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Abstract— Second-order statistics of nonlinear dynamical
systems can be obtained from experiments or numerical sim-
ulations. These statistics are relevant in understanding the
fundamental physics, e.g., of fluid flows, and are useful for
developing low-complexity models. Such models can be used
for the purpose of control design and analysis. In many
applications, only certain second-order statistics of a limited
number of states are available. Thus, it is of interest to
complete partially specified covariance matrices in a way that is
consistent with the linearized dynamics. The dynamics impose
structural constraints on admissible forcing correlations and
state statistics. Solutions to such completion problems can be
used to obtain stochastically driven linearized models. Herein,
we address the covariance completion problem. We introduce an
optimization criterion that combines the nuclear norm together
with an entropy functional. The two, together, provide a
numerically stable and scalable computational approach which
is aimed at low complexity structures for stochastic forcing that
can account for the observed statistics. We develop customized
algorithms based on alternating direction methods that are well-
suited for large scale problems.

Index Terms— Alternating direction method of multipliers,
alternating minimization algorithm, convex optimization, low-
rank approximation, nuclear norm regularization, state covari-
ances, structured matrix completion problems.

I. INTRODUCTION

Motivation for this work stems from control-oriented
modeling of systems with very large number of degrees of
freedom. For example, the Navier-Stokes (NS) equations,
which govern the dynamics of fluid flows, are prohibitively
complex for purposes of analysis and control design. Thus,
it is common practice to investigate low-dimensional models
that preserve the essential dynamics. In wall-bounded flows,
stochastically driven linearized models of the NS equations
have been shown to be capable of qualitatively replicating the
structural features of fluid motion [1]–[4]. However, it has
also been recognized that white-in-time stochastic forcing
is too restrictive to reproduce all statistical features of the
nonlinear dynamics [5], [6]. Building on [7], [8], we depart
from white-in-time restriction and consider low-complexity
dynamical models with colored-in-time excitations that suc-
cessfully account for the available statistics.

The complexity is quantified by the rank of the correlation

Financial support from the National Science Foundation under Award
CMMI 1363266 and the University of Minnesota Informatics Institute Trans-
disciplinary Faculty Fellowship is gratefully acknowledged. The University
of Minnesota Supercomputing Institute is acknowledged for providing
computing resources.
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structure of excitation sources. This provides a bound on the
number of input channels and explains the directionality of
input disturbances [9], [10]. The covariance completion prob-
lem is formulated by utilizing nuclear norm minimization as
a surrogate for rank minimization [11]–[16]. The resulting
convex optimization problem can be recast as a semi-definite
program (SDP) but cannot be handled by general purpose
solvers for large problems. In recent work [17], [18], we
provided optimization algorithms for solving the covariance
completion problem. We also showed the utility of this
framework in explaining turbulent flow statistics [18], [19].

Herein, we consider an optimization criterion that com-
bines the nuclear norm with the logarithmic barrier function
as an entropy functional. In order to solve the completion
problem for large-scale systems, e.g., fluid flows, we develop
customized algorithms based on the Alternating Direction
Method of Multipliers (ADMM) and the Alternating Min-
imization Algorithm (AMA). We demonstrate that AMA,
which effectively works as a proximal gradient algorithm on
the dual problem is more efficient in handling large problems.

Our presentation is organized as follows. In Section II,
we explain the structural constraints imposed on second-
order statistics of stochastically forced linear systems. We
formulate the covariance completion problem and express the
constraint set in a form amenable to alternating optimization
methods. In Section III, we present the optimality conditions
and derive the dual problem. In Section IV, we present two
customized alternating direction algorithms for solving the
structured covariance completion problem and present results
of numerical experiments in Section V. Finally, we provide
concluding thoughts in Section VI.

II. PROBLEM FORMULATION

Consider a linear time-invariant (LTI) system

ẋ = Ax + B u, (1)

where x(t) 2 Cn is the state vector, A 2 Cn⇥n and
B 2 Cn⇥m are dynamic and input matrices, and u(t) 2
Cm is a stationary zero-mean stochastic process. For a
Hurwitz matrix A and controllable pair (A,B), the positive
semidefinite matrix X qualifies as being the steady-state
covariance matrix of the state in (1),

X :

= lim

t!1
E (x(t)x⇤

(t)) ,

if and only if the linear equation,
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AX + X A⇤
= � (BH⇤

+ H B⇤
) , (2)

is solvable in terms of H 2 Cn⇥m [7], [8]. Here, E is the
expectation operator and ⇤ denotes the complex conjugate
transpose. In the case of u being white noise with covariance
W , X satisfies the Lyapunov equation

AX + X A⇤
= �BWB⇤.

This results from (2) with H = BW/2 and yields a negative
semi-definite right-hand-side, �BWB⇤.

The problem of completing partially known sampled
second-order statistics using stochastically-driven LTI mod-
els was introduced in [9], and is formulated by introducing

Z :

= � (AX + X A⇤
) .

In contrast to the case of white-in-time excitation, Z may
have both positive and negative eigenvalues.

The covariance completion problem considered in this
paper combines the nuclear norm together with an entropy
functional. This provides an approach which is aimed at low-
complexity structures for stochastic forcing and facilitates
the construction of a particular class of low-pass filters
which generate colored-in-time forcing correlations [7], [8].
Figure 1 shows the interconnection of the spatio-temporal
filter and the linearized dynamics which can be used to
account for partially observed second-order statistics.

The covariance completion problem can be formulated as,

minimize

X,Z

� log det (X) + � kZk⇤
subject to AX + XA⇤

+ Z = 0

(CXC⇤
) � E � G = 0.

(CP)

Here matrices A, C, E, and G denote problem data, and
Hermitian matrices X , Z 2 Cn⇥n are optimization vari-
ables. Entries of G represent partially available second-order
statistics and C is a matrix that establishes the relationship
between entries of the state covariance matrix X and partially
available statistics resulting from experiments or simulations.
The symbol � denotes elementwise matrix multiplication and
E is the structural identity matrix,

E
ij

=

(
1, if G

ij

is available
0, if G

ij

is unavailable.

The constraint set in (CP) represents the intersection of two
linear subspaces, the Lyapunov-like constraint and the linear
constraint which incorporates the available statistics.

In (CP), the nuclear norm, i.e., the sum of singular values

Fig. 1: The cascade connection of an LTI system with a linear
filter is used to account for sampled covariance matrix X .

of a matrix, kZk⇤ :

=

P
i

�
i

(Z), is used as a proxy for
rank minimization [11], [14]. The parameter � indicates the
relative weight on the nuclear norm objective. On the other
hand, the logarithmic barrier function in the objective is
introduced to guarantee the positive definiteness of X . The
convexity of (CP) follows from the convexity of its objective
function, denoted as J

p

(X,Z), and the convexity of the
constraint set.

In order to bring (CP) into a convenient form for the
alternating direction methods considered in this paper, we
reformulate (CP) as

minimize

X,Z

� log det (X) + � kZk⇤
subject to AX + BZ � C = 0,

(CP1)

where

A :

=


A1

A2

�
, B :

=


I
0

�
, C :

=


0

G

�
.

Here, A1, A2 : Cn⇥n ! Cn⇥n are linear operators, with

A1(X)

:

= AX + XA⇤,

A2(X)

:

= (CXC⇤
) � E.

III. OPTIMALITY CONDITIONS AND THE DUAL PROBLEM

By splitting Z into positive and negative definite parts,

Z = Z+ � Z�, Z+ ⌫ 0, Z� ⌫ 0,

it can be shown [11, Section 5.1.2] that (CP1) can be cast
as an SDP,

minimize

X,Z+, Z�
� log det (X) + � (trace (Z+) + trace (Z�))

subject to A1(X) + Z+ � Z� = 0

A2(X) � G = 0

Z+ ⌫ 0, Z� ⌫ 0. (P)

To derive the dual of the primal problem (P), we introduce
the Lagrangian

L (X, Z±; Y1, Y2, ⇤±) = � log det (X) +

� trace (Z+ + Z�) � h⇤+, Z+i � h⇤�, Z�i +
hY1, A1(X) + Z+ � Z�i + hY2, A2(X)�Gi ,

where Hermitian matrices Y1, Y2, and ⇤± ⌫ 0 are the dual
variables, and h·, ·i represents the standard inner product
hM1,M2i := trace(M⇤

1M2).

Minimization of L with respect to the primal variables X
and Z± yields the Lagrange dual of (P),

maximize

Y1, Y2

log det

⇣
A†

1(Y1) +A†
2(Y2)

⌘
� hG, Y2i+ n

subject to kY1k2  �, (D)

where the adjoints of the operators A1 and A2 are given by

A†
1(Y ) = A⇤ Y + Y A,

A†
2(Y ) = C⇤

(E � Y )C.

The dual problem (D) is a convex optimization problem
with variables Y1, Y2 2 Cn⇥n and the objective function
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J
d

(Y1, Y2). These variables are dual feasible if the constraint
in (D) is satisfied. This constraint is obtained by minimizing
the Lagrangian with respect to Z+ and Z�, which leads to

Y1 + � I ⌫ ⇤+ ⌫ 0, Z+ ⌫ 0,

�Y1 + � I ⌫ ⇤� ⌫ 0, Z� ⌫ 0.

Therefore, we have that

�� I � Y1 � � I () kY1k2  �.

In addition, minimizing L with respect to X yields

X�1
= A†

1(Y1) + A†
2(Y2) � 0. (5)

In the case of primal and dual feasibility, any dual feasible
pair (Y1, Y2) gives a lower bound on the optimal value of the
primal problem J?

p

. The alternating minimization algorithm
of Section IV-B effectively works as a proximal gradient
algorithm on the dual problem and is developed to achieve
sufficient dual ascent and satisfy (5).

IV. CUSTOMIZED ALGORITHMS

We next develop two customized algorithms based on
the Alternating Direction Method of Multipliers (ADMM)
and the Alternating Minimization Algorithm (AMA). These
methods have been effectively employed in low-rank ma-
trix recovery [20], sparse covariance selection [21], image
denoising and magnetic resonance imaging [22], sparse
feedback synthesis [23], sparse Gaussian graphical model
estimation [24], and many other applications [25]–[28]. Our
approach exploits the respective structures of the logarithmic
barrier function and the nuclear norm, and is well-suited for
solving large-scale and distributed optimization problems.

A. Alternating direction method of multipliers

The augmented Lagrangian associated with (CP1) is given
by

L
⇢

(X,Z;Y1, Y2) = � log det (X) + � kZk⇤

+ hY, AX + BZ � Ci + ⇢

2

kAX + BZ � Ck2
F

,

where Y :

= [Y1 Y2 ]
⇤ with Hermitian Y1, Y2 2 Cn⇥n is the

Lagrange multiplier, ⇢ is a positive scalar, and k · k
F

is the
Frobenius norm.

The ADMM algorithm uses a sequence of iterations to
find the minimizer of the constrained optimization prob-
lem (CP1),

Xk+1
:

= argmin

X

L
⇢

(X, Zk, Y k

) (6a)

Zk+1
:

= argmin

Z

L
⇢

(Xk+1, Z, Y k

) (6b)

Y k+1
:

= Y k

+ ⇢
�
AXk+1

+ BZk+1 � C
�
. (6c)

ADMM iterations terminate when conditions on primal and
dual residuals are satisfied [26, Section 3.3],

kAXk+1
+ BZk+1 � Ck

F

 ✏,

k⇢A†
1

�
Zk+1 � Zk

�
k
F

 ✏.

1) Solution to the X-minimization problem (6a): For fixed
{Zk, Y k}, minimizing the augmented Lagrangian with re-
spect to X amounts to

minimize

X

� log det (X) +

⇢

2

kAX � Ukk2
F

where Uk

:

= �
�
BZk � C + (1/⇢)Y k

�
. We use a proximal

gradient approach [29] to solve this sub-problem. By lineariz-
ing the quadratic term around the current inner iterate X

i

and adding the quadratic penalty on the difference between
X and X

i

, X
i+1 is obtained as the minimizer of

� log det (X) + ⇢
⌦
A† �AX

i

� Uk

�
, X

↵
+

µ

2

kX �X
i

k2
F

.

(7)
Here, the parameters ⇢ and µ satisfy µ � ⇢ �

max

(A†A),
where power iteration is used to compute �

max

(A†A). By
taking the variation of (7) with respect to X , we obtain the
first order optimality condition

µX � X�1
=

�
µ I � ⇢A†A

�
X

i

+ ⇢A† �Uk

�
. (8)

The solution to (8) is given by

X
i+1 = V diag (g)V ⇤,

where g is a vector with the jth entry,

g
j

=

�
j

2µ
+

s✓
�
j

2µ

◆2

+

1

µ
.

Here, �
j

’s are the eigenvalues of the matrix on the right-
hand-side of (8) and V is the matrix of the corresponding
eigenvectors. As typically done in proximal gradient algo-
rithms [29], starting with X0 :

= Xk, we obtain Xk+1

by repeating inner iterations until the desired accuracy is
reached.

2) Solution to the Z-minimization problem (6b): For fixed
{Xk+1, Y k}, the augmented Lagrangian is minimized with
respect to Z,

minimize

Z

� kZk⇤ +

⇢

2

kZ � V kk2
F

(9)

where V k

:

= �
�
A1

�
Xk+1

�
+ (1/⇢)Y k

1

�
. The solution

to (9) is obtained by singular value thresholding [30],

Zk+1
= S

�/⇢

(V k

).

For this purpose we first compute the singular value decom-
position of the symmetric matrix V k

= U ⌃U⇤, where ⌃

is the diagonal matrix of the singular values �
i

. The soft-
thresholding operator S

⌧

is defined as

S
⌧

(V k

)

:

= U S
⌧

(⌃)U⇤, S
⌧

(⌃) = diag

�
(�

i

� ⌧)+
�
,

and a+ = max{a, 0}. Thus, the optimality condition in (6b)
is satisfied by applying the soft-thresholding operator S

�/⇢

on the singular values of V k.

We also consider an accelerated variant of the ADMM
algorithm. The accelerated algorithm is simply ADMM with
a Nesterov-type (predictor-corrector) acceleration step. Due
to weak convexity of the objective function, a restart rule
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is required [27]. Although a global convergence rate can-
not be guaranteed, the restart rule reduces the oscillating
behavior which is often encountered in first-order iterative
methods [27], [31].

Accelerated ADMM algorithm is given by,

Xk

:

= argmin

X

L
⇢

(X, ˆZk, ˆY k

)

Zk

:

= argmin

Z

L
⇢

(Xk, Z, ˆY k

)

Y k

:

=

ˆY k

+ ⇢
�
A
�
Xk

�
+ BZk � C

�

c
k

:

=

1
⇢

kY k � ˆY kk2
F

+ ⇢ kZk � ˆZkk2
F

if c
k

< ⌘ c
k�1,

↵
k+1 :

= (1 +

p
1 + 4↵2

k

)/2

ˆZk+1
:

= Zk

+

↵k�1
↵k+1

(Zk � Zk�1
)

ˆY k+1
:

= Y k

+

↵k�1
↵k+1

(Y k � Y k�1
)

else

↵
k+1 = 1, ˆZk+1

= Zk�1, ˆY k+1
= Y k�1

c
k

 ⌘�1 c
k�1

Following [27], the algorithm is initialized with Z�1
=

ˆZ0,
Y �1

=

ˆY 0, ⇢ > 0, ↵1 = 1, and terminated using similar
criteria as in the ADMM algorithm.

B. Alternating minimization algorithm

The alternating minimization algorithm which was origi-
nally developed by Tseng in [32] involves simpler steps than
ADMM, but requires strong convexity of the smooth part of
the objective function. Since the logarithmic barrier function
in (CP) is strongly convex over any compact subset of the
positive definite cone [33], we can use AMA to solve (CP).

AMA follows a sequence of iterations,

Xk+1
:

= argmin

X

L0 (X, Zk, Y k

) (10a)

Zk+1
:

= argmin

Z

L
⇢

(Xk+1, Z, Y k

) (10b)

Y k+1
:

= Y k

+ ⇢
�
AXk+1

+ BZk+1 � C
�

(10c)

which terminate when the duality gap

�gap :

= � log det

�
Xk+1

�
+ � kZk+1k⇤ � J

d

�
Y k+1

�
,

and the primal residual

�p :

= kAXk+1
+ BZk+1 � Ck

F

,

are sufficiently small, i.e., |�gap|  ✏, and �p  ✏. In the
X-minimization step, AMA minimizes the Lagrangian L0

to obtain a closed form expression for Xk+1. This is in
contrast to ADMM which aims at minimizing the augmented
Lagrangian in both X- and Z-minimization steps. It can be
shown that AMA works as a proximal gradient on the dual
function, which allows us to select the step-size ⇢ in order
to achieve sufficient dual ascent.

1) Solution to the X-minimization problem (10a): At the
kth iteration of AMA, minimizing the Lagrangian L0 with

respect to X for fixed {Zk, Y k} yields

Xk+1
=

�
A† �Y k

���1
. (11)

2) Solution to the Z-minimization problem (10b): This
step is identical to (6b) in the ADMM algorithm.

3) Lagrange multiplier update: The expressions for Xk+1

and Zk+1 can be used to bring (10c) into the following form

Y k+1
1 = T

�

�
Y k

1 + ⇢A1

�
Xk+1

��

Y k+1
2 = Y k

2 + ⇢
�
A2

�
Xk+1

�
�G

�
.

For Hermitian matrix M with singular value decomposition
M = U ⌃U⇤, we have

T
⌧

(M)

:

= U T
⌧

(⌃)U⇤

T
⌧

(⌃) = diag (min (max(�
i

,�⌧), ⌧))
where the saturation operator T

⌧

restricts the singular values
of M between �⌧ and ⌧ . This guarantees dual feasibility of
the update, i.e., kY k+1

1 k2  � at each iteration, and justifies
the choice of stopping criteria in ensuring primal feasibility
of the solution.

4) Choice of step-size for the dual update (10c): We
follow an enhanced variant of AMA [24] which utilizes an
adaptive Barzilia-Borwein step-size selection [34] in (10b)
and (10c) to guarantee sufficient dual ascent and positive
definiteness of X . Our numerical experiments indicate that
this provides substantial acceleration relative to the use of a
fixed step-size. Since the standard Barzilia-Borwein step-size
may not always satisfy the feasibility or the sufficient ascent
conditions, we determine an appropriate step-size through
backtracking.

At the kth iteration of AMA, an initial step-size,

⇢
k,0 =

⌦
Y k+1 � Y k, Y k+1 � Y k

↵

hY k+1 � Y k, rJ
d

(Y k

)�rJ
d

(Y k+1
)i ,

is adjusted through a backtracking procedure to guarantee
positive definiteness of the subsequent iterate of (10a) and
sufficient ascent of the dual function,

A† �Y k+1
�
� 0 (12a)

J
d

�
Y k+1

�
� J

d

�
Y k

�
+

⌦
rJ

d

(Y k

), Y k+1 � Y k

↵
�

1

2⇢
k

kY k+1 � Y kk2
F

. (12b)

Here, rJ
d

is the gradient of the dual function. Condi-
tion (12a) guarantees the positive definiteness of Xk+1,
cf. (11), and the right hand side of (12b) is a local quadratic
approximation of the dual objective around Y k.

C. Computational complexity

The X-minimization step involves an eigenvalue decom-
position in ADMM, and a matrix inversion in AMA, which
costs O(n3

) operations in both cases (n is the number of
states). Both methods have Z-minimization steps that amount
to a singular value decomposition, and require O(n3

) opera-
tions. Thus, the total computational cost for a single iteration
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TABLE I: Comparison of different algorithms (in seconds)
for different number of masses and � = 10.

N CVX ADMM Fast ADMM + Restart AMA
10 67.04 6.80 3.10 7.00

20 942.23 105.55 65.52 36.97

50 – 3930.4 3492.5 625.92

100 – 40754 34420 5429.8

of our customized algorithms is O(n3
). In contrast, standard

SDP solvers have a worst-case complexity of O(n6
).

V. NUMERICAL EXPERIMENTS

We present an illustrative example to demonstrate the
effectiveness of our customized algorithms. Consider a mass-
spring-damper (MSD) system subject to stochastic distur-
bances that are generated by a low-pass filter,

low-pass filter: ˙⇣ = �⇣ + d (13a)

MSD system: ẋ = Ax + B⇣ (13b)

The state vector x = [ p⇤ v⇤ ]⇤, contains position and velocity
of masses, and d represents a zero-mean unit variance white
process. State and input matrices are

A =


O I
�T �I

�
, B

⇣

=


0

I

�
,

where O and I are zero and identity matrices and T is a
symmetric tridiagonal Toeplitz matrix with 2 on the main
diagonal and �1 on the first upper and lower sub-diagonals.

The steady-state covariance of system (13) can be found
as the solution to the Lyapunov equation,

˜A⌃ + ⌃

˜A⇤
+

˜B ˜B⇤
= 0,

where
˜A =


A B
O �I

�
, ˜B =


0

I

�
,

⌃ =


⌃

xx

⌃

x⇣

⌃

⇣x

⌃

⇣⇣

�
.

The sub-covariance ⌃

xx

denotes the state covariance of the
MSD system, and is partitioned as

⌃

xx

=


⌃

pp

⌃

pv

⌃

vp

⌃

vv

�
.

We assume knowledge of one-point correlations of the po-
sition and velocity of masses, i.e., the diagonal elements of
⌃

pp

, ⌃
vv

, and ⌃

pv

. In order to account for these available
statistics, we solve (CP) for a state covariance X of the MSD
system which agrees with the available statistics.

Numerical experiments were conducted for N = 10, 20,
50, and 100 masses and for various values of �. Iterations
were run for each method until an iterate achieves a certain
distance from optimality, i.e., kXk �X?k/kX?k < ✏1 and

Iteration
(a) Jd(Y1, Y2)

Iteration

(b) �gap

Iteration

(c) �p

Fig. 2: Performance of the customized AMA for the MSD
system with 50 masses, � = 2.2, and ✏ = 10

�3. (a) The
dual objective function J

d

(Y1, Y2) of (CP); (b) the duality
gap, |�gap|; and (c) the primal residual, �p.

kZk � Z?k/kZ?k < ✏2. For � = 10, Table I compares
various methods based on run times (sec). For N = 50

and N = 100 CVX [35] ran out of memory. The choice of
✏1, ✏2 = 10

�3 and � = 10, guarantees sufficient optimality in
matching primal constraints and achieving low-rank solutions
which bring the objective to within 0.1% of J

p

(X?, Z?

).
Clearly, AMA outperforms ADMM for large problems.

We now focus on the performance of customized alternat-
ing minimization algorithm. For 50 masses and � = 2.2 we
use the algorithm discussed in Section IV-B to solve (CP)
with ✏ = 10

�3. Figure 2a illustrates the monotonic increase
of the dual objective function. The absolute value of the
duality gap, |�gap|, and the primal residual, �p are displayed
in Fig. 2, thereby demonstrating convergence.

In (CP), the parameter � determines the importance of
the nuclear norm relative to the logarithmic barrier function.
While larger values of � result in lower rank solutions for
Z, they may fail to achieve a reasonable completion of
the “ideal” state covariance ⌃

xx

. When the true values of
all entries of the covariance matrix are not known, � is
typically chosen on an empirical basis or by cross-validation.
In our example, however, the true state covariance ⌃

xx

is known. Minimum error is obtained at � = 1.4, but
this value of � does not yield a low-rank input correlation
Z. For � = 2.2 reasonable matching is obtained (82.7%
matching) and the resulting Z displays a clear-cut in its
singular values with 62 of them being nonzero. Figure 3b
shows the recovered covariance matrix of mass positions,
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X
pp

. We observe reasonable correspondence with the true
covariance ⌃

pp

in Fig. 3a.

(a) ⌃pp (b) Xpp

Fig. 3: The matrix ⌃

pp

of the MSD system and the covari-
ance X

pp

which comes as a solution to (CP).

VI. CONCLUDING REMARKS

We are interested in explaining partially known second-
order statistics that originate from experimental measure-
ments or simulations using stochastic linear models. We
assume that the linearized approximation of the dynamical
generator is known whereas the nature and directionality
of disturbances that can explain partially observed statistics
are unknown. This inverse problem can be formulated as
a convex optimization problem, which utilizes nuclear norm
minimization to identify noise parameters of low rank and to
complete unavailable covariance data. We also constrain the
solution set to positive definite state covariances by including
a logarithmic barrier function in the objective. To efficiently
solve covariance completion problems of large size we
develop customized algorithms based on alternating direction
methods. Numerical experiments show that the enhanced
variant of AMA performs much better than strategies based
on ADMM, especially for large-scale problems.
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