . , uN+`−1}. Not surprisingly, T̂ fails to be (block)
Toeplitz—a fact which adversely affects all subsequent analyses.

Another example originates in recent trends in high resolution spectral analysis. These focus on the
dependence of statistics on known dynamics dictating the distribution uk. This dependence generalizes
the “Toeplitz structure” to more general (linear, algebraic, etc.) contstraints on the statistics and on
the power density of uk. For instance, when data is collected by an array of sensors which is not “linear
and equispaced,” the geometry dictates a transcendental dependence between the transmission delays
of the individual sensor outputs. A fairly general and theoretically advantageous starting point is to
assume that the statistics consist of the state-covariance of a known linear system (which for simplicity
can be thought to be finite-dimensional). The structure of state-covariances is not arbitrary and has been
described in [15, 28, 31]. Not surprisingly, when sample averaging is used, very much like in T̂, sample
state-covariances fail to have the correct structure. This adverse affects accuracy and resolution.

Thus, a key problem is to estimate second-order statistics a dynamical process in a way consistent
with the underlying dynamics. In the case of a time-series uk, the “dynamical” dependence between
variables uk, uk+1 is trivially only a time-delay while, in the more general case, nontrivial dynamics
dictate the evolution of the entries of xk and hence, the relevant statistics.

In principle, a sample covariance can be thought of as a random variable and a maximum likelihood
value can be sought that is consistent with any dynamical constraints. However, the computation of
such a maximum likelihood solution is quite complicated in general (even for the most rudimentary case
when uk is Gaussian and T is required to be Toeplitz). A commonly used method which allows enforcing
structure and positivity in a consistent manner, is the celebrated Burg’s algorithm [39]. This relies on a
clever forward/backward scheme to obtain values for the “reflection coefficients” which ensure positivity.
Unfortunately, the algorithm applies only to ensuring a Toeplitz structure for the autocorrelation scalar
time-series and based on one contiguous observation record. In spite of how significant the problem is,
there has been no generalization of Burg’s algorithm (although this is possible for block-Toeplitz structures
using matrix “orthogonal polynomials,” though very tedious, see discussion in [32].) In practice, the fact
that e.g., T̂ is not Toeplitz is often overlooked and/or ad-hoc corrections are being made. The PI has
studied and advocated alternatives for some time now [22]. Our current plan is to explore a new, simple,
and quite versatile approach. This is based on postulating a model for the sampling errors, and then to
minimizing the variance of such errors in a way so as to achieve consistency [29].

Because the time-index is not essential we suppress it and set x = xk (for any particular fixed value
k). We postulate the following model for the statistical errors in the estimation process:

T̂ = E{(x + v)(x + v)∗} (3)

where v is a zero-mean, stationary noise process, possibly correlated with x. Note that T̂, as defined
earlier, is a finite sum of products of random variables (hence, a random variable itself). Thus, equation
(3) provides a model, postulating that T̂ can be accurately represented as the covariance of a perturbed
random vector. Assuming such a model, it is natural to seek the least variance perturbation which achieves
consistency. More specifically, if we denote by

M = E{
[
x
v

] [
x∗ v∗

]
} =

[
T S
S∗ Q

]
(4)

the joint covariance matrix of xk and vk, then we seek a noise component of least variance so that

T̂ =
[
I I

]
M

[
I
I

]
= T + S + S∗ + Q

where I denotes the identity matrix of compatible dimension. Thus, we have studied a “minimal-variance
correction” as a distance measure between a (sample) covariance matrix T̂ and a convex class of matrices,
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such as Toeplitz matrices or other structured matrices of compatible size. It is important to note that,
given T̂ and a (convex) class of non-negative matrices T of compatible size, the optimization problem

dM (T̂, T ) := min{trace (Q) | (5) holds,M ≥ 0,T ∈ T } (5)

is convex. If we assume that the postulated estimation noise vk is uncorrelated with the random vector
xk, the least variance perturbation is again obtained by a semi-definite program:

dQ(T̂, T ) := min{trace (Q) | T̂ = T + Q,Q ≥ 0,T ∈ T } (6)

An alternative model can be based on a symmetric allocation of “corrections.” To this end we
postulate that T and T̂ are covariances of vectors x and x̂, respectively, and that the two are noisy
measurement of yet a third vector z. Hence, x + v = z = x̂ + v̂. If (4) and an analogous definition of M̂
as the covariance of

[
x̂′ v̂′

]′ hold, then symmetrized distances can be defined as follows:

δ1(T, T̂) := min{trace (Q + Q̂) | T̂ + Q = T + Q̂,Q ≥ 0, Q̂ ≥ 0} (7)

δ2(T, T̂) := min{trace (Q + Q̂) | M ≥ 0, M̂ ≥ 0, and
[
I I

]
(M− M̂)

[
I
I

]
= 0}. (8)

The expression in (7) is a special case of (8) where the matrices M, M̂ are taken to be block diagonal.
Interestingly, δ1(T, T̂) is a metric (shown by the PI in [29]). It was kindly suggested to us by P. Parrilo,
it can also be written in the form ‖T− T̂‖1, where ‖M‖1 = trace ((MM∗)1/2) is the “trace norm.” The
important fact is that such distances between a given T̂ and suitable convex classes T , can be readily
and efficiently computed using standard semidefinite programming software.

The estimation of moving average power spectra
is a notoriously difficult task [57, 58]. Yet, follow-
ing our rationale, we may choose T as being banded
Toeplitz matrices corresponding to moving-average
(MA) models of any given order. This family is
convex, efficiently characterized by linear matrix in-
equalities via the Kalman-Yakubovic-Popov lemma
[19, 57], and minQ dQ(T̂, T ) is readily computable.
In recent work (jointly with P. Stoica, Lin Du, and
Jian Li), we sought to compare on a typical exam-
ple the accuracy of prior state-of-the art [57] with our
approach based on T ≡ T̂−arg minQ dQ(T̂, T ). The
plots on the right compare the theoretical spectrum
with the mean, and the mean ±1 standard deviation,
for spectra obtained by following [57] and then using
T as above. The improvement is dramatic.
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Figure 2: The theoretical spectrum along with the mean, and the mean ±1 standard deviation

curves for the spectra estimated via BM and NMnT (N = 1000).

11

Method in [57] Based on minQ dQ(T̂, T )

Spectral analysis of vector-valued processes is relevant in wide range of applications. In sensor tech-
nology (e.g., in polarimetric synthetic aperture radar) a collection of correlated echoes at different wave-
length/polarization/etc. encode attributes of a scattering field. In system identification, spectral analysis
of the vectorial process which consists of inputs and outputs of a dynamical system provides models
for a given system, possibly operating in closed loop. An early investigation of such a framework for
system identification in the context of robust control providing confidence intervals in the “gap met-
ric,” is outlined in [21]. The framework that we presented needs to be integrated with the theory in
[5, 6, 17, 15, 28, 30, 31] in order to provide a toolbox for high resolution (multivariable) spectral analysis
and system identification. Particular questions/tasks are as follows:
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Problem 1 Develop an optimal approximation theory in dM , dQ, δi as well as, “weighted” counterparts.

This question entails studying diverse convex families of covariances functions (banded, moving-average,
state-covariances and those with short-correlation structure as in [32]). Further, it is not known how
“close” δ2 is to being a metric, and it is not known when the minimizer, in the case δ2 or δM are used,
is unique. The effect of weighted distance measures when seeking to minimize trace (Q + W Q̂) instead
of trace (Q + Q̂) penalize differently the variability of elements in T̂. This extra degree of freedom
has obvious practical significance. We also plan to study approximation problems with low rank or
sparse correlation structures (studied in recent years by D. Donoho, L. El Ghaoui, and others). A most
challenging question is to investigate how such approximation schemes perform when a covariance matrix
is to be estimated from very few “dyads” in (2). Such problems are central in, e.g., bio-informatics where
x is a rather long vector, although there, any constraints on the elements of covariances may not be
apparent.

1.2 Distances between power spectra and entropy functionals

Despite the centrality of spectral analysis in a wide range of disciplines, no agreement exists as to what
an appropriate distance measure between spectral density functions is. Some of the key contenders
have been Bregman distances, the Kullback-Leibler-von Neumann distance, the Itakura-Saito distance,
and finally Battacharrya and Mahalanobis-type variants. Certain of these distances have a definite
relevance when used to discriminate between two probability density functions. Yet none seems to have
a physically meaningful interpretation when applied to power spectra. We begin with a new distance
measure between power spectral densities and in fact, a (pseudo-) metric, which has a clear interpretation
rooted in prediction theory. This is based on [34, 35].

Our starting point is to consider the degradation of the variance of the prediction error when a
predictor is based on the wrong choice among two alternatives. More specifically, let f1, f2 represent
spectral densities of discrete-time zero-mean random processes ufi

(k) (i ∈ {1, 2} and k ∈ Z), and let
pfi

(`) (` ∈ {1, 2, 3, . . .}) be values for the coefficients that minimize the prediction error variance

E{|ufi
(0)−

∞∑
`=1

p(`)ufi
(−`)|2}.

The optimal set of coefficients depends on the power spectral density function of the process, a fact which
is acknowledged by the subscript in the notation pfi

(`). It is reasonable to consider as a distance between
f1 and f2, the degradation of predictive error variance when the coefficients p(`) are selected assuming
one of the two, and then used to predict a random process with the other spectral density function. The
ratio of the “degraded” predictive error variance over the optimal error variance

ρ(f1, f2) :=
E{|uf1(0)−

∑∞
`=1 pf2(`)uf1(−`)|2}

E{|uf1(0)−
∑∞

`=1 pf1(`)uf1(−`)|2}

equals the ratio of the arithmetic over the geometric means of the fraction of the two densities, namely

ρ(f1, f2) =
(

1
2π

∫ π

−π

f1(θ)
f2(θ)

dθ

2π

) /
exp

(
1
2π

∫ π

−π
log(

f1(θ)
f2(θ)

)
dθ

2π

)
,

see [34, 35]. Then, since ρ(f1, f2) ≥ 1, either δ(f1, f2) := log ρ(f1, f2) or γ(f1, f2) := ρ(f1, f2) − 1
represent measures of dissimilarity between the “shapes” of f1 and f2 and, can be viewed, as analogous
to “divergences” of Information Theory (such as the Kullback-Leibler relative entropy). By considering
the incremental degradation between a nominal power spectral density f and a perturbations f +∆ (e.g.,
γ(f, f + ∆)), the quadratic term defines the Riemannian metric

gf (∆) :=
1
2π

∫ π

−π

(
∆(θ)
f(θ)

)2 dθ

2π
−

(
1
2π

∫ π

−π

∆(θ)
f(θ)

dθ

2π

)2

(9)
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on density functions. It is a pleasant surprise that, geodesic paths fτ (τ ∈ [0, 1]) connecting spectral
densities f0, f1 can be explicitly computed [34]. Interestingly, these turn out to be logarithmic intervals
(also referred to as exponential families), fτ (θ) = f1−τ

0 (θ)f τ
1 (θ) for τ ∈ [0, 1], between the two extreme

points. Furthermore, the length along such geodesics can be explicitly computed in terms of end points

dg(f1, f2) :=
∫ 1

0

√
δ(fτ , fτ+dτ ) =

√
1
2π

∫ π

−π

(
log

f1(θ)
f2(θ)

)2 dθ

2π
−

(
1
2π

∫ π

−π
log

f1(θ)
f2(θ)

dθ

2π

)2

. (10)

This is a “standard-deviation-like” measure of the difference log(f1) − log(f2). It is a pseudo-metric in
that it does not account for constant multiplicative factors.

It is rather interesting to point out that f 7→ log(f) maps power spectral densities onto a Euclidean
space where quadratic norms such as (10) have a clear interpretation. In fact, with respect to the
Riemannian metric (9), the space has zero curvature since geodesics are “logarithmic” straight lines.
From this vantage point one may also consider alternative norms such as ‖ log(f1

f2
)‖2, etc. though without

yet a natural interpretation.
It is interesting to compare the differential structure on power densities induced by (9) with the cor-

responding structure of “Information Geometry.” In Information Geometry f(θ) represents a probability
density on [−π, π] and the natural Riemannian metric is the Fisher information metric is (cf. [1, page
28]) which can be expressed as

gFisher,f (∆) =
1
2π

∫ π

−π

∆(θ)2

f(θ)
dθ

2π
(11)

(with 1
2π

∫ π
−πf(θ) dθ

2π = 1 and 1
2π

∫ π
−π∆(θ) dθ

2π = 0 since both f , f + ∆ need to be probability densities).
Direct comparison reveals that the powers of f(θ) in (9) and (11) are different. Thus, it is curious and
worth underscoring that in either differential structure, geodesics and geodesic lengths can be computed.
For completeness we note that Information Geometry is a vast subject, originating in the work of Rao,
Amari, Cencov and others, with a large following directed towards analogous geometric interpretations
in Quantum theory. The starting point of Information Geometry may be considered, in a way analogous
to our development, to be the degradation of coding efficiency when the wrong choice between two
probability distributions f1 and f2 is assumed. This degradation is precisely the Kullback-Leibler distance
between the two, which can gives rise to the Riemannian metric gFisher,f (∆), in a way analogous to our
construction of gf (∆). Our plan regarding distance measures on power densities is summarized as follows:

Problem 2 Study (9) and the corresponding differential structure on power spectra —explore analogues
and connections with (11) and Information Geometry. Determine other natural distance measures between
power densities (e.g., based on smoothing and other type of filtering). Utilize such distance measures in
solving spectral-inverse problems and in quantifying distance between solutions.

The way that such metrics are to be utilized
in practice is examplified by a case study
in trying to identify the drift in the spectral
make-up of a time-series. The data were col-
lected in a vibration experiment. The anal-
ysis was carried out in collaboration with
Dr. D. Herrick. The data was processed by
sliding a window 100[ms] and evaluating the
distance between the spectra of nearby win-
dows. Spectral distances and the geodesic
drift, shown on the right, reveal a very fast
transition/change in spectral content begin-
ning at 1500[ms], and provide a reliable in-
dicator of the on-set of strong disturbance.
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We are also interested in generating metrics for the case where deterministic components are present.
Such components are “invisible” in the above predictive framework. The idea to employ the degradation
of performance with regard to specific tasks extends easily to a variety of contexts, and should be useful
for that purpose as well. An alternative paradigm can be built on smoothing problems which we take up
next but with a different goal in mind, namely, to provide a critique and an alternative to the maximum
entropy principle.

The maximum entropy principle, as it is often invoked in time-series analysis ([39, 9, 40, 45]), suggests
the selection of a power spectrum which is consistent with autocorrelation data and corresponds to a
random process least predictable from past observations. While this is a reasonable dictum when one is
interested in prediction, it is often used regardless of the specific intent for the sought spectrum. The
point we wish to raise becomes apparent when considering the relevance of another dictum, equally
pertinent, albeit based on smoothing instead of prediction.

The variance E{|u(0)−
∑∞

`=1 pf (`)u(−`)|2} of the optimal one-step-ahead (linear) predictor û(0|past) :=∑∞
`=1 pf (`)u(−`) is the geometric mean (see [38, page 183], [65, Chapter 6]) of f , i.e.,

E{|u(0)− û(0|past)|2} = m0,f := exp
(

1
2π

∫ π

−π
log (f(θ)) dθ

)
.

This is the content of the celebrated Kolmogorov-Szegö theorem. The entropy rate [39] is then defined as
the negative integral of the logarithm of f (i.e., as −

∫
log(f(θ))dθ). The notation m0,f , taken from [3,

page 23] for the geometric mean, is sought to contrast with the expression for the variance of the error

E{|u(0)− û(0|past + future)|2} = m−1,f :=
(

1
2π

∫ π

−π
f(θ)−1dθ

)−1

for the optimal smoothing filter û(0|past + future) :=
∑∞

` 6=0 qf (`)u(−`). This expression represents the
harmonic mean of f [33]. Applications abound where records need to be interpolated, or where the
indexing of data collected via a sensor array represents spatial-ordering and not time-ordering. In all
such applications there is no natural “time-arrow” and, hence, it is imperative that Burg’s maximum
entropy principle is re-evaluated.

Thus, in the context of time series analysis, both Burg’s entropy =
∫

log(f(θ)−1)dθ and the smoothing
analog

∫
f(θ)−1dθ ([33]) relate to the level of unpredictability in these two different situations. Burg’s

entropy has been also used as a regularizing functional in inverse problems (see [17]). But the latter
functional can be used equally well for similar modeling purposes. For instance, we have shown in [33]
that extremal spectra with respect to the second choice give rise to all-pole Markovian models very
much like Burg’s maximum entropy AR-models, but with one important difference. The poles in these
models appear with fractional powers. Such fractional powers are often encountered in processes with
long “memory.” This motivates:

Problem 3 Study the relevance of fractional dynamics in modeling long-range correlations.

There is an apparent dichotomy depending on whether we consider a one-sided or a two-sided past.
Stationary time-series are said to be deterministic in the Kolmogorov sense if log(f) 6∈ L1. When we
consider determinism with respect to a two-sided past, then the corresponding condition weakens to
f−1 6∈ L1, because it is only then that the smoothing error is zero. This dichotomy raises similar
questions for spatial processes and fields. This is especially pertinent when space-time data are collected
via sensor arrays. The type of questions we will address are exemplified by the following two problems:

Problem 4 Given (partial correlation) moments of a two-dimensional distribution, determine the distri-
bution corresponding to a random process least predictable at a particular range of coordinates from values
over a certain other range (the latter is thought of as the “past” or, as the “available sensor readings”).
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Problem 5 If we postulate that a spatial process consists of a noise component superimposed on top
of a sought deterministic component, how can we identify the power spectral content of the latter from
partially known statistics?

Problem 4 suggests a possible contact with the theory Markov random fields and of reciprocal processes
(e.g., see [46]), and alludes to a suitable generalization of the maximum entropy paradigm. Problem 5,
when specialized to ordinary scalar time-series, has also a long history (see [32]). It underlies many of
the most widely used high resolution methods of signal analysis. In the current formulation Problem 5
calls for mutli-dimensional generalizations as well as an investigation of what kind of decompositions we
can expect when we use different notions of determinism.

From a mathematical and computational standpoint, entropy functionals can be thought of as natural
barriers of convex sets (i.e., of probability simplices, or of cones of power densities). They thus can be used
to construct solutions to ill-posed inverse problems. Problems 4 and 5 in particular can be addressed as
moment problems. The history of such a viewpoint can be looked at in a recent publication [17]. Besides
the Shannon-von Neuman, Burg, and Kullback-Leibler-Linblad-Leib functionals, discussed in [17] there
is a plethora of alternatives, such as the Rényi and Tsallis entropies, and other generalized means (see
[34], and also Ferrante etal. [11]) As part of the current project we intend to address:

Problem 6 Study alternative notions of entropy focusing on closed-form formulae for their extrema and
their relevance in spectral analysis and moment problems.

Our ultimate goal is to acquire convenient tools for incorporating uncertainty into correlation mea-
surements. The practical significance of such an undertaking is to integrate statistical uncertainty with
the inherent uncertainty of inverse problems. Such an assessment of uncertainty is clearly relevant in
prediction, control, and modeling in general.

We note in passing that matricial entropy functionals in [17], have led to a parametrization of all
(generically) minimal degree solutions to robust multivariable (1-block) control problems [61], generalizing
the work in [5, 14, 7].

1.3 Generalized statistics & generalized periodogram

Our next step is to explain what is meant by “generalized statistics” and why is this concept important.
Consider a stationary random process uk as before, with zero mean and power spectral density fu(θ).
The autocorrelation samples Rk = E{u`u`+k} of uk are the Fourier coefficients of fu(θ), i.e.,

Rk =
1
2π

∫ π

−π
e−jθfu(θ)dθ, for k = 0,±1,±2, . . . .

Occasionally, uk is not directly observable in which case one may not be able to estimate autocorrelation
samples. For instance, if xk = axk−1 + uk − buk−1 is a first-order system (−1 < a < 1) and if only xk

is available, then it is natural to estimate statistics of xk instead. These statistics represent moments of
fu(θ) with respect to kernel functions which differ from the usual e−jkθ. For example, the variance of xk,

E{x2
k} =

1
2π

∫ π

−π
| e

jθ − b

ejθ − a
|2fu(θ)dθ

is a moment of fu(θ) with respect to the kernel function |(ejθ − b)/(ejθ − a)|2. Such filtering may be part
of a measuring apparatus, but it may also be introduced to improve S/R and resolution as in e.g, [49, 30].

Thus, in general, it is customary to refer to any moments of fu(θ) as generalized statistics of the
underlying random process. Not all such moments originate in ordinary time-filtering, and not all corre-
spond to rational kernel functions. In fact, a most challenging and very common situation arises when
the indexing in {uk} refers to space and not time.
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Take for instance an array of sensors with three elements, linearly spaced
at distances 1 and

√
2 wavelengths from one another, and assume that

(monochromatic) planar waves, originating from afar, impinge upon the
array. This is exemplified in the figure on the right. Assuming that the
sensors are sensitive to disturbances originating over one side of the array,
with sensitivity independent of direction, the signal at the `th sensor is
typically represented as a superposition

u`(t) =
∫ π

0
A(θ)ej(ωt−px` cos(θ)+φ(θ))dθ,

of waves arising from all spatial directions θ ∈ [0, π], where ω is the
Non-equispaced sensor array

angular time-frequency (as opposed to “spatial”), x` the distance between the `th and the 0th sensor,
p the wavenumber, and A(θ) the amplitude and φ(θ) a random phase of the θ-component. Typically,
the phase φ(θ) for various values of θ are uncorrelated. The term px` cos(θ) in the exponent accounts
for the phase difference between reception at different sensors. For simplicity we assume that p = 1 in
appropriate units. Correlating the sensor outputs we obtain

Rk = E{u`1 ū`2} :=
∫ π

0
e−jk cos(θ)f(θ)dθ (12)

where f(θ) = |A(θ)|2 now represents power density, and k = `1−`2 with `1 ≥ `2 belonging to {0, 1,
√

2+1}
(k is kept as a “non-integer” index in Rk from mnemonic purposes). Thus, k ∈ I := {0, 1,

√
2,
√

2 + 1}.
The only significance of our selection of distances between sensors, that gave rise to this rather unusual
indexing set I, is to underscore that there is no algebraic dependence between the kernel functions

1, e−j cos(θ), e−j
√

2 cos(θ), e−j(
√

2+1) cos(θ).

Even more challenging situations arise when (i) the kernel functions represent Green’s functions or transfer
functions in a general spatial domain [10], e.g., in case sensors are scattered in a random pattern in R3,
and (ii) when statistics are obtained from observations non-equispaced in time (also, random sampling).

Let us revisit the situation of ordinary autocorrelation samples, and let T be a corresponding Toeplitz
matrix as in (1). Then T = 1

2π

∫ π
−πG(ejθ)fu(θ)G(ejθ)∗dθ, where

G(ejθ) =
[

1 ejθ . . . ej`θ
]′

(and as before, “′” denotes transpose while “∗” denotes complex conjugate transpose). The (column)
G(ejθ) is referred to as a “Fourier vector,” and as θ varies, it defines a curve in a complex space which
in the array signal processing literature is known as the “array manifold”. In this section we assume T
known and do not address issues of approximating T from sample statistics that we raised earlier.

There is a rather rich theory on how much T is telling us about the power spectum, and how
to reconstruct representative spectra (maximum-entropy, etc.) which are consistent with the partial
sequence of autocorrelation statistics. This goes back to the theory of the trigonometric moment problem
and of orthogonal polynomials [37], and forms the basis of the so-called “modern nonlinear spectral
analysis methods” [39]. Yet, a more common way to reconstruct fu(θ), based on T, is the time-tested
periodogram/correlogram

f̂(θ) :=
1

` + 1
G(ejθ)∗TG(ejθ) = . . . +

`

` + 1
R1e

jθ + R0 +
`

` + 1
R1e

jθ + . . . . (13)

This is an approximation of fu(θ) — see [59]. Another equally direct way is due to Capon:

f̂(θ) :=
1

` + 1

(
G(ejθ)∗T−1G(ejθ)

)−1
. (14)
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In either case, weighted versions of the autocorrelation coefficients can be used instead, in order to trade-
off resolution with robustness. I.e., using various windowing functions wk (Hamming, Kaiser, etc.) one
may replace Rk with Rkwk in the above. These ideas are classical, were extensively studied decades ago,
and remain the workhorse of signal analysis applications to this day. Yet, it is a striking fact that a
multivariable version of such successful tools has largely been absent (i.e., a periodogram-like method for
inherently multivariable processes).

A further fact is that the corresponding issues when G(ejθ) is not an ordinary Fourier vector, have
not been studied with the exception of the somewhat ad-hoc beamspace techniques. The recent work in
[17, 16, 62] has attempted to address such issues on a firm theoretical basis. For instance, returning to
the example of the non-equispaced antenna array and Rk for k ∈ I in (12), it is important to determine
whether estimated values for the moments are consistent with the geometry of the array, and if so to
characterize all consistent power spectra. In the present situation we package Rk’s in (12) into a matrix
and set τ = cos(θ)). The nonnegativity of

R :=
∫ 1

−1

 1
e−jτ

e−j
√

2τ

 f(cos−1(τ))√
1− τ2

[
1 ejτ ej

√
2τ

]
dτ =

 R0 R1 R√
2+1

R̄1 R0 R√
2

R̄√
2+1 R̄√

2 R0

 , (15)

is only a necessary condition. The fact that this condition is not sufficient (see e.g., [15, page 786])
motivated our recent work and led to an approach documented in [17, 16].

We now highlight some of the important findings and open questions. First, as alluded to earlier,
we generalize the form of the “Fourier vector” G(ejθ), replacing it with the transfer function of a linear,
time-invariant, discrete-time (input-to-state) dynamical system

xk = Axk−1 + Buk, with k ∈ Z,

xk being the state-vector and A,B matrices in Rn×n and Rn×m, respectively1. The input-to-state transfer
function G(ejθ) = (I − ejθA)−1B could be matricial and the random process uk vectorial (when m > 1).
If uk is white noise (with covariance matrix Q ≥ 0), then it is well known that the state covariance

R := E{xkx
′
k}

satisfies the Lyapunov equation R − ARA′ = BQB′. The case where uk is not white was dealt only
recently ([30, 31]). The correspondence between R, A, B and input power spectra fu is detailed in
[30, 31, 32]. Briefly, a state covariance for the above system satisfies

rank
[

R−ARA∗ B
B∗ 0

]
= rank

[
0 B

B∗ 0

]
(16)

where 0 is the zero matrix of appropriate dimension. An alternative characterization amounts to the
solvability of

R−ARA′ = BH ′ + HB′

for a matrix H which is of the same size as B. Conversely, provided R satisfies either of the above
two equivalent conditions, and provided it is non-negative definite, there exists a power spectrum for a
candidate input that gives rise to such state-statistics (this was shown in [30]). The parametrization of
all consistent power spectra and related computational issues has been the subject of [30, 31, 32]. The
relevant realization theory for matricial power spectral densities amounts to analytic interpolation with
positive-real matricial functions and thus, echoes the usual tools and constructions in H∞-control theory.

The motivation for considering state-covariances of linear systems, was to develop a theory for high
resolution spectral analysis following [5, 6, 28]. Our joint work with C. Byrnes and A. Lindquist led to a

1This can only approximate the case (12), to which we will return shortly.
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U.S. patent [63]. The main idea in [5] arose from the simple observation that the autocorrelation samples
of a time-series correspond to interpolation conditions for a positive-real function related to the power
spectrum, at the origin. In some detail,

F (z) =
1
2π

∫ π

−π

1 + zejθ

1− zejθ
fu(θ)dθ = R0 + 2R1z + 2R2z

2 . . .

is a positive-real function, and the Rk’s relate to the value of F (z) and its derivatives at the origin. This
generalizes to statistics of the state or output of any dynamical system. E.g., if xk = axk−1 + uk as
before, and if −1 < a < 1, then

E{x2
k} =

1
2π

∫ π

−π

1
|ejθ − a|2

f(θ)dθ =
1

1− a2
F (a)

from which we readily obtain an interpolation constraint on F (z) at z = a. In general, superior resolution
is achieved by selecting data-dependent interpolation constraints at points proximal to the unit-disc sector
of a targeted frequency band [6, 63]. The filter may reflect sensor dynamics, but it can also be virtual,
focusing on the frequency range of interest. Given interpolation constraints for the power spectrum, a
whole range of tools of the nonlinear methods [39] extends to this framework (encompassing so-called
beamspace techniques in antenna arrays). The design of input-to-state filters and relevant tradeoffs
between robustness and resolution have been addressed in [49], and will be part of our continuing research
and development of such algorithms (available at: [36]).

We now highlight the case where the “Fourier vector” is replaced by a Green’s/transfer function
G(ejθ) with no apparent shift structure. Turning once more to the non-equispaced antenna array we
introduced earlier, we seek a power density function f(θ) consistent with the statistics which is closest
to a “prior” fprior(θ) in the sense of, say, a Kullback-Leibler distance

S(f ||fprior) :=
1
2π

∫ π

−π
(fprior log(fprior)− fprior log(f)) dθ.

The minimizing solution can be written in closed form f(θ) = fprior(θ)/Re{λoG(ejθ)} where λo denotes
a (row) vector of Lagrange multipliers for the minimization problem. These multipliers can be easily
computed so that f(θ) abides by the given statistics, provided of course that the statistics are con-
sistent with the structure of G(ejθ) (which underscores the importance of our earlier considerations in
approximating sample covariances). A homotopy method was proposed in [16, 17] leading to a differ-
ential equation for λ(τ) in a homotopy variable τ . If the statistics are consistent with the structure of
G(ejθ), then λ(τ) → λo as τ → 1, otherwise λ(τ) escapes to ∞. The rôle of fprior is to introduce prior
information, but can also be used to parametrize all solutions to the moment problem, since choices of
fprior lead to the complete set of f ’s such that

R =
1
2π

∫ π

−π
G(ejθ)f(θ)G(ejθ)∗dθ. (17)

We would like to emphasize that the theory in [17] applies to the case of matricial power density
functions fu (e.g., spectral density functions of multi-variable processes), as well as to cases where the
support is multi-dimensional (e.g., space-time distributions, or θ ∈ R` with ` > 1 in general) in which
case the integrals are interpreted accordingly. A challenge at present is to improve the computational
efficiency of obtaining density (possibly, matrix) functions, for either case where G has or has not a shift
structure (i.e., in the case where G is the input-to-state transfer function of a linear filter, or simply
a multivariable array manifold with no apparent structure, in general). Thus, we plan to address the
following specific issues.
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Problem 7 Study the following “periodogram-like” analog for matricial moment problems

fperio(θ) :=
1

` + 1
G(ejθ)∗RG(ejθ),

` being the size of R. More specifically, given an arbitrary (smooth matrix-valued) function G(ejθ) and
a matricial moment R of compatible size, determine how far is fperio(θ), as a matrix-valued density
function, from being compatible with (17).

Direct comparison with (13) is very suggestive. Given the computational simplicity of the above
formula, it is imperative to understand when it can be used. Very much as in the case of the classical
periodogram, it is only an approximation. Thus, we plan to study in what sense it is an approximation
and to develop quantitative answers to this question. Further, a choice of weights can dramatically
enhance robustness of such a matrix-valued generalization of the periodogram. This echoes the way
weights reduce variability of spectral estimates in the standard Blackman-Tukey techniques—yet, now,
for multivariable spectral and arbitrary dynamics in A. A natural way that we may introduce weights
is by using the algebraic structure of Schur products: given two matrices R,W of same size, the Schur
product R •W is defined as another matrix of the same size formed via term-wise multiplication of the
entries of R and W , i.e., the (i, k)-entry of R • W is Ri,k · Wi,k. The Schur product is also known as
Haddamard product and represents a commutative operation. An important fact is that if R > 0 and
W > 0, in the positive-definite sense, then so is their Schur product. Preliminary research suggests that
the following generalization of the periodogram is especially versatile and useful.

Problem 8 (Generalization of Blackman-Tukey) Let W be a positive definite matrix with the same size
as R and let

fperio,W (θ) := G(ejθ)∗(R •W )G(ejθ).

Determine the relationship between fperio,W (θ), the “weight function” G(ejθ)∗WG(ejθ), and the class of
matrix functions f(θ) consistent with (17).

Throughout the superscript ∗ denotes the complex conjugate transpose. It is easy to see that
fperio,W (θ) generalizes the classical periodogram when R is a Toeplitz matrix (and uk scalar). In this
case, fperio,W (θ) is a scalar function since G is the usual Fourier vector, and it is also the convolution of
a generic function f which is consistent with (17) with G(ejθ)∗WG(ejθ). Broadly speaking, our goal is
to generalize the Blackman-Tukey techniques to the multivariable case by explaining how the choice of
W affects the variability of the estimates, and how those relate to the underlying power spectra.

Similar set of issues will be taken up for a multivariable (also multi-dimensional) analog of (14). It is
interesting to point out (see [28]) that when uk is scalar, the density function in (14), as well as its analog
when G, Tn are replaced by an input-to-state filter and the corresponding state-covariance R, represent
power spectral envelops. I.e., f̂(θ) represents the maximal energy of a periodic signal at frequency θ,
for each θ, which is compatible with the given statistics. No corresponding interpretation exists at the
moment for the case where uk is vectorial. Yet, experience suggests that an analogous interpretation
ought to be true. The following summarizes pertinent issues we wish to pursue.

Problem 9 For a given W > 0 of same size as R, provide an interpretation of

fcapon,W (θ) :=
1

n + 1

(
G(ejθ)∗(R−1 •W )G(ejθ)

)−1
.

as it pertains to spectral density functions f(θ) consistent with (17).

This generalizes the Capon spectral envelopes [59], hence the subscript. The introduction of weights
incurs minimal computation cost and it appears to have similar benefits as in classical periodogram
techniques. The benefits, significance, and interpretation of such weights will be a subject for investiga-
tion. We will also study the sensitivity of the techniques on the structure of R and the benefits of the
approximation theory we outlined earlier in correcting inconsistencies in sample covariances.
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1.4 Correlation range and convex analysis

The observation that singularities in a covariance matrix reveal deterministic linear dependences between
observed quantities, forms the basis of a wide range of techniques, from Gauss’ least squares, to principle
component analysis (PCA, GPCA), to modern subspace methods in time-series analysis. This observation
suggests that a decomposition of covariance data into “signal + noise,” in accordance with a suitable
postulate, leads to identification of such deterministic dependences.

We first discuss the implications of the observation in time-series analysis. Here, one may seek a
white-noise component of maximal variance which is consistent with estimated statistics. For instance,
if uk is a scalar random process as before, the minimal eigenvalue λmin(T) of T represents the maximal
power of white noise which is consistent with this autocorrelation data. Furthermore, Tn − λmin(Tn)I
is singular and corresponds to a deterministic random process made up of at most n-complex sinusoidal
components. This fact (albeit in a different language) was already known to Carathéodory and Fejér
in the early part of the 20th century. It was recognized by Pisarenko in the 1960’s for its relevance in
signal analysis and forms the basis of certain widely used high resolution methods for spectral analysis
known as MUSIC (MUltiple SIgnal Classification) and ESPRIT (EStimation of Parameters by Rotational
Invariant Techniques) —see [15, 28, 59].

A theory for a multivariable Carathéodory-Fejér-Pisarenko decomposition was presented recently
by the P.I. in [32]. In [32] we have shown that after we account for white noise of maximal power, the
remaining variance cannot be accounted for by pure sinusoids (it is considerably more complicated). Then,
since the “white noise” hypothesis is often suspect anyway, and since in sensor arrays the hypothesis of
mutual couplings and local scatterering effects suggests the presence of short range correlation noise (e.g.,
the analog of say, MA(1) or MA(2) in time-series), [32, 19] develop canonical decompositions accounting
for noise with such short-range correlations. These problems are formulated as semi-definite programs
and efficiently solved with existing software [4]. In this direction we plan to address the following.

Problem 10 Extend the theory and techniques in [32] to a general transfer function/array manifold G(θ)
with no apparent shift structure (i.e., not necessarily one in the form (I − ejθA)−1B). More specifically,
given a covariance matrix R which originates by correlating outputs from a spatially distributed sensor
array, develop efficient numerical techniques for decomposing R in accordance with the hypothesis that
the data contain a strong short-range-correlation noise component.

Thus, we plan to develop tools that are suitable to deal with structured noise statistics (typified by
mutual couplings and interference in sensor arrays) as well as with the system theoretic maxim that a
maximal set of dependences is to be sought. To this end, recent developments in imposing rank constraints
in such additive decomposition of covariances [54, 47] will be studied (cf. Section 1.1 as well).

1.5 Multivariable identification and causal coherence

Questions regarding coherence and relevance of signals to one another are certainly not new. Yet, in a
variety of applications, the size of the database and the purpose of seeking such signal affinities, demand
a fresh and effective way to deal with such questions. The basic issue is to identify the dynamical
dependance and quantify coherence between collections of signals. What we are aiming at is a way to
select, among the readings available via an array of sensors, a most relevant signal (or collection of such)
for use in feedback control. Coherence alone is not sufficient to designate a signal as relevant, since the
phase is of crucial importance for control. For instance, a delayed version of a system output is highly
correlated to the actual (without delay) output, yet it may be useless for disturbance rejection purposes,
whereas another less coherent noisy signal may be preferable if it provides information on the output at
an earlier time.

The setting we have selected begins with data collected via distributed sensor arrays. In a typical
situation we may assume that (column) vectors of observations

u(t) =
[

u0(t) u1(t) . . . un(t)
]′
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where t ∈ {0, 1 . . . , N} (herein discrete-time and equi-spaced for simplicity) are available. The number
n of entries is typically very large and the entries uk(t) themselves (k = 0, 1, . . . , n) could be vectorial in
general. We often suppress the time dependence for notational convenience.

The entries uk (k = 0, 1, . . . , N) represent
measurements collected by an array of sensors
which are distributed over a spatial domain at
known spatial coordinates. The spatial medium
is assumed non-dispersive and allows the flow of
vibrations from unkown disturbance locations to
some or all of the sensors. The location where u0

is being measured is special. It may represent
reading at the location of an instrument (laser
gun, tracking device) which we seek to isolate
from vibrations through feedback control. Thus,
u0 depends on a control actuation signal v and
a disturbance d. A schematic on the right, rep-
resents the dynamical dependence between mea-
surables uk’s and d, v via an unknown (linear)
dynamical system with a (n + 1) × 2-transfer
function matrix H. The pathway from the con-
trol signal v to u0 can be direct, with a transfer
function of 1, if we chose to neglect actuator dy-
namics.

Feedback using a sub-collection of a sensor array

Our goal is to seek in a systematic manner a sub-collection of uk-signals (ideally a “small” sub-
collection) which most accurately captures the path of the disturbance through the medium and is
maximally relevant in controlling u0.

A simple schematic showing the relative location of sensors
0, 1, 2, 3 along with the location where the disturbance enters into
a planar medium is shown on the right. Large arcs are drawn to
suggest wave propagation from the source of the disturbance to-
wards the sensors. The dynamical dependence is characterized by
a suitable transfer function Huk,d in each case. Based on relative
distances and locations, it is intuitively obvious that although
u0 and u3 are highly correlated, u3 is not very useful for con-
trol purposes since the disturbance impinges upon u0 first, and
then upon u3. The ratio Hu0,d(ejθ)/Hu3,d(ejθ) would manifest a
“phase-lead” (i.e., “time-advance”) reflecting the inverse of the
time-delay between locations 0 and 3 along the path of the dis-
turbance. Similarly, it is intuitively obvious that u2 may be of
significant value since its distance to the point of entry of the
disturbance is less than that of u1.

Vibrational source and array elements

In a static context, where no dynamic dependence is taken into account, classical coherence techniques
are based on analysis of the covariance matrix R = E{uu′}. Assuming all variables have zero mean, one
typically computes and compares the Hotelling canonical correlations

c0,k :=
E{u0uk}√
E{u2

0}E{u2
k}

=: cos(θ0,k)

which represent cosines of the angle between the random variables as elements in an underlying Hilbert
space. Similarly the angle (“minimal angle”) between the subspace spanned by a collection uk (k ∈ S
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a set of indices) and u0 is the arcsine of
√

1−R−1
00 R0,SR−1

S,SR′
0,SR

−1/2
00 , where R00 = E{u2

0}, R0S is the
vector of covariances between u0 and those indexed by elements of S, and similarly RSS is the covariance
matrix of the sub-collection of the uk’s indexed by S. In this context, we are interested in the following:

Problem 11 Identify a sub-collection of m random variable uk so that u0 is closest to their span, for
any given m.

When n is large, the search for such a “closest subspace” could be daunting. To simplify the task, one
may use the Hadamard ratio

0 ≤ det(R)∏
`∈S R`,`

which quantifies the linear dependence between elements indexed by S. Multivariable generalizations of
these are quite natural. Indeed, the Hadamard product of, say a collection u` with ` ∈ S = S1 ∪ S2

(S1 ∩ S2 = ∅) factors into the Hadamard product corresponding to each sub-collection of indices S1, S2

times an angular distance between the respective subspaces spanned by the random variables in the two
sub-collections (e.g., see [56, Equation (40)]). Using such a tool it is possible to guide the search for
relevancy among large numbers of sensor outputs uk. Another useful tool is the algebra of the Schur
complement [8]. For instance, uk’s which are maximally coherent with u0 are necessarily near the principal
components of the Schur complement R/R00 := R1:n,1:n − R1:n,0R

−1
00 R0,1:n (using a “Matlab-inspired”

notation for ranges of indices) which can guide the relevant search. We plan to develop efficient tools
for addressing the above problem. We also intend to study the relevance of low rank approximations of
R, or perhaps even better, of sparse approximations for R−1 (since the inverse covariance characterizes
conditional dependence).

In a dynamic context, where the time-history is taken into account, we are interested in the coherence
between random processes. This can be formalized via angular distances in the spectral domain [2].
In other words, a coherence function can be calculated at various frequencies as the sine of the angle
between respective spectral components. An average coherence can be conveniently defined as a mean
value (arithmetic, geometric, etc.) across a frequency range. Our goal is to address the following:

Problem 12 Given a collection of time-series data u0(t), . . . , un(t), (t = 0, 1, . . . , N) as before, or possi-
bly, given partial auto-covariance statistics for the vectorial u := [u0, . . . , un]′, determine a sub-collection
of m variables (uk with k in a suitable indexing subset S ⊂ {1, . . . , n}), so that the mean value of the
coherence function over a given frequency range is maximal.

The particular way we quantify coherence is important. The above follow classical guidelines. However,
if the sub-collection of random processes is to be used for feedback control, we need to base our selection
on non-traditional metrics as we explain next.

Consider two random processes u0(t), u1(t). If there is a dynamic dependence between the two, as in
the case where both are outputs of a linear dynamical system with a scalar “disturbance” input d, the
joint spectral density function is of rank 1 across frequencies because

f(θ) =
[

f00 f01

f10 f11

]
=

[
H0d(ejθ)
H1d(ejθ)

]
fdd(θ)

[
H0d(ejθ)∗ H1d(ejθ)∗

]
,
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where fdd is the spectral density of the disturbance and Hid rep-
resents the transfer function from d to ui. Given f(θ) we can
readily identify the fraction H0d(ejθ)/H1d(ejθ) = f00(θ)/f01(θ).

Now consider that u1 is to be used for mediating the effect
of the disturbance d to the node u0, via a suitably designed
controller K as shown in the schematic on the right. In this,
for simplicity, we assume that the control signal v affects u0

directly. Our control authority in mediating the effect of dis-
turbances depends heavily on the relationship between the par-
ticular transfer functions Hid(s) (e.g., for i ∈ {0, 1}). Indeed,
the quality of disturbance attenuation is readily quantified as
the solution to the following standard (Nehari) problem in

Disturbance rejection “wiring” diagram

H∞-control:
inf

K∈H∞
‖H0d(z)−K(z)H1d(z)‖ = ‖ΓH0d(z)/H1d(z)‖

taking H1d to be inner. Here ΓH(z) denotes the Hankel operator with symbol H(z) as is customary in
H∞-control. The above is a standard model-matching problem. We also note that it is quite easy and
natural to introduce weights so as to incorporate prior information about the spectrum of d.

The coherence function between u0 and u1 is given by

γ(θ) =
|f01|√
f00f11

and is identically equal to 1 under the above assumption of “noise free” u0, u1. In general, the rank
of f(θ) will be 2 and the coherence < 1. Yet, an appropriate quantity which quantifies our “control
authority” at the node u0 when we know u1, is the norm

‖Γf00/f01
‖

of the Hankel operator with symbol f01(θ)/f00(θ) = H0d(ejθ)/H1d(ejθ) as discussed earlier. Returning to
the situation of many signals u0(t), . . . , un(t) (t = 0, 1, . . . , N), we can similarly argue that the quantity
which captures our authority in controlling u0 based on measurements of u`(t), ` ∈ S is

inf
K`∈H∞, `∈S

‖H0d −
∑
`∈S

H0`K`‖∞. (18)

Estimates of H0d/Hid can be computed directly from the data and their statistics. For example, we
can estimate covariances Rij(`) = E{ui(t)uj(t + `)′} and then utilize either the “central” solution to
respective moment problems given in [31] or multivariable periodograms described in Section 1.3, in
order to estimate the required ratios. High resolution estimates of such ratios can be obtained using
(generalized) statistics via an “input-to-state” filter which aggregates all measurements as shown in the
schematic of page 13. The input-to-state filter is denoted by G(s). This brings us to one final key problem
we wish to address:

Problem 13 With the notation and context given above, determine a sub-collection of m variables uk, so
that they are maximally relevant in negating the effect of a disturbance d on u0, in the sense of minimizing
(18).
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