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Solution of the general moment problem
via a one-parameter imbedding

Tryphon T. Georgiou, IEEE Fellow

Abstract—This paper presents a computational theory for
the general scalar moment problem. The formalism is suffi-
ciently general to encompass problems in sensor arrays with
arbitrary geometry and dynamics, and in nonuniform multi-
dimensional sampling.

Given a finite set of moments, the theory provides a test
for the existence of a positive measure which is consistent
with such data. At the same time the theory also provides
a characterization of all such consistent positive measures.
It should be noted that classical results (e.g., in the theory
of the trigonometric moment problem, Hamburger, Stieljes,
Nevanlinna-Pick interpolation, etc.) are not applicable to
the general setting sought herein where there is no natu-
ral shift operator in the space spanned by the integration
kernels.

The centerpiece of the theory is a differential equation
which depends on the given finite set of moments and on
an arbitrary positive function Ψ—which plays the role of a
“free parameter”. The differential equation has an expo-
nentially attractive point of equilibrium if and only if there
exists a consistent positive measure. For each Ψ, the fixed
point determines a corresponding measure. Suitable choice
of Ψ allows recovering any measure which is consistent with
the data. The fixed point of the differential equation cor-
responds to an extremum of an entropy-like functional, and
the differential equation is constructed via an appropriate
homotopy that follows changes in the Lagrange multipliers
from a convenient starting value to a value for the multipli-
ers that corresponds to the given moments.

Keywords— Sensor arrays, antenna arrays, multidimen-
sional spectral analysis, multidimensional moment problem,
relative entropy, Kullback-Leibler distance, homotopy.

I. Introduction

In 1894 Stieljes published his classical memoir [56]:
“Recherches sur les fractions continue,” where he posed
and solved the following problem: find a bounded non-
decreasing function µ(θ) on [0,∞) such that its “moments”
∫ ∞

0
θndµ(θ) have specified values for n = 0, 1, 2, . . .. The

term “moments” was borrowed from Mechanics. Subse-
quent formulations dealt with the support and properties
of the distribution function µ, the class of integration ker-
nels (e.g. {1, θ, θ2, . . .} above), and the cardinality of this
set. At the present time, more than a century later, a
vast amount of literature has grown around this type of a
problem.

The classical theory was developed for function spaces
where a convenient representation of positive elements is
available as a sum of squares. Such a property is convenient
when testing for the solvability of the moment problem—
the existence of a solution relates to the sign definiteness of
a suitable quadratic form (Toeplitz, Pick, etc.). In the mid
1930’s, M.G. Krein discovered a deep connection with the
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theory of convex bodies and much of the classical theory
was extended to Tchebysev systems (see e.g., the classi-
cal monographs by the Russian school [1], [2], [39], [53],
and also [37]). Deep connections with the analytic interpo-
lation theory of the early part of the twentieth century
(Carathéodory, Schur, Nevanlinna, Pick and others, see
[33]) were explored and a beautiful operator theory has
emerged (see e.g., [52], [6], [3], [4], [19] and [5]).

The multi-dimensional moment problem where the sup-
port of dµ is of dimension larger than one, has led a some-
what separate existence. The dichotomy between the al-
gebras of polynomials in one and, in many variables, is a
major difference and as a consequence the corresponding
operator theory is far deeper (e.g., [49], [16]). In the ab-
sence of a manageable algebraic structure [50], [18], [45],
a computational approach was sought based on the use of
entropy functionals [58], [41], [47], [17], [22], [44], [43], [36],
[21]. Entropy functionals are natural barriers on convex
cones, and hence, the idea is to seek a positive measure
which is an extremum of such a functional. The present
paper builds on this general idea, yet it follows a distinct
path, which has led to further multivariable generalizations
[30], [29].

Two logarithmic entropy functionals have received par-
ticular attention, −

∫
logm(θ)dθ and

∫
m(θ) logm(θ)dθ.

Minimization of the first, subject to moment constraints,
leads to a “rational” model. Minimization of the second
leads to an “exponential” one. There is usually a pref-
erence for the first one when m is the spectral density
function of a random process, and for the second when
m is a probability density function (pdf). This is due
to a natural interpretention of such integrals in the re-
spective contexts ([40], [42]) with

∫
log(m(θ))dθ being en-

tropy rate while
∫
m(θ) logm(θ)dθ simply the entropy of

a random variable. Yet, at times a direct interpretation
may be unnecessary ([47], [32]) and the functional simply
thought of as a computational tool. To this end, alternative
choices with similar properties are −

∫
Ψ(θ) log(m(θ))dθ

and
∫

Ψ(θ)m(θ) logm(θ)dθ, for added flexibility in select-
ing a “weight” Ψ”.

The existence of extrema has been investigated in [22],
[44], [7], [8], [36] with tools from probability and large de-
viations theory, convex optimization, and duality theory,
in great generality. Invariably, computations are carried
out by seeking the extremum of a dual unconstrained func-
tional via a (carefully stepped up) Newton method. In
contrast, our starting point is an approach suggested in
[23, page 76], to use a homotopy in the space of moments.
This allows us to follow a corresponding path of extrema in
the space of Lagrange multipliers. It provides an indepen-
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dent treatment of the existence of extrema that determines
the solvability of the moment problem. The Lagrange mul-
tipliers along the path obey a differential equation which
converges with an a-priori guaranteed rate, provided the
moment problem is solvable. Otherwise the differential
equation diverges.

The same tools can be used to characterize the complete
solution set of positive measures. The functional form of
extrema for a relative entropy functional is taken instead.
This depends on Lagrange multipliers and on a “parame-
ter” Ψ (a positive function with the same support as the
dµ’s). The differential equation is constructed accordingly.
When it converges, then it does so independently of our
choice of Ψ. Selecting different Ψ’s allows us to recover all
(absolutely continuous) positive measures that are consis-
tent with the given moments.

An important observation is that a diffeomorphism be-
tween moments and Lagrange multipliers (under certain
conditions, see [36, Corollary 6.1], [13], and Section V be-
low) can be the basis of our theory. In the present work on
the scalar moment problem such a diffeomorphism is given
to us by the functional form of the entropy extrema. As
shown in a follow-up paper [30], the theory carries through
in a similar manner in the multivariable setting as well.

Works that have influenced our current development in-
clude [12] who studied an entropy functional as a computa-
tional tool for the “rational covariance extension problem”
([23], [24]), [14] who study in a similar vain existence of
rational families for a general moment problems, [15] for
interpolation problems, and [31], [14] who suggest a rela-
tive entropy functional for seeking minimizers in rational
form. Early on, [41] also studied rational models for power
spectra via an entropy functional in the context of antenna
arrays. We will develop both rational and exponential mod-
els, and as we will see below, it is the latter that applies in
complete generality in higher dimensions.

We begin with three motivating examples in Section II.
These are revisited in Section VI after the exposition of the
main technical results in Section III. Section III is followed
by an analytical example in Section IV that provides insight
to the derivation of the main results in Section V.

II. Motivating examples

We begin with three basic examples that underscore the
relevance and applicability of the theory that follows. After
we explain the key elements of the theory (in Theorems 2
and 3 and in Section III), we will revisit these examples
and work them out with specific numerical values.

A. Input power spectrum from output measurements

Consider that measurements of a certain continuous-
time, zero-mean, stationary stochastic process {u(t) : t ∈
R} are obtained at the output of several (low-pass) sensors
with time-constant τk (k ∈ {1, 2, . . .}). Let uk(t) denote
the corresponding outputs and assume that only variances
rk = E{uk(t)2} are available as well as r0 = E{u(t)2}.

If R(τ) denotes the (continuous) autocorrelation func-
tion of u(t) and dµ denotes the non-negative, finite spectral

measure of the process, the two are related via

R(τ) =

∫ ∞

−∞

eiτωdµ(ω).

If Hk(iω) = 1
iω/τk+1 denotes the transfer function of the

typical sensor, then the rk’s (k ∈ {0, 1, 2, . . .}) represent
moments of the spectral measure dµ(ω) for kernel functions
gk(ω) := |Hk(iω)|2. Indeed, the covariances at the output
of the sensors satisfy

rk =

∫ ∞

−∞

gk(ω)dµ(ω) for k = 0, 1, . . . , n,

with

gk(ω) =
1

ω2/τ2
k + 1

, k = 1, 2, 3, . . . and g0 = 1.

It is not hard to imagine a situation where statistics can
be collected for an assortment of variables for which we pos-
sess information on their dynamical link with an unknown
“input” stochastic process. Such statistics are precisely
moment constraints on the spectral measure of the input.
The natural question then arises as to what we can infer
about the spectral measure of the input based on a finite set
of covariance statistics, such as the set {r0, r1, r2, r3, . . .}.

The discrete-time counterpart of this question, has been
raised and addressed in [10], [11] (see also [26] and [27],
[28]). In that, there is a natural “shift” operator that re-
lates the integration kernels. Such a relationship between
the kernels gk(ω) is absent in our present “continuous-time”
setting. As a consequence, the results in [10], [11], [26] and
[27] are not directly applicable.

B. Non-uniformly spaced sensor arrays

In a variety of applications, typified by radar, sonar, and
various ultrasound imaging apparatus’, the analysis of im-
pinging waves on an array of sensors reveals the makeup of
the scattering medium. Propagation delays in the medium
translate into sensor-dependent phase-shifts. The goal is
then to unravel the effect of propagation delays and assess
the distribution of incoming energy from different direc-
tions.

The special case of a uniform linear array falls within
the setting of standard sampling theory (e.g., see [35, Sec-
tion 2]). The signal power, as a function of the angular
direction of origin, can be shown to be a moment generat-
ing function of the sample correlations between the various
sensors. Fourier techniques are then suitable and, hence,
extensively used. However, a challenging situation arises
when the array is not linear and/or not regularly spaced.

Situations of sensors with complicated geometry abound.
For instance, consider an array of sonar buoys launched at
some point in time and drifting along while their position
may be continuously monitored via GPS. In other cases,
while we may be able to control the position of the sensors,
these are expensive and limited in number. Then it may
happen that a non-uniform positioning offers advantages
(as is the case for the “Y” shape of the VLA radio telescope
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in New Mexico, see [35, page 86]). In situations where the
geometry is complicated, Fourier techniques are of little
use. Instead, model based methods, beamforming, and the
sensitivity of the array as a function of direction, help to
interpret the recorded signal and its statistics. For a state-
of-the art account of sensor array processing we refer to
[57] (see also [54], [34], [35]).

For our purposes, it suffices to consider a two-
dimensional planar monochromatic wave impinging upon
an array of three sensors. The three elements of this ar-
ray (sensors) are indicated as E1, E2 and E3 in Figure 1.
They are placed linearly but in non-commensurable dis-
tances from one another. In particular we may take those
distances to be 1 and π wavelengths, as exemplified in Fig-
ure 1. The choice of “π” only serves to underscore that
the distances are non-commensurable. The waves are as-
sumed to have support in the sector (0, π

2 ), highlighted in
the upper part of the figure. A simple model for the waves
impinging at the kth element is

uk(t) =

∫ π/2

0

A(φ) sin(ωt− κxk + ψ(φ))dφ

with A(φ) the amplitude in the direction φ, ψ(φ) a ran-
dom phase uniformly distributed over φ and independent
for different values of φ, κ the wavenumber, and xk the
distance of the kth element from the first one (chosen to be
the element E1, hence x1 = 0, x2 = 1 and x3 = 1 + π).

By correlating the readings at the three locations, two
at a time, we arrive at the correlations

rℓ =

∫ π/2

0

1

2
cos(ℓκ sin(φ))A(φ)2dφ

=

∫ 1

0

cos(ℓθ)dµ(θ) (1)

for ℓ ∈ {0, 1, π, π+1}, where in the last equation we re-scale
θ := sin(φ), we set κ = 1, and we absorb the nonlinear scal-
ing and the amplitude into dµ(θ). The index ℓ is chosen
to represent the distance between the respective sensors
whose outputs are being correlated. It is quite natural to

φ

E1 E2 E3

Fig. 1. Geometry of sensor array

ask the following basic questions:

(a) given real values r0, r1, rπ, rπ+1 how can we tell whether
they are admissible correlation values for the setting that we
have just described?

(b) if these values are indeed admissible, and hence a power
distribution dµ(θ) exists that is consistent with (1), then
how can we describe all other poosible power distributions
which are consistent with (1)?

The theory in Section III gives answers to both, albeit not
analytical ones. The case of planar, or even spatially dis-
tributed, arrays with several elements and an arbitrary ge-
ometry does not present any additional conceptual diffi-
culty. We will revisit the above plus one additional numer-
ical example of such an array after we develop the needed
theory.

C. Sensor arrays – multidimensional case

We focus on two-dimensional (2D) examples. The gen-
eral case of three or higher dimensions is quite similar, as is
the case of near-field excitation. Most of the difficulties in
dealing with dimensions higher than one, become already
apparent in the 2D-case—and manageable in the same way.

Consider the spatial correlation matrix of a two-
dimensional array (see [35, page 50]), i.e., neglecting tem-
poral correlations. If the source of impinging (narrow band-
width, stationary, etc.) waves is distributed across a sector
in the sky parametrized by, say, Euler angles (θ1, θ2) ∈ S,
then the correlation of signals at the kth and the ℓth sensor
locations would produce

Rk,ℓ = E{ukūℓ} =

∫

S

gk,ℓ(θ1, θ2)dµ(θ1, θ2). (2)

The integration kernels gk,ℓ(θ1, θ2) encapsulate the relative
attenuation and phase difference at the two sensor loca-
tions of a signal originating in the direction θ := (θ1, θ2).
Equation (2) applies equally well when θ parametrizes a
2D-power planar distribution of nearfield sources. There
is no essential difference in higher dimensional cases. The
parameter θ may be thought of as belonging to R

3, etc.
and (2) thought of as a volume, etc. integral.

The same questions raised before are again central:

(a) Given values Rk,ℓ (k, ℓ ∈ {1, 2, . . . , N}), how can we
tell that they are consistent with the assumption of being
correlation samples?

(b) If the answer to part (a) is yes, then what are all con-
sistent 2D-power distributions dµ?

It was Brad Dickinson in 1980 [18] who in fact pointed
out that, even if sampling takes place on a rectangular grid,
positive definiteness of [Rk,ℓ]

N
k,ℓ=1 is not sufficient (see also

Rudin [50]). This remark sparked considerable amount of
interest in the subject and, in particular, motivated the
work by Lang and McClellan [41]. Their approach was to
seek a “rational” maximum entropy distribution—the idea
being that if there is a distribution at all which is consistent
with the data, then a maximum entropy one ought to exist
as well. Their conclusion was that for 2D and beyond,
this is not the case. But, as we will see in the sequel, the
exponential family allows completion of their program.
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III. Main results

We present two main results (Theorems 2 and 3) that
provide the means to determine whether a given set of mo-
ments is admissible, and if so, to describe all positive mea-
sures which are consistent with the moments. Theorem 2 is
essentially limited to the 1D case, and only extends to 2D
under a strong assumption on the integration kernels. The-
orem 3 on the other hand, applies to multivariable distri-
butions. Notation and much of the development proceeds
in parallel. We specialize to 1D or 2D only when needed.

We begin with a closed interval1 in R
m (m ∈ N) which

we denote by S. For notational convenience we will al-
ways take the end points to be 0 and 1 respectively, as in
S = [0, 1] × [0, 1] for the 2D case. We denote by C the
space of real-valued, twice differentiable, (scalar) functions
on S. We denote by G a (n+1)-dimensional subspace of C
generated by a set of basis functions {g0, g1, . . . , gn}. We
specify that g0 ≡ 1 (though it suffices to assume that G has
a positive element). The vector-valued function

G :=
[
g0 g1 . . . gn

]′

where ′ denotes “the transpose of”, defines

G := {G(θ) : θ ∈ S} ⊂ R
n+1

as a curve, a surface, etc., depending on the dimensionality
of S. The set G is often referred to as the “array manifold”
in the signal processing literature. The conic closed convex
hull of G is denoted by

K(G) := {R : R =
N∑

i=1

G(θi)mi, ∀θi ∈ S,mi > 0},

and its dual cone is denoted by

K
∗
+(G) := {λ ∈ R

n+1 : 〈λ,R〉 ≥ 0, ∀R ∈ K(G)}.

Unless we intend to emphasize the role of G, we will use the
more compact notation K and K∗

+ respectively, dropping
the argument. We will also assume throughout that K∗

+ is
not empty or, equivalently, that K is not the entire space.

The dual cone K∗
+ represents the cone of all vectors λ

in the dual space (Rn+1)∗ which form an acute or a right
angle with any vector of K (see Figure 7, also Figures 2
and 5). The dual space (Rn+1)∗ can be identified with
the space where the R’s live—though will always be drawn
separately as in Figure 7). Then, 〈·, ·〉 can be thought of as
the standard inner product.

The dual cone K∗
+ can also be identified with the cone

of nonnegative elements of G (see [39, page 14, Theorem
3.3]). The proof simply points to the fact that λ ∈ K∗

+

defines a support half-space of K, Hλ := {R : 〈λ,R〉 ≥ 0},
which contains G. So 〈λ,G〉 ≥ 0 on S. Conversely, if the

1With superficial modifications it is also possible to deal with more
general cases (see Section VI-A and Remark 7) where S is the semi-
infinite interval of the nonegative reals R+, the reals R, R

2
+, etc., by

attaching points at ∞ in each case, cf. [39], or with S being a discrete
set of finitely many points {0, 1, . . . , k}.

hyperplane {R : 〈λ,R〉 = 0} cuts G then it cannot be
a support hyperplane for K. The argument holds in any
dimension. It is also easy to see that λ is an interior point
of K∗

+ if and only if 〈λ,G(θ)〉 is strictly positive on S. The
standing assumption that g0 = 1 implies that K∗

+ has at
least one interior point.

The following fundamental result characterizes K.

Theorem 1: [39, Theorem 3.4] The cone K(G) is the set
of points R such that

R =

∫

S

G(θ)dµ(θ), (3)

where dµ is non-negative measure on S.

Proof: The proof given in [39, page 15] is for S ⊂ R,
but applies almost verbatim to any dimension. Briefly, the
set of R’s given by (3) is a convex conic set containing G

(since all points in G can be obtained with a suitable choice
of a singular point measure dµ). The first step is to prove
that this set is closed, and hence that it contains K(G).
Consider a limit point R of a sequence Ri (i = 1, 2, 3, . . .)
and corresponding measures dµi such that Ri =

∫

S Gdµi.
Using the fact that K∗

+ has an interior point λ, it can be
shown that the sequence {dµi : i = 1, 2, . . .} is uniformly
bounded (cf. [39, page 15]). Krein and Nudelman invoke
Helly’s selection theorem (see [39, page 15]) to assertain
that the sequence has a weak∗ limit dµ, bounded and posi-
tive, which satisfies R =

∫

S
Gdµ. The same is true in com-

plete generality for positive Borel measures with support
on the compact set S ⊂ R

k (k > 1). By Riesz’ representa-
tion theorem such measures make up the dual of the space
of continuous functions on S. The weak∗ compactness of
a bounded set gives the required conclusion (see [51, pages
67 and 68]. Hence the set of R’s is closed and contains
K(G).

The argument for the converse given in [39, page 15]
holds verbatim for R

k.

A non-negative measure dµ(θ) on S can be thought of as
a mass distribution on G. The set of all non-negative Borel
measures on S is itself a closed convex cone and will be
denoted by M. The moment problem amounts to inferring
properties of dµ from a vector of moments

R :=

∫

θ∈S

G(θ)dµ(θ) ∈ R
n+1. (4)

In particular, given R ∈ R
n+1 the key questions are:

(i) does there exist dµ ∈ M for which (4) holds?
(ii) if yes, then what all such dµ’s that satisfy (4)?

Both, our assumption that g0 ≡ 1 on S as well as our choice
to work with real-valued functions on S can be relaxed at
the expense of a more complicated notation.

Answering (i) is equivalent to determining whether a
given R belongs to K(G) (Theorem 1 above), or altena-
tively, whether the functional

CR : K
∗
+ → R : λ 7→ 〈λ,R〉
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is nonnegative2 (again by virtue of Theorem 1). In general,
neither condition is easy.

In the classical theory of moments it is often the case
that any positive element in K∗

+ (identified with a posi-
tive element

∑
λigi ∈ G), can be represented as a “sum

of squares” (e.g., see [39, Chapter III]). In this case3 the
value of CR on positive elements can be determined via a
quadratic form (having typically a Pick, Toeplitz, or Han-
kel structure). Naturally, positivity of CR in all such cases
can be assertained with relative ease. This is not to be
expected in the generality sought in the present paper.

Below we provide a way to test whether a given vector
R of moments belongs to the interior int(K) of the cone
K, in considerable generality. This is accomplished by con-
structing explicitely a dµ ∈ M which satisfies (4). The
particular dµ is obtained by integrating a certain differen-
tial equation. When R 6∈ int(K(G)) the differential equa-
tion diverges. When it converges, the limit point provides
a set of parameters that identify a suitable dµ.

We exploit two special families of measures,

Mrat := {
1

< λ,G(θ) >
dθ : with λ ∈ int(K∗

+)}

and

Mexp := {e−<λ,G(θ)>dθ : with λ ∈ int(K∗)}.

The elements of Mrat are in bijective correspondence with
interior points in K(G) in the 1D case and, with some strong
assumption, in the 2D as well. The elements of Mexp are
in bijective correspondence with interior points in K(G) in
complete generality. Similar facts hold true for

Mrat,Ψ := {
Ψ(θ)

< λ,G(θ) >
dθ : with λ ∈ int(K∗

+)}

and

Mexp,Ψ := {Ψ(θ)e−<λ,G(θ)>dθ : with λ ∈ int(K∗)}

where Ψ is an arbitrary but fixed positive function in C.
The last two families allow characterization of all solutions
consistent with a given R ∈ int(K) in a non-classical fash-
ion.

These families represent extrema of certain logarithmic
entropy-like functionals subject to the moment constraint
(4). For the case of Mrat and Mexp, the relevant function-

als are
∫

log(dµ
dθ )dθ and

∫
log(dµ

dθ )dµ(θ), respectively. In the
more general case of Mrat,Ψ and Mexp,Ψ, the functionals
can be written in the Kullback-Leibler form:

S(dµ0||dµ1) :=

∫

log

(
dµ0

dµ1

)

dµ0,

with dµℓ = Ψdθ and dµ(ℓ+1)mod2
≡ dµ, respectively for

ℓ = 0, 1. The fact that they provide minimizers to entropy

2A functional CR is said to be nonnegative if it takes K∗
+ into R+,

and it is said to be positive if it is nonnegative and does not vanish
on nonzero elements of K∗

+.
3Similarly, when G is invariant under a “backward shift” operator,

see [26], [27]; see also [25, page 786] for a negative result.

functionals is not being exploited at all in the present anal-
ysis. Instead, we consider directly the solvability of (4), and
analyze it with a continuation method.

The search for extremals of entropy for identifying spec-
tra has a long and well known history. In the context
of our present analysis, the work of Lang and McClel-
lan [41] is particularly relevant. In this early work, the
authors sought measures within Mrat for problems with
multi-dimensional support. They soon discovered that this
family is not “rich” enough, and then suggested replacing
the multivariable support of the measures with a finite net
of points—effectively restricting attention to 0-dimensional
spectral support. Interest was rekindled in recent years by
Byrnes, Gusev, and Lindquist [12] with a clever construc-
tive solution of the rational covariance extension problem
of [23], [24], based on minimizers of relative entropy. Atten-
tion was then drawn to Mrat,Ψ and to the effect of selecting
Ψ (first as a positive rational function of a given degree in
[12], [10], [11] and then, in increasing generality, in [13],
[14], [31]).

The theory is developed in parallel for the rational and
exponential families since most of the steps are similar. We
first state the more restricted version which is based on the
rational family and then the more general one based on the
exponential family.

Theorem 2: Consider S, C,G, G, a positive element Ψ ∈ C,
and a vector R1 ∈ R

n+1. Assume that the set S is either a
closed interval in R or in R

2. In case S is an interval in R
2,

assume that G is doubly periodic. Consider the differential
equation

dλ(t)

dt
= frat(λ(t)), (5)

where

frat(λ) = −M(λ)−1(R1 −

∫

S

G(θ)
Ψ(θ)

〈λ,G(θ)〉
dθ),

M(λ) =

∫

S

(

G(θ)
Ψ(θ)dθ

〈λ(t), G(θ)〉2
G(θ)′

)

dθ, (6)

and λ(0) = λ0 ∈ int(K∗
+) (e.g., λ0 = (1, 0, . . . , 0)′). If

R1 ∈ int(K(G)), then as t → ∞ the solution λ(t) of (5)
tends to a limit λ1 ∈ int(K∗

+) that satisfies

R1 =

∫

S

G(θ)
Ψ(θ)

〈λ1, G(θ)〉
dθ. (7)

Moreover:
(i) the trajectory {λ(t) : t ∈ [0,∞)} remains in int(K∗

+),
(ii) the limit point λ1 is the unique solution of (7) in K∗

+ and
(iii) the convergence λ(t) → λ1 is exponential with a Lya-
punov function

V (λ) = ‖R1 −

∫

S

G(θ)
Ψ(θ)

〈λ,G(θ)〉
dθ‖2

satisfying
dV (λ(t))

dt
= −2V (λ(t))

along trajectories of (5).
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Conversely, if R1 6∈ int(K(G)) then ‖λ(t)‖ → ∞.

A completely analogous statement holds true for the ex-
ponential family, with the added advantage that S can now
be an interval in R

k (k ≥ 1).

Theorem 3: Consider S, C,G, G, a positive element Ψ ∈ C,
and a vector R1 ∈ R

n+1. The set S is assumed to be a closed
interval in R

k with k ≥ 1. Consider the differential equation

dλ(t)

dt
= fexp(λ(t)), (8)

where

fexp(λ) = −M(λ)−1(R1 −

∫

S

G(θ)Ψ(θ)e−〈λ,G(θ)〉dθ)

M(λ) =

∫

S

(

G(θ)Ψ(θ)e−〈λ,G(θ)〉G(θ)′
)

dθ

and λ(0) = λ0 ∈ R
n+1, e.g., λ0 = (1, 0, . . . , 0)′. If

R1 ∈ intK(G), then as t → ∞ the solution λ(t) of (8) tends
to a limit λ1 ∈ R

n+1 that satisfies

R1 =

∫

S

G(θ)Ψ(θ)e−〈λ1,G(θ)〉dθ. (9)

Moreover:
(i) the trajectory {λ(t) : t ∈ [0,∞)} remains bounded,
(ii) the limit point λ1 is the unique solution of (9) in R

n+1,
and
(iii) the convergence λ(t) → λ1 is exponential with a Lya-
punov function

V (λ) = ‖R1 −

∫

S

G(θ)Ψ(θ)e−〈λ,G(θ)〉dθ‖2

satisfying
dV (λ(t))

dt
= −2V (λ(t))

along trajectories of (8).
Conversely, if R1 6∈ intK(G) then ‖λ(t)‖ → ∞.

Theorems 2 and 3 hold when S is a discrete set, in which
case integration is to be replaced by summation over S, and
C,G, G are interpreted accordingly.

IV. An analytic example

It is often insightful to work through a simple analytic
example. We do this for the case where

G(θ) =

[
1
θ

]

and S = [0, 1],

in order to explain and highlight certain facts that are ex-
ploited in the proofs of Theorems 2 and 3.

Since elements in K
∗
+ can be identified with polynomials

λ0 + λ1θ which are nonnegative on S, it is not hard to see
that

K
∗
+ =

{[
λ0

λ1

]

: λ0 ≥ 0, λ1 ≥ −λ0

}

.

Then K, being its dual cone, is given by

K =

{[
r0
r1

]

: r0 ≥ r1 ≥ 0

}

.

A schematic is shown in Figures 2 and 5 (with detail in-
tent to explain the correspondence between moments and
parameters in two separate cases discussed below).

K
K∗

+

r0

r1

λ0

λ1

1

Fig. 2. Schematic of K and K∗
+, and of the correspondence (r0, r1) ↔

(λ0, λ1) for Case I.

We restrict our attention to Ψ = 1 and determine explic-
itly the correspondence

h : λ 7→ R =

∫ 1

0

G(θ)m(θ, λ)dθ

for the two cases, m(θ, λ) = 1/(λ0 + λ1θ) and m(θ, λ) =
e−(λ0+λ1θ). In either case we determine the values of the
λ’s that correspond to r0 = 1 and 1 > r1 > 0 and explain
the limiting behavior of m(θ, λ) as (r0, r1)

′ is taken near
the boundary of K.

Case I: m(θ, λ) = 1/(λ0 + λ1θ)

h : K
∗
+ → K : λ 7→ R =

∫ 1

0

[
1
θ

]
1

λ0 + λ1θ
dθ.

We readily compute that

r0 =

∫ 1

0

1

λ0 + λ1θ
dθ =

1

λ1
log(1 +

λ1

λ0
), and

r1 =

∫ 1

0

θ

λ0 + λ1θ
dθ = −

λ0

λ2
1

log(1 +
λ1

λ0
) +

1

λ1
.

These expressions can be rewritten in the form

r0 =
1

λ0

log(1 + x)

x
, and (10)

r1 =
1

λ0

x− log(1 + x)

x2
, where (11)

x =
λ1

λ0
. (12)

We oberve that

r1
r0

=
1

log(1 + x)
−

1

x
(13)
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tends to 1
2 as x → ±0, it tends to 1 as x ց −1, it tends

to 0 as x → ∞, and has a negative derivative throughout
(0,∞). Hence, if we specify that r1/r0 = 1/2 when x =
0, equation (13) defines a continuous and monotonically
decreasing function of x in [−1,∞), see Figure 3.

−1 0 1 2 3 4 5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x

1/log(1+x)−1/x

Fig. 3. r1/r0 vs. x := λ1/λ0

Equation (13) thus defines a bijective correspondence be-
tween the ratios λ1/λ0 ∈ [−1,∞) and r1/r0 ∈ (0, 1]. Then
from (10) we see that the product of r0 and λ0 depends
only on these ratios. Therefore h is a bijective map be-
tween pairs (r0, r1) and (λ0, λ1) in the interior K and K∗

+,
respectively.

A final point to be made is that when (r0, r1) is taken
to approach the boundary of K then ‖(λ0, λ1)‖ grows un-
bounded. To see this, for simplicity, we take r0 = 1: From
(10), we have that

λ0 =
log(1 + x)

x
while

λ1 = log(1 + x).

Hence

r1
r0

ր 1 ⇒ xց −1 ⇒ λ0 → +∞, while

r1
r0

ց 0 ⇒ xր +∞ ⇒ λ1 → +∞.

Either way, m(θ) = 1/(λ0 + λ1θ) tends to a singular mea-
sure. Indeed, since ‖(λ0, λ1)‖ grows unbounded, m(θ)
tends to zero except at points where the denominator tends
to vanish.

Case II: m(θ, λ) = e
−(λ0+λ1θ)

In this case (λ0, λ1) ∈ R
2 with no restrictions and

h : R
2 → K : λ 7→ R =

∫ 1

0

[
1
θ

]

e−(λ0+λ1θ)dθ.

We readily compute that

r0 = e−λ0
1 − e−λ1

λ1
, and

r1 = e−λ0
1 − e−λ1 − λ1e

−λ1

λ2
1

,

which shows that this time the ratio

r1
r0

=
1 − e−λ1 − λ1e

−λ1

λ1(1 − e−λ1)
, (14)

can take any value in (0, 1) for a corresponding unique value
of λ1. A plot of the r1/r0 vs. λ1 is shown in Figure (4).

Then λ0 = log(1−e−λ1

r0λ1
) Thus, there is a bijective corre-

spondence between (r0, r1) in the interior of K and points
(λ0, λ1) ∈ R

2.

−6 −4 −2 0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ
1

(1−exp(−λ
1
)−λ

1
 exp(−λ

1
))/λ

1
/(1−exp(−λ

1
))

Fig. 4. r1/r0 vs. λ1

Yet again, when (r1, r2) is taken to approach the bound-
ary of K (i.e., either r1/r0 ց 0 or r1/r0 ր 1), ‖(λ0, λ1)‖
grows unbounded. This can be seen from Figure 4 and can
easily verified directly. However, an interesting fact which
will be exploited in the proof of Theorem 3, is that very
much like in the previous case of the rational family, m(θ)
once again tends to a singular measure with singularities
at the roots of an element in K∗

+. The difference with the

earlier case is that this time, the curve λ0 = log(1−e−λ1

r0λ1
)

may lie outside K∗
+ depending on the value of r0. This is

sketched in Figure 5. Yet, as λ1 → ±∞, it again “lines up”

K K∗
+

r0

r1

λ0

λ1

1

Fig. 5. Schematic of K and K∗
+, and of the correspondence (r0, r1) ↔

(λ0, λ1) for Case II.
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with the boundary of K
∗
+. Indeed,

r1
r0

ր 1 ⇒ λ1 ց −∞ ⇒
λ0

λ1
→ −1, while

r1
r0

ց 0 ⇒ λ1 ր +∞ ⇒
λ0

λ1
→ 0.

It is quite revealing to consider how this works: if for in-
stance, r0 = 1 and 1 > r1 ∼ 1, then −(λ0 + λ1θ) becomes
large and negative over most of [0, 1], except near 1. In a
small neighborhood of 1 it becomes “positive enough” so

that
∫ 1

0 e
−(λ0+λ1θ)dθ = 1. Figure 6 displays −(λ0 + λ1θ)

and e−(λ0+λ1θ) as a function of θ, for one such set of values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

−lambda
0
−lambda

1
*theta

exp(−lambda
0
−lambda

1
*theta)

Fig. 6. −(λ0 + λ1θ) and e−(λ0+λ1θ) as a function of θ

Remark 4: As it will become apparent in the next sec-
tion, when the vector of moments R is taken to approach
the boundary of K, both, the rational density Ψ/〈λ,G〉 as
well as the exponential one Ψe−〈λ,G〉 in Theorems 2 and 3,
tend to become singular with singularities at the roots of a
boundary element of K

∗
+. At times this observation may be

useful in determining the maximum number of singularities
(“spectral lines”) that such families of density functions are
capable of reproducing.

V. Proofs of Theorems 2 and 3.

The arguments for both theorems are similar and thus,
for the most part, proceed in parallel. The key idea, is to
study and compute solutions for the nonlinear equations (7)
and (9) via a one-parameter imbedding (homotopy). This
is a standard technique in nonlinear analysis (see [46] and
[38]) and amounts to introducing a one-parameter family
of problems, from one which is readily solvable to the one
of interest. This we do below by introducing a path Rρ =
(1−ρ)R0 +ρR1, ρ ∈ [0, 1], from a convenient choice R0 for
a vector of moments to the given R1. We then consider the
family of equations

Rρ =

∫

S

G(θ)dµρ(θ), with ρ ∈ [0, 1] (15)

in order to link a known dµ0 to the sought-after solution
dµ1, with dµρ in an appropriate family parametrized by
a vector λ(ρ). A schematic is shown in Figure 7. At the

end, we re-scale the homotopy variable ρ, replacing it with
a new variable t ∈ [0,∞), so as to bring the differential
equation which connects the family of respective solutions
into the feedback form given in the two theorems.

First, a note regarding notation: both families Mrat and
Mexp consist of absolutely continuous positive measures
dµ with bounded derivative, parametrized by λ. For both,
we denote by m(θ) = µ̇(θ) the corresponding “density”
functions and, whenever we want to emphasize their de-
pendence on λ we use the notation m(θ, λ). At places we
need to indicate an additional dependence on a homotopy
variable ρ, which we then introduce as a subscript, i.e., as
in mρ(θ, λ).

We begin with a given vector of moments R1 ∈ R
n+1

and we are interested in the solvability of the nonlinear
equation

R1 =

∫

S

G(θ)m(θ, λ)dθ (16)

with m(θ, λ)dθ in one of Mrat or Mexp. We know a “start-
ing” pair, (R0,m(θ, λ0)) with R0 ∈ K and m(θ, λ0)dθ in the
appropriate family. Simply take m(θ, λ0) = Ψ

〈λ0,G〉 in Mrat

or m(θ, λ0) = Ψe−〈λ0,G〉 in Mexp, with λ0 = (1, 0, . . . , 0)
for either, and compute the corresponding vector of mo-
ments using

R0 =

∫

S

G(θ)m(θ, λ0)dθ. (17)

Our plan is to study the one-parameter homotopy

H(ρ, λ) :=

∫

S

G(θ)mρ(θ, λ)dθ −Rρ = 0 (18)

where
Rρ = (1 − ρ)R0 + ρR1 and ρ ∈ [0, 1], (19)

and trace the family of respective solutions. Evidently,
H(1, λ) = 0 is equivalent to (16) for which a solution is
being sought, while H(0, λ) = 0 is equivalent to (17) for
which a solution is available.

K

K∗
+

R0

R1

Rρ

λ0

λ1

λ(ρ)

Fig. 7. Schematic of the dual cones K and K∗
+, and of Rρ and λρ,

for ρ ∈ [0, 1].

If the equation H(ρ, λ) = 0 has a solution λ(ρ) such that

∂H(ρ, λ)

∂λ

∣
∣
∣
∣
ρ,λ(ρ)
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is non-singular for ρ ∈ [0, 1], then it follows from the im-
plicit function theorem that λ(ρ) satisfies the differential
equation

dλ(ρ)

dρ
= −

(
∂H(ρ, λ)

∂λ

)−1
∂H(ρ, λ)

∂ρ
, with λ(0) = λ0.

(20)
Conversely, if (20) has a solution λ(ρ) for ρ ∈ [0, 1] then
dH(ρ, λ(ρ))/dρ = 0 for ρ ∈ [0, 1]. Therefore H(0, λ(0)) =
H(1, λ(1)) = 0, and λ(1) gives rise to an m(θ, λ) which
satisfies (16).

Since ∂H(ρ, λ)/∂ρ = R0 −R1, equation (20) becomes

dλ(ρ)

dρ
= −

(
∂H(ρ, λ)

∂λ

)−1

(R0 −R1), with λ(0) = λ0.

(21)
On the other hand, we readily compute that the partial
derivative with respect to λ is

∂H(ρ, λ)

∂λ
= −

∫

S

G(θ)
Ψ(θ)

〈λ,G(θ)〉2
G(θ)′dθ =: −Mrat(λ)

(22)
in the case of Theorem 2, and

∂H(ρ, λ)

∂λ
= −

∫

S

G(θ)Ψ(θ)e−〈λ,G(θ)〉G(θ)′dθ =: −Mexp(λ)

(23)
for Theorem 3. We will show that Mexp is bounded and
invertible along trajectories of (20) for all ρ ∈ [0, 1], if and
only if R1 ∈ int(K(G)). The same is true for Mrat pro-
vided S is of dimension 1, or of dimension 2 and G is
periodic in its arguments. When that happens, Rρ can
be computed either through (19) or, through (15) using
dµρ = m(θ, λ(ρ))dθ with λ(ρ) obtained via (21).

Using (19) we have that

R1 −R0 =
1

1 − ρ
(R1 −Rρ).

Now, by changing variables in (20) via

ρ = 1 − e−t

and substituting R1 −R0, we obtain

dλ(t)

dt
= −

(
∂H(ρ(t), λ)

∂λ

)−1
∂H(ρ(t), λ)

∂ρ

dρ

dt

= −

(
∂H(ρ(t), λ)

∂λ

)−1

(R0 −R1)(1 − ρ)

= −

(
∂H(ρ(t), λ)

∂λ

)−1

(Rρ −R1) (24)

(where dλ(t)/dt denotes dλ(ρ(t))/dt, following a common
simplification of notation). In view of (22), (23), and (15)
the equivalence between (20) and the differential equations
in the two theorems, namely (5) and (8), is now complete.
We only need to prove the claim thatMrat andMexp remain
invertible along a trajectories of (20) for ρ ∈ [0, 1] if and
only if R1 ∈ int(K(G)), under the stated assumptions. We
first establish this in the context of Theorem 2.

Proposition 5: Let S, G be as in Theorem 2 and λ0, R0 be

as above. The integral
∫

S G(θ) Ψ(θ)
〈λ,G(θ)〉2G(θ)′dθ = Mrat(λ)

remains bounded and nonsingular along the trajectory of

dλ

dρ
= −Mrat(λ)

−1(R1 −R0) (25)

for ρ ∈ [0, 1] if and only if R1 ∈ int(K(G)).
Proof: Since S is closed and 〈λ,G〉 is continuous on

S, as long as λ ∈ int(K∗
+), the function 〈λ,G〉 is bounded

away from 0 and G Ψ
〈λ,G〉2G

′ is integrable on S. The integral

is also nonsingular because Ψ > 0 and the entries of G are
linearly independent on S. All this is certainly true for λ0

and hence the differential equation can be integrated on a
maximal interval [0, ǫ). Throughout, λ(ρ) must remain in
int(K∗

+) for otherwise GΨG′/〈λ,G〉2 is not integrable.
If ǫ > 1 then dH(ρ, λ(ρ))/dρ = 0 for ρ ∈ [0, 1], and

hence,

m(θ) := Ψ(θ)/〈λ(1), G(θ)〉 (26)

satisfies (16). This is a positive function and hence R1 ∈
int(K(G)).

Let now ǫ ≤ 1 and compute Rρ using

Rρ =

∫

S

G(θ)
Ψ(θ)

〈λ(ρ), G(θ)〉
dθ (27)

on the trajectory λ(ρ) of (25) for ρ ∈ [0, ǫ). It follows that

dRρ

dρ
=

∂

∂λ

(∫

S

G(θ)
Ψ(θ)

〈λ(ρ), G(θ)〉
dθ

)
dλ

dρ

= R1 −R0

throughout [0, ǫ), in agreement with Rρ = (1 − ρ)R0 +
ρR1. We assume R1 belongs to int(K(G)) and derive a
contradiction.

If R1 ∈ int(K(G)), then so does Rǫ (seen as the limit of
Rρ in (27) when ρ→ ǫ). Yet, by our assumption that [0, ǫ)
is a maximal interval for which λ(ρ) ∈ int(K∗

+), as ρ → ǫ
either ‖λ(ρ)‖ → ∞ or λ(ρ) tends to a boundary point of
K∗

+. We first show that in fact it is always the case that
‖λ(ρ)‖ → ∞. If we momentarily assume that λ(ρ) remains
bounded and if λc denotes a limit point of λ(ρ) as ρ → ǫ,
then 〈λc, G〉 vanishes at some point on S. It is here that
we need the continuity properties of G.

When S is 1-dimensional, vanishing of 〈λc, G〉 at some
point in S implies that Ψ

〈λc,G〉 is not integrable. A sim-

ilar conclusion can be drawn in the case where S is 2-
dimensional, but in this case we need G to be periodic
(and twice differentiable). Then, S can be thought of as
the torus and 〈λc, G〉 must have a double root. Conse-
quently, Ψ

〈λc,G〉 again fails to be integrable.

Lack of integrability in either case contradicts the fact

that
∫

S G(θ) Ψ(θ)
〈λ(ρ),G(θ)〉dθ lies in the interval between R0

and R1 for ρ ∈ [0, ǫ). This is because the first entry of

last integral is simply
∫

S 1 · Ψ(θ)
〈λ(ρ),G(θ)〉dθ and fails to be

bounded. We conclude that the only possibility is that
limρ→ǫ ‖λ(ρ)‖ = ∞.
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We now show that if limρ→ǫ ‖λ(ρ)‖ = ∞, the functional

CRǫ
: K

∗
+ → R : λ 7→ 〈λ,Rǫ〉

is not strictly positive, which contradicts the assumption
that Rǫ ∈ int(K(G)). This last claim follows readily from
the fact that

CRρ(λ(ρ)) = 〈λ(ρ),

∫

S

G(θ)
Ψ(θ)

〈λ(ρ), G(θ)〉
dθ〉 ≡ 1

is valid throughout [0, ǫ), from CRρ
being continuous, and

from the assertion that ‖λ(ρ)‖ → ∞. Indeed, CRρ
(λ(ρ)〉

being identically equal to 1 throughout [0, ǫ) implies that
there is a sequence Rρi

→ Rǫ for which the correspond-
ing functionals CRρi

take values 1
‖λρi

‖ → 0 on vectors
1

‖λρi
‖λρi

of unit length. Thus, they are not bounded

away from 0 and neither does their limit CRǫ
. Therefore,

Rǫ 6∈ int(K(G)), which gives the sought contradiction.
We proceed with an analogous statement in context of

Theorem 3.
Proposition 6: Let S, G, λ0, R0 be as defined earlier. The

integral
∫

S G(θ)Ψ(θ)e−〈λ,G(θ)〉G(θ)′dθ = Mexp(λ) remains
bounded and nonsingular along a trajectories of

dλ

dρ
= −Mexp(λ)

−1(R1 −R0) (28)

for ρ ∈ [0, 1] if and only if R1 ∈ int(K(G)).
Proof: For any value of λ, e−〈λ,G〉 is positive and

bounded throughout S. Hence, GΨe−〈λ,G〉G′ is integrable,
and because the elements of G are linearly independent,
the integral is an invertible matrix. It follows that (28) can
be integrated on a maximal interval [0, ǫ).

If ǫ > 1, we see as before that dH(ρ, λ(ρ))/dρ = 0 for
ρ ∈ [0, 1], then H(0, λ(0)) = H(1, λ(1)) = 0, and hence,

m(θ) := Ψ(θ)e−〈λ(1),G(θ)〉 (29)

satisfies (16). This again is a positive function and hence
R1 ∈ int(K(G)).

Conversely, if ǫ ≤ 1 then ‖ dλ(ρ)
dρ ‖ and ‖λ(ρ)‖ increase

without bound, while

∫

S

G(θ)Ψ(θ)e−〈λ(ρ),G(θ)〉G(θ)′dθ (30)

tends to become singular as ρ→ ǫ. We again compute

Rρ =

∫

S

G(θ)Ψ(θ)e−〈λ(ρ),G(θ)〉dθ (31)

on [0, ǫ), which is in agreement with Rρ = (1−ρ)R0 +ρR1.
We will show that

Rǫ 6∈ int(K(G)), (32)

which implies that R1 6∈ int(K(G)) either, due to the con-
vexity of K(G) and the fact that R0 ∈ int(K(G)).

Let κc be the limit of a convergent sequence κi :=
1

‖λ(ρi)‖
λ(ρi), with ρi a suitably selected increasing sequence

in [0, ǫ) tending to ǫ. That such a convergent sequence ex-
ists follows from the boundedness of λ(ρ)/‖λ(ρ)‖ and the
fact that these are finite dimensional vectors. We claim
that κc is a boundary point of K∗

+. To see this note that
∫

S

G(θ)Ψ(θ)e−κiG(θ)‖λ(ρi)‖dθ → Rǫ. (33)

If κc failed to be in K∗
+, then the sequence of continuous

functions κiG would be negative on a subset of S of nonzero
measure, for i large enough. This, together with the fact
that ‖λ(ρi)‖ → ∞, and the fact that the integral in (33)
ought to be uniformly bounded, leads to a contradiction.
If on the other hand, κc was an interior point of K∗

+ the
sequence κiG would be strictly positive on S, for i large
enough. This, together with the growth of λ(ρi) would in-
dicate that the integral in (33) ought to tend to 0 as i→ ∞
instead of R1. This again is a contradiction. Thus, kcG ≥ 0
on S except for a subset S0 of possibly zero measure where
it vanishes.

In order to prove that Rǫ 6∈ int(K(G)) it suffices to show
that the sequence Rρi

, which converges to Rǫ from within
int(K(G)), is such CRρi

(κc) → 0 as i → ∞. We readily
observe that given any neighborhood U(S0) of S0,

∫

S/U(S0)

e−λ(ρi)G(θ)dθ =

∫

S/U(S0)

e−‖λ(ρi)‖κiG(θ)dθ → 0

because κiG→ κcG uniformly on S and ‖λ(ρi)‖ → ∞. On
the other hand, e−λ(ρi)G are positive integrable functions,
with a uniform bound on

∫

S e
−λ(ρi)G(θ)dθ (due to (31) and

the fact that Rρ is bounded). But κcG vanishes on S0.
Thus, ∫

U(S0)

κcG(θ)Ψ(θ)e−‖λ(ρi)‖κiG(θ)dθ

can be made arbitrarily small with appropriate selection of
U(S0). Hence, both terms in the representation

CRρi
(κc) =

∫

S/U(S0)

κcG(θ)Ψ(θ)e−‖λ(ρi)‖κiG(θ)dθ

+

∫

U(S0)

κcG(θ)Ψ(θ)e−‖λ(ρi)‖κiG(θ)dθ

can be made arbitrarily small for a suitable choice of U(S0)
and sufficiently large values of i. This shows that CRǫ

is
not strictly positive and, as a consequence, Rǫ cannot be
in the interior of the convex cone K(G).

To recap, we have shown that whenever R1 admits a rep-
resentation

∫

S G(θ)dµ(θ) with dµ a strictly positive mea-
sure, then one such measure can be found within the family
of each theorem (with the dimensionality and periodicity
restriction on G in the case of Theorem 2). This can be
done by following the λ(t)-coefficients, which, as functions
of the homotopy parameter t (or ρ), satisfy the differential
equation given in the respective theorem.

A proof of uniqueness of such a representation is as fol-
lows: consider the mapping

h : D → int(K(G))

λ 7→ R =

∫

G(θ)m(θ, λ)dθ
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where D refers to domains int(K∗
+) and R

n+1, respectively,
for the two theorems. This is a C1-mapping between
two open convex subsets of R

n+1, with a positive defi-
nite Jacobian throughout. Thus, if there exist two dis-
tinct vectors λ1 and λ2 in D which are mapped onto the
same point R1 ∈ int(K(G)), we may consider the path
λρ := (1 − ρ)λ1 + ρλ2 between them, for ρ ∈ [0, 1], and

denote Rρ = h(λρ). Since
∫ 1

0
dRρ

dρ dρ = 0 by the as-
sumption that the two end points coincide, it follows that

(
∫ 1

0 (∂h
∂λ

∣
∣
∣
∣
λρ

)dρ)(λ2 − λ1) = 0 as well. But this is not pos-

sible since ∂h
∂λ is non-negative throughout, unless of course

λ1 = λ2, which is the desired conclusion.
Remark 7: It is clear that the rational family of mea-

sures is essentially restricted to the 1-dimensional case of
S = [0, 1]. It extends to the 2-dimensional setting only un-
der the assumption that G(θ) is doubly periodic. A similar
conclusion was drawn in [41, page 886]. The exponential
family however has no such restriction. Alternative ratio-
nal families, e.g., 1/(〈λ,G〉)3dθ etc., may turn out to be
applicable for certain cases in the multidimensional set-
ting. However, periodicity of G(θ) seems essential, other-
wise, vanishing of 〈λ,G〉 may introduce only a single pole
on the boundary of S for the density function, which may
not be enough to prevent integrability in higher dimen-
sional cases. 2

Thus, the one-parameter imbedding leads to the differ-
ential equations (25) and (28), in the parameter ρ, which
converge to the sought parameter λ1 when integrated over
the interval [0, 1] starting from λ0. Replacing R1 − R0 by

1
1−ρ (R1 − Rρ) leads to a “feedback form” of the differen-
tial equation, where the vector field explicitely involves the
difference between the moment vector at the “current posi-
tion” and the “target value” R1. The resulting differential
equations are conveniently expressed in the new variable
t = − log(1 − ρ) and integrated over [0,∞). Thus, we ob-
tain (5) and (8) given in Theorems 2 and 3. Both are of
the form

dλ

dt
= f(λ), (34)

the only difference between them being in the precise form
of the function f(λ). It should also be emphasized that
an ordinary ODE solver is all that is needed. A final
point to be emphasized is that convergence is exponentially
fast with time-constant of 1, since the trajectory in the λ-
coordinates follows the trajectory of the linear differential
equation

dR(t)

dt
= R1 −R(t), (35)

via the correspondence

λ(t) 7→ R =

∫

G(θ)m(λ(t), θ)dθ (36)

for m(·, ·) any of the two possibilities given (see also the
schematic in Figure 7). We now complete the proof of the
relevant claim in Theorems 2 and 3, which we restate in
the following proposition.

Proposition 8: The function

V (λ) := ‖R1 −

∫

G(θ)m(λ, θ)dθ‖2

is a Lyapunov function for the differential equation (34).
Moreover, along trajectories of (34) it holds that

dV (λ(t))

dt
= −2V (λ(t)).

Proof: Clearly, V is continuous, differentiable, with
V (λ) ≥ 0 for λ ∈ D, (D being int(K∗

+) or R
n+1 depending

on whether m(θ)dθ is in Mrat or Mexp, respectively) and
only vanishes at a possible stationary point of (34). For
either choice of m(λ(t), θ) equation (34) is simply:

dλ

dt
= (

∂R

∂λ
)−1(R1 −

∫

G(θ)m(λ(t), θ)dθ)

with ∂R
∂λ being the Jacobian of (36). Hence,

dV (λ(t))

dt
=

∂V (λ(t))

∂λ

dλ

dt

= −2(R1 −

∫

G(θ)m(λ(t), θ)dθ)′
(
∂R

∂λ

)
dλ

dt

= −2(R1 −

∫

G(θ)m(λ(t), θ)dθ)′

×(R1 −

∫

G(θ)m(λ(t), θ)dθ)

= −2V (λ(t)),

which completes the proof.

VI. Motivating examples (continued)

This section is meant to highlight the fact that construct-
ing a moment generating function from a set of moments is
not any more complicated when the set of kernel functions
lacks any apparent “shift” structure. To this end we follow
up on the examples presented earlier and present numerical
results on certain representative cases. The two families of
measures, in Theorems 2 and 3, give similar results. Hence,
our selection as to which ones to display has been some-
what arbitrary. In all cases we took Ψ ≡ 1, although, a
selection of an arbitrary Ψ does not in any way burden the
computational steps.

A. Power spectrum of input given output measurements
(cont.)

Theorems 2 and 3 can be adopted to the case where
the integration kernels have support on the real line R or
the half line R+, provided these kernels possess a limit
at ±∞, cf. [39, Chapter V]4. This is not an unreasonable
assumption from a practical viewpoint. In fact, this is the
case for the example introduced in Section II-A.

4Theorem 3 can also be adopted to higher dimensional cases with
support in R

k or in R
k
+, provided the kernels are similary well-

behaved.
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We begin with low-pass “sensors” having transfer func-
tions Hk(iω) = 1/(1 + iω/τk), k ∈ {1, 2, 3, 4}, with τk ∈
{1/2, 2/3, 1, 2}, respectively. We assume a real-valued sta-
tionary zero-mean stochastic process {u(t)} as the input to
all four of them. We further assume that the only avail-
able data are the variance r0 of u(t) and the variances rk
(k = 1, 2, 3, 4) at the output of each sensor. Hence, if µ(ω)
denotes the power distribution function of {u(t)}, these
variances provide the following moment contraints:

rk =

∫ ∞

−∞

gk(ω)dµ(ω) for k = 0, 1, . . . , 4, (37)

for g0(ω) = 1 and

gk(ω) =
1

ω2/τ2
k + 1

with τk = 1/2, 2/3, 1, 2 for k = 1, 2, 3, 4, respectively.
In order to compare a “reconstructed” power spectrum

with an “authentic” one we take

dµo(ω) =
1

ω4 − 1.8ω2 + 1
dω

as the power distribution of {u(t)}. The spectral density
function mo(ω) := µ̇o(ω) = 1/(ω4 − 1.8ω2 + 1) is drawn in
Figure 8 with a continuous line.

We readily compute the variances r0, . . . , r4 and form
the vector of moments

R1 =
[
r0 r1 r2 r3 r4

]′

=
[

7.0250 4.1545 2.2579 5.8332 2.9938
]′
.

The next step is to seek a spectral density function that
agrees with the moments in R1.

The transformation

ω 7→ θ =
ω

1 + ω

takes the half axis [0,∞] onto [0, 1] and brings us to a
familiar setting. Its inverse is given by

θ 7→ ω =
θ

1 − θ
,

while the differentials relate via dω = dθ/(1 − θ)2 and
dθ = dω/(1 + ω)2. For a general µ in (37), the moment
constraints become

rk =

∫ 1

0

2gk(
θ

1 − θ
)

︸ ︷︷ ︸

ĝk(θ)

m(
θ

1 − θ
)

1

(1 − θ)2
︸ ︷︷ ︸

m̂(θ)

dθ

for k ∈ {0, 1, 2, 3, 4}. The framework of Theorems 2 and
3 now applies. The integration kernel functions are con-
tinuous on the closed interval [0, 1]. Moreover, m(ω)dω
is a finite measure on [0,∞] provided m̂(θ)dθ is a finite
measure on [0, 1], and vice versa. Hence, a finite measure
m̂(θ)dθ can be identified to match the given moments in

either the rational or the exponential form (as per Section
III) . Then,

m(ω)dω =
1

(1 + ω)2
m̂(

ω

1 + ω
)dω

serves as an appropriate spectral measure for {u(t)} which
is consistent with the given moments.

We specialize to the context of Theorem 2 and integrate
(5) so as to obtain a rational spectral density with support
on [0, 1] in the form

m̂(θ) = 1/(

4∑

k=0

λk ĝk(θ))

which agrees with R1. Then a spectral density for the
original problem, as a function of ω, is obtained in the
form

m(ω) =
1

(ω + 1)2
m̂(

ω

1 + ω
).

For the particular values selected earlier, the resulting
m(ω) is drawn in Figure 8 with a dashed line, for com-
parison. Figure 9 shows the error V (λ(t)) = ‖R1 − Rt‖

2

in matching the known variances as a function of the in-
tegration variable t of Theorem 2–converging to zero with
exponent −2. The lower subplot of Figure 9 shows how the
entropy integral

∫ ∞

0
log(mt(ω))dω varies with t. In this ex-

ample it is monotonically increasing, which is not a general
property.

10
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1

ω

estimated power spectrum
input power spectrum

Fig. 8. Spectral density based on covariance statistics

B. Non-uniformly spaced sensor arrays - planar far field
excitation (cont.)

We once again consider the linear array shown in Figure
1 and discussed in Section II-B. This consists of three non-
equispaced sensors. We generate a vector of moments

R1 =
[
r0 r1 rπ rπ+1

]′

=
[

0.6210 0.5779 0.2776 0.1102
]′
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log(mt(ω))dω vs. t

via

rk =

∫ 1

0

cos(kθ)mref(θ)dθ,

for k ∈ {0, 1, π, π+1} and a particular “reference” spectral
density mref chosen as piece-wise constant on S = [0, 1].
Figure 10 shows mref with a dashed line as well as three
other spectral density functions that are consistent with
R1. In particular, Figure 10 shows densities corresponding
to the families Mexp and Mrat which have been obtained
as indicated in Theorems 2 and 3, respectively, with Ψ ≡ 1.
It can be seen that these two spectral densities differ very
little from one another (the first marked with a continuous
line and the second with a dotted line).

In the same figure we superimpose one additional spec-
tral density marked as dash-dotted (− · −). This is
listed as an element of constant + Mexp (meaning that
m(θ)dθ = constantdθ+ and element of the exponential
family). This last spectral density is obtained by mimicking
the Pisarenko-Carathèodory construction which underlies
high resolution methods (see [55], [25], [26]). Briefly, if we
postulate that the moment generating measure dµ has a
“white noise” component p0dθ, then it is possible to deter-
mine the maximal power density that such a component
can account for in explaining R1. To this end, we compute
a vector of moments corresponding to a uniform measure
dθ. This turns out to be

R1,white =

∫ 1

0

[
1 cos(θ) cos(πθ) cos((π + 1)θ)

]′
dθ

=
[

1 0.8415 0 −0.2032
]′
.

Then,

p0 = argmax{p : R1 − pR1,white ∈ K}.

For each value of p that R1 − pR1,white ∈ int(K) we can
apply either Theorem 2 or 3, and obtain a spectral measure

dµ for which

R1 =

∫ 1

0

G(θ)(pdθ + dµ(θ)).

As we increase p and R1−pR1,white approaches the bound-
ary of K, the measure dµ tends to become singular with sin-
gularities at roots of 〈λ,G〉 for a suitable λ on the bound-
ary of K

∗
+ (cf. Remark 4). This is indeed the case when

p ∼ 1.005 (the value used for the figure is 1.004).
It may be instructive to draw the connection with case

where G is an ordinary Fourier vector corresponding to an
equispaced linear array uniform uniform spacial sampling,
i.e., when gk(θ) = cos(kθ). Then p0 is the lowest eigenvalue
of a Toeplitz matrix formed out of the moments.

The same rationale can be used to determine the maxi-
mal power density for a component of known “color” that
is consistent with the given moments, cf. [26]. Thus, us-
ing such ideas and further exploiting the parameter Ψ in
the two theorems (Theorems 2 and 3) a variety of spectral
density functions can be generated—all consistent with the
moments—that may incorporate prior information about
the moment generating density/measure.
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Fig. 10. dµ ∈ Mexp

We conclude by demonstrating the effect of additional
moments. The samemref(θ)dθ is used to generate moments
for an array extended with two additional elements, say
E4 and E5, in line with the rest and at distances 9 and
19 wavelenghts from E1. A schematic is shown in Figure
11. Utilizing the first k elements, with k ∈ {3, 4, 5}, and
correlating the respective readings at each sensor location,
we have

Gk(θ) =
[

1 cos(d1θ) . . . cos(dℓθ) . . . cos(d k(k+1)
2

θ)
]′

as the “array manifold” with dℓ taking values in

{0, 1, π + 1, π},

{0, 1, π + 1, 9, π, 8, 8− π} and

{0, 1, π + 1, 9, 19, π, 8, 18, 8− π, 18 − π, 10},
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φ

E1 E2 E3 E4 E5

Fig. 11. Geometry of sensor array

respectively, in the three cases. The values correspond to
distances between every pair of elements of the sensor ar-
ray in each case. Figure 12 shows for comparison spectral
density functions m3(θ), m4(θ) and m5(θ), constructed ac-
cording to Theorem 2, i.e., with the corresponding mea-
sures mk(θ)dθ ∈ Mrat (k = 3, 4, 5). Each shares with

mref(θ)
k(k+1)

2 + 1 moments, in each case. It is noted that,
as expected, matching of mk and mref improves as k in-
creases.
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Fig. 12. Non-uniformly spaced moments: using Mrat

C. Sensor arrays – multidimensional case

Theorem 3 can be used to generate all multidimensitonal
distributions that match given moments, in complete gen-
erality. However, the example we have selected to demon-
strate its applicability is rather basic. The support set S
is two dimensional, the convolution kernels are sinusoidal
functions (though not periodic in S), and we are content
with producing the one distribution which corresponds to
selection of Ψ = 1.

We begin with a two dimensional density function

mref(θ, φ) := 10 + 10e−7((θ−θ0)
2+(φ−φ0)

2)

with (θ, φ) ∈ S := [0, π]× [0, π], and centered at (θ0, φ0) =
(1.5, 1.5). The integration kernels are chosen as

gk,ℓ(θ, φ) = cos(kθ + ℓφ)

for k, ℓ ∈ {0, 1, 2}, and a corresponding matrix of moments
is computed as

R1 =

[ ∫

S

gk,ℓ(θ, φ)mref(θ, φ)dθdφ

]k,ℓ=2

k,ℓ=0

=





33.0129 0.3140 −1.1417
0.3140 −14.0469 −0.2502

−1.1417 −0.2502 1.0310





This formulation encompasses spatial correlation data
of a two-dimensional array (see [35, page 50]), neglecting
temporal correlations, where the support of the impinging
(narrow bandwidth stationary, etc.) wave is parametrized
by the two angular parameters θ, φ. The particular mref

may represent a dominant component concentrated around
(θ0, φ0) = (1.5, 1.5) on a uniform background.

We continue on as usual with

λ0 =





1 0 0
0 0 0
0 0 0



 .

We integrate (8) with Ψ equal to 1 and

〈λ,G(θ, φ)〉 := trace(λ′G(θ, φ)).

Since R1 consists of moments of a positive distribution, the
differential equation converges as claimed in the theorem,
and the limiting value of λ(t) turns out to be

λ =





−2.3720 0.0005 0.0909
0.0005 −0.0715 0.0117
0.0909 0.0117 −0.0916



 .

As claimed in the theorem, the corresponding density

e−〈λ,G〉

agrees with the moments in R1. The two density functions
mref and e−〈λ,G〉 are shown in Figures 13 and 14, respec-
tively, for comparison.
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VII. Synopsis

This paper develops a theory for the general scalar5 mo-
ment problem. The formalism is sufficiently general to en-
compass problems in system identification, sensor arrays
with arbitrary geometry and dynamics, and in nonuniform
multi-dimensional sampling. It begins with a known finite
set of moments with respect to known convolution kernels.
The goal is to determine whether the moments are consis-
tent with the hypothesis of a positive moment-generating
density, and if so, to characterize all densities which are
consistent with the moments.

Tools and techniques of the classical theory of the mo-
ment problem and of analytic interpolation are not suit-
able for the generality sought in the paper—where the
convolution kernels have no discernible structure and the
support of the density function can be multidimensional.
Hence, our approach is quite distinct from the classical the-
ory. Yet, it answers the typical questions of existence and
parametrization of solutions just as effectively and in great
generality.

The techniques we have used complement those in earlier
works based on duality and convexity theory [22], [44], [36],
[13]. They are also quite distinct from homotopy methods
employed in [11], [20], [48], [9] in a specialized context.
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