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Abstract— State statistics of a linear system obey certain
structural constraints that arise from the underlying dy-
namics and the directionality of input disturbances. Herein,
we formulate completion problems of partially known state
statistics with the added freedom of identifying disturbance
dynamics. The goal of the proposed completion problem
is to obtain information about input excitations that
explain observed sample statistics. Our formulation aims
at low-complexity models for admissible disturbances. The
complexity represents the dimensionality of the subspace of
the state-dynamics that is directly affected by disturbances.
An example is provided to illustrate that colored-in-time
stochastic processes can be effectively used to explain
available data.

Index Terms— Convex optimization, low-rank approx-
imation, nuclear norm regularization, state covariances,
structured matrix completion problems, noise statistics.

I. INTRODUCTION

The motivation for this work stems from the need to
explain statistics of systems with very large number of
degrees of freedom with models of low complexity. One
such example arises in fluid flows where the dynamics
are governed by the Navier-Stokes (NS) equations. Al-
though, in principle, these equations capture all features
of the underlying dynamics they are prohibitively com-
plex for model-based analysis and design. It has been
proposed and successfully demonstrated that linearized
NS equations in the presence of stochastic excitation
are sufficient to qualitatively predict structural features
of wall-bounded shear flows [1]–[4]. In all prior studies
excitations have been restricted to white-in-time stochas-
tic processes. This assumption is often too restrictive to
explain observed statistics of turbulent flows. Therefore,
our interest is in developing a framework to allow for
the more general class of colored-in-time stochastic
disturbances.

The data for our problem comes in the form of
partially available second-order statistics. These are typi-
cally generated in experiments or high-fidelity numerical
simulations and, thus, our aim is to reproduce statistics
with linear dynamics with known generator. The gener-
ator arises from linearization around given equilibrium
profile. On the other hand, neither the way disturbance
enters into the state equation, nor its power spectrum
are known. Since white-in-time disturbances may be in-
sufficient to account for observed statistics, we examine
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Y. Chen, M. R. Jovanović, and T. T. Georgiou are with
the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455. E-mails:
{chen2468, mihailo, tryphon}@umn.edu.

the possibility to explain data using disturbances with
non-trivial power spectra.

The structure of state covariances for colored-in-time
disturbances has been studied in [5], [6]. This framework
naturally leads us to formulate a new class of matrix
completion problems. Complexity of the disturbance
model can be expressed in terms of rank. We study struc-
tural relations and constraints between the parameters of
the disturbance model and the requirement that sampled
covariances are reproducible by linear dynamics. We
utilize the nuclear norm as a proxy for the rank [7]–[11],
and formulate convex optimization problems to address
our modeling paradigm.

The paper is organized as follows. In Section II we
briefly summarize key results on the structure of state co-
variances. In Section III we characterize admissible sig-
natures for certain Hermitian matrices that parametrize
disturbance spectra and provide the theoretical basis for
the rank minimization problem that we formulate in
Section IV. To highlight theory and concepts we give an
example in Section V and recap with concluding remarks
in Section VI.

II. STATE COVARIANCES

Consider a linear time-invariant system

ẋ = Ax + Bu (1)

where x(t) ∈ Cn is a state vector, u(t) ∈ Cm is a zero-
mean stationary stochastic input, A ∈ Cn×n is a Hurwitz
matrix, B ∈ Cn×m with m ≤ n is a full column rank
matrix, and (A,B) is a controllable pair. The steady-
state covariance Σ of the state vector in (1) satisfies

rank

[
AΣ + ΣA∗ B

B∗ 0

]
= rank

[
0 B
B∗ 0

]
. (2a)

Equivalently, the equation

AΣ + ΣA∗ = −BH∗ − HB∗ (2b)

has a solution H ∈ Cn×m. Either of these conditions
together with the positive definiteness of Σ completely
characterizes state covariances of linear dynamical sys-
tems driven by white or colored stochastic processes [5],
[6]. In particular, when the input is white noise with co-
variance W , Σ satisfies the algebraic Lyapunov equation

AΣ + ΣA∗ = −BWB∗. (3)

Hence, in this case, H in (2b) is determined by H =
BW/2.

In general,

Q := − (AΣ + ΣA∗) (4a)
= BH∗ +HB∗. (4b)
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is not necessarily positive semi-definite, unless the input
is white noise. In fact, for a given Σ a solution H to (2b)
allows for the reconstruction of admissible input power
spectra [5], [6].

While Q may not necessarily be positive semi-
definite, it is not arbitrary. Our motivation in this paper is
to complete partially known state statistics with models
of low complexity. In order to do this, it is necessary
to understand the structural constraints that (4) imposes
on Q. In particular, we examine admissible values of the
signature on Q (that is, the number of positive, negative,
and zero eigenvalues). We will show that the number
of positive and negative eigenvalues of Q impacts the
number of input channels in the state equation (1). We
will utilize this information for completion of partially
known state statistics.

III. THE SIGNATURE OF Q

We now characterize admissible signatures for a Her-
mitian matrix Q which satisfies (4). There are two sets of
constraints arising from (4a) and (4b), respectively. The
first one is a standard Lyapunov equation with Hurwitz
A and a given Hermitian Σ � 0. The second one,
which is a linear equation in B and H , provides the
link between the signature of Q and the number of input
channels in (1).

A. Constraints arising from Q = −(AΣ + ΣA∗)

The unique solution to the Lyapunov equation

AΣ + ΣA∗ = −Q, (5)

with A Hurwitz and Σ, Q Hermitian, is given by

Σ =

∫ ∞
0

eAtQ eA
∗t dt. (6)

Lyapunov theory tells us that if Q is positive definite
then Σ is also positive definite. However, the converse
is not true; for a given Σ � 0, Q obtained from (5) is
not necessarily positive definite. Clearly, Q cannot be
negative definite either, otherwise Σ obtained from (6)
would be negative semi-definite. This raises the question
about admissible signatures of Q = Q∗. In what follows,
the signature is defined as the triple

In(Q) = (π(Q), ν(Q), δ(Q))

where π(Q), ν(Q), and δ(Q) denote the number of pos-
itive, negative, and zero eigenvalues of Q, respectively.

Several authors have studied constraints on signatures
of A, Σ, and Q that are linked through a Lyapunov
equation [12]–[14]. Typically, such studies focus on the
relationship between the signature of Σ and the eigenval-
ues of A for a given Q � 0. Recently, the authors of [15]
have considered the relationship between the signature
of Q and eigenvalues of A for Σ � 0. Since one of
our objectives is to understand the constraints on the
signature of Q arising from the Lyapunov equation (5)
with A Hurwitz and Σ � 0 we will make use of a result
in [15].

Let {λ1, . . . , λl} denote the eigenvalues of A, let gi

denote the geometric multiplicity of λi, and

i(A) := max
1≤ i≤ l

gi. (7)

The following result is a special case of [15, Theorem 2].
Proposition 1: Let A be Hurwitz and let Σ be positive

definite. For Q = −(AΣ + ΣA∗),

π(Q) ≥ i(A). (8)
To explain the nature of the constraint π(Q) ≥ i(A),

we first note that i(A) is the least number of input chan-
nels that are needed for system (1) to be controllable.
Now consider a decomposition

Q = Q+ − Q−

where Q+, Q− are positive semi-definite matrices, and
accordingly Σ = Σ+ − Σ− with Σ+, Σ− denoting
the solutions of the corresponding Lyapunov equations.
Clearly, unless the above constraint (8) holds, Σ+ cannot
be positive definite. Hence, Σ cannot be positive definite
either.

Interestingly, there is no constraint on ν(Q) other than

π(Q) + ν(Q) ≤ n

which comes from the dimension of Q.

B. Constraints arising from Q = BH∗ +HB∗

We begin with a basic lemma.
Lemma 1: For a Hermitian matrix Q decomposed as

Q = S + S∗

the following holds

π(Q) ≤ rank(S).

Proof: The proof is given in the appendix.
Clearly, the same bound applies to ν(Q), that is,

ν(Q) ≤ rank(S).

The importance of these bounds stems from our
interest in decomposing Q into summands of small
rank. A decomposition of Q into S + S∗ allows us to
identify input channels and power spectra by factoring
S = BH∗. The rank of S coincides with the rank of
B, that is, with the number of input channels in the
state equation. Thus, it is of interest to determine the
minimum rank of S in such a decomposition and this is
given in the following proposition.

Proposition 2: For a Hermitian matrix Q having sig-
nature (π(Q), ν(Q), δ(Q)),

min {rank(S)| Q = S + S∗} = max {π(Q), ν(Q)} .
(9)

Proof: The proof is given in the appendix.

C. Constraints on the signature of Q

We now summarize the bounds on the number of pos-
itive and negative eigenvalues of the matrix Q defined
by (4). By combining Proposition 1 with Lemma 1 we
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show that these upper bounds are dictated by the number
of inputs in the state equation (1).

Proposition 3: Let Σ � 0 denote the steady-state
covariance of the state x of a stable linear system (1)
with m inputs. If Q satisfies the Lyapunov equation (5),
then

0 ≤ ν(Q) ≤ m (10a)

i(A) ≤ π(Q) ≤ m. (10b)
Proof: Following [5], a state covariance Σ satisfies

AΣ + ΣA∗ = −BH∗ − HB∗.

Setting S = BH∗,

Q = BH∗ + HB∗ = S + S∗.

From Lemma 1,

max{π(Q), ν(Q)} ≤ rank(S) ≤ rank(B) = m.

The lower bounds follow from Proposition 1.
We note that Proposition 3 does not require π(Q) ≥

ν(Q). In fact, for a Hurwitz A with i(A) = 1, it is
possible to have Σ � 0 with ν(Q) � π(Q) = 1. To
see this, let Q1 := −I with Σ1 ≺ 0 the corresponding
solution of the Lyapunov equation. Let b be a vector such
that (A, b) is controllable, Q2 = bb∗ with Σ2 � 0 the
corresponding steady-state covariance. Choose α large
enough so that

Σ3 = αΣ2 + Σ1 � 0.

It follows that Q3 := αbb∗ − I satisfies

AΣ3 + Σ3A
∗ = −Q3

with Σ3 � 0. Clearly, the signature of Q3 is (1, n−1, 0).
Proposition 2, combined with the results of this sec-

tion, leads to matrix completion problem that we discuss
next.

IV. COMPLETION OF PARTIALLY KNOWN STATE
COVARIANCES

The end goal of the matrix completion problem that
we formulate is to obtain information about unknown
input excitation in the linear dynamics (1). Typically,
in many emerging applications, while the dynamical
generator A is known, the observed statistics for the
state vector arise from disturbances that are difficult
to account for. Hence, herein, we seek an explanation
of observed statistics using disturbance models of low
complexity. In particular, we want to identify disturbance
models that involve the least number of input channels.

A. Covariance matrix completion problem

For colored-in-time forcing u that enters into the
state equation through identity matrix, condition (2a) is
trivially satisfied. Indeed, any sample covariance Σ can
be generated by a linear model (1) with B = I . Thus, a
disturbance input u that excites all degrees of freedom in
the original system can trivially account for the observed

statistics and provides no useful information about the
underlying physics.

In most physical systems, disturbance can directly
excite only a limited number of directions in the state
space. For instance, in mechanical systems where inputs
represent forces and states represent position and veloc-
ity, disturbances can only enter into the velocity equa-
tion. This requirement can be formalized by restricting
the input to enter into the state equation through a matrix
B ∈ Cn×m with m < n. In this case, the condition for
Σ � 0 to be the state covariance of a linear system
(A,B) for some stationary zero-mean stochastic input,
is equivalent to a solvability of (2b) in terms of a matrix
H ∈ Cn×m which in turn provides information about
the power spectrum of the input.

In our setting, the structure and size of the matrix B
in (1) is not known a priori. Thus, our objective will
be to identify both matrices B and H that reproduce
partially available second-order statistics while striking
an optimal balance with the complexity of the model.
The complexity of the model is reflected by the signature
of Q and consequently, through Proposition 2, by the
rank of S where Q = S + S∗. Since the rank of
S := BH∗ (cf. (4b)) coincides with the rank of the
matrix B, this rank also dictates the number of channels
through which disturbance enters into the state equation.
Therefore, it is natural to seek an explanation of the data
via a choice of a matrix S which has low rank and is
consistent with partially available statistics.

The paradigm of low rank solutions to linearly con-
strained problems has recently received considerable
attention due to the confluence of relevant emerging
applications and powerful optimization techniques. In
fact, low rank approximations of high dimensional data
have found use in statistical signal processing, machine
learning, and collaborative filtering [9], [16]–[20]. In
our problem, additional structural constraints arise from
the requirement that partially available second-order
statistics are generated by a linear system with a known
A-matrix. In what follows, we use these structural
constraints to introduce a new paradigm in the study
of matrix completion problems.

The rank is a non-convex function of the matrix and
the problem of rank minimization is difficult. Recent
advances have demonstrated that the nuclear-norm (i.e.,
the sum of the singular values)

‖S‖∗ :=

n∑
i=1

σi(S)

represents a good proxy for rank minimization [7]–[11].
Thus, we formulate the following optimization problem.

State-covariance completion problem. Given A,G` ∈
Cn×n, g` ∈ C, for ` ∈ {1, . . . , N}, with A Hurwitz,
determine Q = S + S∗ where S is obtained by solving
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the following:

minimize ‖S‖∗
subject to AΣ + ΣA∗ + S + S∗ = 0,

Σ � 0,

trace (G` Σ) = g`, ` = 1, . . . , N.
(MC)

Here, the matrices A and G` as well as the scalars
g` are the problem data, while the n × n matrices
S and Σ = Σ∗ are optimization variables. The trace
constraints reflect partial second-order known statistics
resulting from high-fidelity numerical simulations or
experiments on the underlying physical system. Indeed,
steady-state correlations of any output y(t) = Cx(t) can
be expressed as

e∗i lim
t→∞

E (y(t) y∗(t)) ej = e∗i CΣC∗ ej

= trace (C∗eje
∗
iC Σ)

= trace (G` Σ)

where ei is a vector with 1 as its ith entry. Thus, the
g`’s in (MC) represent observed output covariance data
suitably restricting the state covariance Σ.

Since both the objective function and the constraints
in (MC) are convex, the optimization problem (MC) is
convex as well [21]. Furthermore, as shown in [10],
[22], nuclear norm minimization can be formulated as a
semidefinite program (SDP) and thus, solved efficiently
using standard SDP solvers for small size. For large
problems, which are typical in many emerging appli-
cations, in a companion paper [23], we develop efficient
algorithms. These are based on the alternating direction
method of multipliers, a state-of-the-art technique for
solving large-scale and distributed optimization prob-
lems [24].

Remark 2: As shown in Proposition 2, minimiz-
ing the rank of S is equivalent to minimiz-
ing max {π(Q), ν(Q)}. Given Q with signature
(π(Q), ν(Q), δ(Q)), there exist matrices Q+ � 0 and
Q− � 0 with Q = Q+ − Q− such that rank(Q+) =
π(Q) and rank(Q−) = ν(Q). Furthemore, any such
decomposition of Q satisfies rank(Q+) ≥ π(Q) and
rank(Q−) ≥ ν(Q). Thus, instead of (MC), an alterna-
tive convex optimization problem aimed at minimizing
max {π(Q), ν(Q)} is given by

minimize max {trace(Q+), trace(Q−)}
subject to AΣ + ΣA∗ + Q+ − Q− = 0

Σ � 0, Q+ � 0, Q− � 0

trace (G` Σ) = g`, ` = 1, . . . , N.
(MC1)

B. Factorization of Q into BH∗ +HB∗

If Q = S+S∗ is obtained by solving problem (MC),
singular value decomposition of S can be used to factor
it into S = BH∗. If instead, Q = Q+−Q− is obtained
by solving problem (MC1), we next demonstrate how
the proof of Proposition 2 can be used to decompose the

matrix Q into BH∗+HB∗ with S = BH∗ of minimum
rank. Given Q with signature (π(Q), ν(Q), δ(Q)), we
can choose an invertible matrix T to bring Q into the
following form

Q̂ := TQT ∗ = 2

 Iπ 0 0
0 −Iν 0
0 0 0

 (11)

where Iπ and Iν are identity matrices of dimension
π(Q) and ν(Q) [25, pages 218–223]. We first present
factorization of Q for π(Q) ≤ ν(Q). With

Ŝ =

 Iπ −Iπ 0 0
Iπ −Iπ 0 0
0 0 −Iν−π 0
0 0 0 0

 (12)

we clearly have Q̂ = Ŝ + Ŝ∗. Furthermore, Ŝ can be
written as Ŝ = B̂Ĥ∗, where

B̂ =

 Iπ 0
Iπ 0
0 Iν−π
0 0

 , Ĥ =

 Iπ 0
−Iπ 0

0 −Iν−π
0 0

 .
Finally, the matrices B and H are determined by B =
T−1B̂ and H = T−1Ĥ .

For π(Q) > ν(Q), Q can be decomposed into BH∗+
HB∗ with B = T−1B̂, H = T−1Ĥ , and

B̂ =

 Iπ−ν 0
0 Iν
0 Iν
0 0

 , Ĥ =

 Iπ−ν 0
0 Iν
0 −Iν
0 0

 .
Note that both B and H are full column rank matrices.

C. Input power spectra
Starting from a set of values for the two matrices B

and H , which we can obtain using our earlier scheme,
we can now determine power spectra for the input to the
linear system (1) that are consistent with the steady-state
covariance Σ. Indeed, given any Ω � 0, the following
(matrix-valued) power spectral density

Πuu(ω) := Ψ(jω) Ω Ψ(jω)∗,

where

Ψ(jω) := I + C1(jωI −A1)−1B

C1 := −1

2
ΩB∗Σ−1 +H∗Σ−1

A1 := A+BC1,

can serve as the power spectrum of an input process u
which is consistent with the observed statistics. To verify
this, note that

(sI −A)−1BΨ(s) = (sI −A1)−1B.

This step amounts to removing unobservable modes in
the series connection of the two systems with transfer
functions (sI −A)−1B and Ψ(s). Then, A1Σ + ΣA∗1 +
BΩB∗ = 0 can be readily verified, which proves our
claim.
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V. EXAMPLE

Consider a mass-spring-damper (MSD) system with
10 masses subject to colored disturbance. The distur-
bance is generated by white noise passing through a
shaping input filter. The cascade connection of the MSD
dynamics together with the input filter is as follows:

input filter: ż = Afz +Bfd

u = Cfz +Dfd

MSD system: ẋ = Ax + Bu.

Here, d(t) is zero-mean unit-variance white noise,

A =

[
O I

−K − 2K

]
, B =

[
O
I

]
,

where O, I represent the zero and identity matrices,
respectively, and K is a symmetric tridiagonal Toeplitz
matrix with 2 on its main diagonal and −1 on the first
upper and lower sub-diagonals.

The state covariance Σ of the cascade system is the
solution of the Lyapunov equation

AΣ + ΣA∗ + BB∗ = 0, (13)

where

A =

[
A BCf
O Af

]
, B =

[
BDf

Bf

]
.

We partition

Σ =

[
Σxx Σxz
Σzx Σzz

]
,

and further partition the sub-covariance of the MSD
system

Σxx =

[
Σpp Σpv
Σvp Σvv

]
,

in order to highlight the covariances Σpp and Σvv of
the position and velocity components, respectively. We
apply the earlier methodology to complete Σxx using
only knowledge of the diagonal elements of Σpp and
Σvv .

In this example, we set z to have the same number
of components as x and select Af to be a diagonal
matrix with random negative entries. Furthermore, for
Bf = Cf = Df = I , we solve the optimization
problem (MC1) and obtain Q = S +S∗ with 2 positive
eigenvalues (11.3824, 0.6614), 2 negative eigenvalues
(−12.0437,−0.0001), and 16 eigenvalues at 0. Thus,
we use 2 colored-in-time inputs to account for the given
diagonal partial state statistics. In Figs. 1a and 1b we
display the color-coded Σpp and Σvv obtained by solving
the Lyapunov equation (13). These represent the “ground
truth”, since the known disturbance model is used. In
Figs. 1c and 1d we display the reconstructed Σ̂pp and
Σ̂vv , obtained by the optimization problem (MC1) using
only the diagonal entries of Σpp and Σvv . We observe
that Σ̂pp and Σ̂vv are fairly good approximations of Σpp
and Σvv .

(a) Σpp (b) Σvv

(c) Σ̂pp (d) Σ̂vv

Fig. 1: First row: submatrices Σpp and Σvv of the state
covariance of the MSD system. Second row: matrix
completions Σ̂pp and Σ̂vv based on (MC1).

VI. CONCLUDING REMARKS

We are interested in explaining partially known
second-order statistics of a linear system by the least
possible number of input disturbances. This problem
arises from the need for model-based analysis and design
techniques in control of turbulent fluid flows. In such
an application, the linearized NS equations provide the
generator for the dynamics whereas the nature and
directionality of disturbances that can account for the
observed statistics are largely unknown. The disturbance
model, both in terms of directionality as well as spectral
content, is sought as a solution to an optimization prob-
lem. Analysis of the signature of relevant optimization
parameters provides insight into structure of the distur-
bance subspace and motivates alternative formulations.
The dimensionality of the disturbance vector introduces
a rank constraint which is relaxed using the nuclear norm
proxy.

APPENDIX

Proof of Lemma 1

Without loss of generality, let us consider Q of the
following form

Q = 2

 Iπ 0 0
0 −Iν 0
0 0 0


as in (11). Given any S that satisfies Q = S + S∗ we
can decompose it into

S = M +N
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with M Hermitian and N skew-Hermitian. It is easy to
see that

M =
Q

2
=

 Iπ 0 0
0 −Iν 0
0 0 0

 .
If we write N as

N =

 N11 N12 N13

N21 N22 N23

N31 N32 N33


then

S =

 Iπ +N11 N12 N13

N21 −Iν +N22 N23

N31 N32 N33

 .
Clearly,

rank(S) ≥ rank(Iπ +N11).

Since N11 is a skew-Hermitian matrix, all its eigenvalues
are on the imaginary axis. This implies that all the
eigenvalues of Iπ + N11 have real part 1 and therefore
Iπ +N11 is a full rank matrix. Hence, we have

rank(S) ≥ rank(Iπ +N11) = π(Q)

which completes the proof.

Proof of Proposition 2

The inequality

min{rank(S)| Q = S + S∗} ≥ max{π(Q), ν(Q)}

follows from Lemma 1. To establish the proposition we
need to show that the bounds are tight, i.e.,

min{rank(S)| Q = S + S∗} ≤ max{π(Q), ν(Q)}.

Given Q in (11), for π(Q) ≤ ν(Q), Q can be written as

Q = 2

 Iπ 0 0 0
0 −Iπ 0 0
0 0 −Iν−π 0
0 0 0 0

 .
By selecting S in the form (12) we conclude that

rank(S) = rank(

[
Iπ −Iπ
Iπ −Iπ

]
) + rank(−Iν−π)

= π(Q) + ν(Q)− π(Q) = ν(Q).

Therefore

min{rank(S)| Q = S + S∗} ≤ ν(Q).

Similarly, for the case π(Q) > ν(Q),

min{rank(S)| Q = S + S∗} ≤ π(Q).

Hence,

min{rank(S)| Q = S + S∗} ≤ max{π(Q), ν(Q)}

which completes the proof.
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