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A frameworkbased on the gapmetric is proposed to validatemathematicalmodels of aircraft dynamics using flight

data. The approach derives stability margin requirements, and hence is ideally suited to support model-based design

and certification of flight control algorithms. This paper shows that the gap metric is an extension of the Theil

inequality coefficient: awidely usedmetric formodel validation. The approach is demonstrated on a case studywith a

small unmanned aircraft.

I. Introduction

R ELIABLE flight control algorithms are critical to integrating
unmanned aircraft systems (UASs) into the airspace. For many

potential UAS applications, the design and certification of these
algorithms will rely heavily on mathematical models of the aircraft
dynamics. Modern aircraft like the F-35 have already taken
advantage of model-based design. At the same time, test pilots on the
program attribute some of the costly delays and budget overruns on
models that failed to recognize design problems as expected [1]. One
of the major lessons learned is that better knowledge of model
accuracy is required early in the program to efficiently rely onmodel-
based design. In response to this, the aerospace community must
develop more effective tools for model validation.
Model validation refers to assessing the predictive accuracy of a

model with respect to experimental data. It is perhaps more accurate
to describe the term as seeking to ensure that the data do not actually
invalidate a givenmodel. Existing techniques can generally be placed
in two categories. In the first, a model perturbation is identified that
accounts for the discrepancy between simulation and experiment [2–
8]. If the perturbation belongs to an allowable set, the result is deemed
not to invalidate the model. This approach mostly relies on linear
matrix inequality optimizations and provides rigorous conclusions
about model quality. However, it is also limited by computational
power and the types of model structures that can be analyzed. A
second more commonly used approach [9–11] relies on statistical
analysis of the estimated output error between simulation and experi-
ment. Typically blind to model structure, this approach is more
broadly applicable than optimization-based methods. However,
it also provides less rigorous results and no robustness guarantees.
In the present work, a framework based on the gap metric is

proposed as a natural set of techniques to validate aircraft models
using flight data. The gap metric, and the closely related normalized
coprime fractions, have been previously used within the context of
model validation [2,3]. The first contribution of the present work is to
interpret the gap metric as a modified generalization of an existing
and commonly used statistical validation metric: the Theil inequality
coefficient (TIC) [10]. A second contribution is to compute the gap
metric using flight-test data and relate the result to well-established
robustness margins. Finally, a case study based on flight-test data is

presented to underscore the practical relevance of the proposed
framework.
Compared to TIC analysis, validation in the gap metric provides

analytical rigor when applied to linear time-invariant (LTI) models. It
is therefore ideally suited to support model-based design of flight
control algorithms, which typically rely on linearized models of the
aircraft dynamics. The approach links the validation metric to
a controls-centric notion of what constitutes an accurate model.
It directly allows a comparison of an identified aircraft model to flight
data and the derivation of a set of robustness requirements for closed-
loop control. As a result, aerospace engineers may gain confidence
earlier in the development process that their control algorithms are
safe to be implemented on real aircraft.

II. Theoretical Background

The primary objective of this work is to build engineering
perspective on the gap metric in order to make it more accessible for
model validation and flight control design. To this end, a key
connection is drawn between the gapmetric and the TIC. TheTIC has
been used extensively to validate models for a wide range of
aerospace systems, including fixed-wing aircraft, helicopters, and
missiles [11–14]. Due to this experience, aerospace engineers feel
comfortable with the metric and understand how to apply it to real
flight data. In general, the TIC compares time-domain output
responses, whereas the gap compares time-domain input and
output responses. A suitable adaptation of the TIC to incorporate
input responses is given to draw the connection. Subsequently, a
transition is made into the frequency domain, which allows the
gap metric to be expressed in terms of transfer functions for
computational purposes.
For single-input single-output (SISO) systems, the TIC is defined

as follows:
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where ŷ1 is a sampled simulation time history, and ŷ2 is the
corresponding output measurement obtained in flight. For this
discrete time formulation, n represents the number of data points.
Implicit in this definition is the assumption that the input to the
simulation and the input to the aircraft are the same. Equation (2)
shows a mathematically equivalent formulation of the TIC in
continuous time for the output signals y1 and y2:

TIC�y1; y2� �
ky1 − y2k2
ky1k2 � ky2k2

(2)

where

kyk2 ≔

����������������������Z �∞
−∞

y2 dt

s

denotes a 2-norm.
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Model validation using the TIC is very intuitive and easy to
understand. The metric ranges from zero to one, where lower values
indicate a better model. A value of zero corresponds to a perfect
match, and a value of one indicates no correlation. Both transient and
steady-state deviations are captured by the numerator, which com-
putes a 2-norm on the output error. This norm measures the squared
integral of the error. Finally, the TIC is scaled in the denominator by
the individual 2-norms of the outputs being compared.
The TIC was originally proposed as a metric for economic

forecasting [10]. In many economic forecasting applications, the
input is often poorly defined; hence, only output measurements are
used for analysis. Accordingly, the TIC was not defined to take into
account input signals. For the analysis of aerospace systems,
however, the input is an important quantity. Therefore, a reasonable
adaptation of the TIC is

TICmodified�y1; y2; u� �

����
�
u
y1

�
−
�
u
y2

�����
2����

�
u
y1

�����
2

�
����
�
u
y2

�����
2

(3)

where u is the input signal applied to the simulation and to the real
aircraft. Here, the input has no effect on the numerator and only
modifies the denominator scaling. However, this adaptation of the
TIC is insightful because, as shown later in this section, it draws a
parallel to the gap metric.
A major shortcoming of the TIC, in any formulation, is the lack of

rigorous connection towhat constitutes a goodmodel. It is difficult to
relate a numerical value of this metric to a specific level of model
accuracy. Consequently, there is no interpretation of the TIC in terms
of stability margin requirements. Engineers only know that, in
general, lower TIC values indicate better models. It turns out that a
further modification of Eq. (3) leads to a rigorous metric: namely, the
gap metric. As a result, model validation gains a connection between
model accuracy and closed-loop robustness margins provided by the
gap metric.
In the context of feedback control, the gap metric represents a

natural notion of the dissimilarity between systems. Closeness in the
gap is equivalent to similarity between two systems in an input–
output sense. Therefore, the gap metric is suitable for use with
experimental flight data. Furthermore, the gap metric quantifies
model perturbations that do not destroy feedback stability and taps
onto a rigorous foundation of modern robust control with optimi-
zation tools and robustnessmargins. Intuitively, the gapmetric differs
from the TIC by allowing the inputs (e.g., simulation and experi-
mental inputs) to be different in the analysis. Allowing the inputs to
differ is convenient for model validation. For example, consider the
case where unmodeled time delays cause a misalignment in the
output signals. This type of data discrepancy is commonly found in
flight control applications. The resulting TIC would be large, even
though the primary dynamics are captured accurately by the model.
In practice, engineers address this issue in an ad hoc way by time
shifting the signals manually. The gap metric allows the inputs to
differ, and be selected accordingly, in order to minimize the overall
deviation between the input–output signal pairs. The resulting gap
would be small in this example, correctly indicating an accurate
model.
To formally define the gap metric, consider two SISO systems P1

andP2 with inputs u1 and u2 and outputs y1 and y2. The gap metric is
defined as the maximum of two directed gaps ⃗δ�P1; P2� and
⃗δ�P2; P1� [15,16], where

⃗δ�P1; P2� � sup
ku1k2≤1

inf
u2
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�
−
�
u2
y2

�����
2����

�
u1
y1

�����
2

(4)

Thus, the gap metric is given by:

δ�P1; P2� � maxf ⃗δ�P1; P2�; ⃗δ�P2; P1�g (5)

The constraint on the supremum in Eq. (4) bounds the 2-norm of u1,
which is a standard condition for maximum–minimum optimiza-
tions. Similar to the TIC, the gap metric ranges from zero to one and
measures deviations based on 2-norms. Equation (4) shows that the
system adaptation of the TIC is a nearly special case of the gapmetric,
namely, where u1 � u2 and with a different scale factor in the
denominator. Hence, the gap metric can be thought of as a modified
generalization of the TIC.
The theory of the gap metric has been advanced by many authors

[15–22]. However, in general, it is difficult to compute the gapmetric
using Eq. (4); moreover, stronger assumptions are needed to enable
model validation using flight data. Yet, forP1 andP2 being SISOLTI
systems with transfer functions P1�s� and P2�s�, an equivalent
formulation exists in the frequency domain [17,19]. Thus, the gap
metric can be expressed in both the time and frequency domains,
much like system identification techniques used by the aerospace
community. System identification is closely related to model
validation, and a variety of techniques based in the time and fre-
quency domains have been developed [9,11,12,23].Model validation
using the gap metric is particularly convenient and powerful in the
frequency domain, and it aligns with many popular system identi-
fication applications [24–27].
A brief introduction to normalized coprime factors follows to

introduce the required frequency-domain gapmetric theory. Coprime
factors are used in control theory to model uncertainty and quantify
stability and robustness properties of closed-loop systems [28,29].
Given a transfer function P1�s�, define its numerator and denomi-

nator (coprime) polynomials ~N1�s� and ~D1�s� such that P1�s� �
~N1�s�∕ ~D1�s�. The normalized coprime factorization of P1�s� is

P1�s� � N1�s�∕D1�s� (6)

where the so-called “normalized coprime factors”

N1�s� � ~N1�s�∕Z1�s� and D1�s� � ~D1�s�∕Z1�s� (7)

are stable proper transfer functions, instead of polynomials, and
satisfy

N1�s�N1�−s� �D1�s�D1�−s� � 1 (8)

This also requires Z1�s� to be stable and satisfy

~N1�s� ~N1�−s� � ~D1�s� ~D1�−s� � Z1�s�Z1�−s�

Normalized coprime factors are key to relating the time-domain gap
metric to the frequency domain. Equation (8) will simplify the gap
metric later to enable use with flight data.
The gap metric is expressed in the frequency domain as follows:

⃗δ�P1; P2� � inf
Q∈H∞

kG1 −G2Qk∞ (9)

which amounts to minimizing the peak gain (i.e., theH∞-norm) of a
transfer function representing mismatch between the two systems.
Here, G1�s� � �D1�s�;N1�s�� and G2�s� � �D2�s�;N2�s�� are the
normalized coprime factors stacked into column vectors, andQ�s� is
a scale factor decision variable restricted to be a stable transfer
function. The vectorsG1�s� andG2�s� have interpretations as “graph
operators” representing the inputs and outputs of P1�s� and P2�s�,
thus linking the time-domain gap metric to the frequency domain. In
fact, Q�s� establishes the correspondence necessary between the
inputs to be consistent with the optimization in Eq. (4). For more
details on graph operators, see [19,22]. Although the optimization in
Eq. (9) is convex and can therefore be solved efficiently, it cannot be
used for model validation with flight data in its current form. Note
that Eq. (9) requires coprime factorizations, which are not directly
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available to engineers. Only time histories and frequency responses
(via system identification) can be obtained from flight experiments.
The ν-gap metric is a far-reaching modification to the gap metric

that enables more direct computation and connects the analysis to
frequency responses [20,22]. This is key for applications to model
validation because frequency responses are easily obtained from
flight data. Again, the mathematical details on the modification (see
[22]) are beyond the scope of this work. Briefly, the ν-gap relaxes the
optimization constraint in Eq. (9) fromQ�s� ∈ H∞ to allowQ�s� to
be an unstable transfer function. However, a new “winding number”
condition is needed to counter an unintended side effect on the norm.
This condition requires that a term related to the aircraft dynamics
(defined subsequently) has equal numbers of unstable poles and
zeros. If the condition is not satisfied, then the ν-gap metric defaults
to its worst-case value of one. Accordingly, define S as the set of
all transfer functions that have the same number of unstable poles
and zeros.
For conventional fixed-wing rigid-body aircraft, it can be assumed

that thewinding number condition is satisfied. The flight dynamics of
these aircraft are easily controlled, and there are no “approximate”
unstable pole-zero cancellations. Proximity between unstable
poles and zeros relates to the winding number condition and has a
detrimental effect on robustness [22]. Formally, the ν-gap is ex-
pressed as

δν�P1; P2� � inf
Q∈S
kG1 −G2Qk∞ (10)

and there is no distinction between directed formulas.
To explain the connection between the ν-gap and frequency

responses, let G�2�s� � G2�−s�T , where �·�T denotes the transpose.
Recall that G2�s� contains normalized coprime factors, and by

Eq. (8), G�2�s�G2�s� � 1. Also let ~G2�s� � �N2�s�;−D2�s��, for
which ~G2�s�G2�s� � 0. Premultiply the term G1 −G2Q in Eq. (10)

by
h
G�2 ;

~G2

i
, which is a unitary matrix, and therefore does not affect

the magnitude of the norm:

δν�P1; P2� � inf
Q∈S

����
�
G�2G1 −G�2G2Q
~G2G1 − ~G2G2Q

�����
∞

(11)

� inf
Q∈S

����
�
G�2G1 −Q

~G2G1

�����
∞

(12)

The key (winding number) assumption on the flight dynamics is that

G�2G1 ∈ S. Therefore, δν�P1; P2� turns out to be k ~G2G1k∞ since Q
can be taken as Q � G�2G1. Note that Q is eliminated from the
optimization and the solution is an H∞-norm. However, the expres-
sion still depends on normalized coprime factors. Reference [22]
shows how the ν-gap metric can be expressed directly in terms of

transfer functions P1 and P2 by expanding ~G2G1:

~G2G1 �
�
N2 −D2

��
D1

N1

�

� N2D1 −D2N1 � D2�P2 − P1�D1

�
�

D2D
�
2

D2D
�
2 � N2N

�
2

�
1∕2
�P2 − P1�

�
D1D

�
1

D1D
�
1 � N1N

�
1

�
1∕2

� �1� P2P
�
2�−1∕2�P2 − P1��1� P1P

�
1�−1∕2

Hence, the ν-gap metric is computed by evaluating by the following
norm:

δν�P1; P2� � k�1� P2P
�
2�−1∕2�P2 − P1��1� P1P

�
1�−1∕2k∞ (13)

Computing the ν-gap metric in this way is very convenient from an
engineering perspective. The formula depends only on the transfer
functionsP1�s� andP2�s�. Therefore, this approach can be applied to

flight data using frequency responses. Discretizing over frequency
and plugging P1�jω� and P2�jω� into Eq. (13), the ν-gap metric
corresponds to the peak magnitude of the norm over all frequency
points.

III. Framework for Model Validation

The ν-gap metric is useful in validating models because it links the
validation metric to classical measures of robustness [21,22]. It
provides more insight to aerospace engineers than current validation
metrics, such as the TIC, with regard to the practical meaning of
the computed value. At the same time, it retains a similarity to the TIC
via the gap metric and its time-domain interpretation. For model
validation, the computed value of the ν-gap metric is related to an
uncertainty description that accounts for the difference between the
identified aircraft model and flight data. The resulting uncertain
model is analyzed using robust control techniques to derive stability
margins for control. This relationship between the validation metric
and robustness requirements is amajor advantage of the ν-gapmetric.
However, certain assumptions are required on the structure of the
uncertainty description.
Consider P1�s� as the identified aircraft model and P2�s� as the

true aircraft dynamics. Gap theory requires that P2�s� ∈ PΔ�s�.
Accordingly, the family of models described by PΔ�s� is defined as
follows:

PΔ�s� ≔
�
P1�s��1� δ1�∕�1 − δ2�

	
(14)

where δ1 and δ2 are complex numbers representing the uncertainty.
The values for δi can depend on frequency and be thought of as
weighting functions characterizing the uncertainty. This is a type of
uncertainty model commonly used in robust control applications. If
jδ1j ≤ ϵ < 1 and jδ2j ≤ ϵ, then the ν-gap between P1�s� and P2�s� is
bounded by δν�P1�s�; P2�s�� < ϵ. Hence, themodel validationmetric
is bounded by the size of the uncertainty.
The model PΔ�s�, evaluated for all frequencies, forms a disk in

the complex plane. Thus, at each frequency, the perturbation
required to generate P2�s� based on P1�s� is contained in this disk.
Stability margins can be guaranteed for a controller operating on
P2�s� that was originally designed based on P1�s�. If the stability
margins for the controller are sufficiently large and exceed theworst-
case perturbation due to the uncertainty in PΔ�s�, then the closed-
loop controller is guaranteed to stabilize the real aircraft. This has
profound implications on model-based flight control design.
Controllers designed for an aircraft model, regardless of its accuracy,
can be guaranteed to be stable in closed-loop when applied on the
real system. As a result, they can be safely implemented and
flight-tested earlier in the development program. The relationship
between the ν-gap and classical stability margins is given by the
following [21]:

Gain margin � 20 log10
1� ϵ

1 − ϵ
(15)

Phase margin � 2 arcsin ϵ (16)

Disk margin � 2ϵ

1 − ϵ2
(17)

These margins interpret the validation metric as a robustness
requirement for control. For example, ϵ � 0.38 is equivalent to
standard stability margins of a 6 dB gain margin and a 45 deg phase
margin. If the validation result returns an ϵvalue less than 0.38, then a
controller with standard robustnessmargins is guaranteed to be stable
on the real aircraft.
Consider a simple example where a nominal aircraft model P1�s�

is given by the following:
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P1�s� �
18.75s� 225

s2 � 9s� 225
(18)

This transfer function is representative of short-period longitudinal
dynamics of a small fixed-wing aircraft. Assume that the true aircraft
is a perturbation of P1�s�. Uncertainty and errors are expected in
the system gain, natural frequency, and damping ratio estimates.
For simplicity and without loss of generality, uncertainty in the zero
dynamics is neglected. Let the true aircraft dynamics be represented by

P2�s� �
18.75s� 225

s2 � 7.22s� 246.5
(19)

Given exact knowledge ofP1�s� andP2�s� in this example, thegap and
the ν-gapmetrics canbe computed directly.Bothmetrics have the same
value of 0.09. It is often the case that values of the gap and the ν-gap are
identical. However, this computed value cannot be used directly to
infer stability margins. The perturbation between P1�s� and P2�s� is
not in the assumed coprime factor uncertainty structure required by
PΔ�s�. Therefore, the true aircraft dynamics embodied in P2�s� must
be overbounded by a coprime factor uncertaintymodel, for which an ϵ
value of 0.14 is sufficient. This ensures that the true perturbations are
smaller and covered by the coprime factor uncertainty disk associated
with PΔ�s�.
Figure 1, on the right, shows the ϵ disk as a solid circle in the

complex plane. Multiplicative perturbations associated with the
difference between P1�jω� and P2�jω� [i.e., P1�jω�∕P2�jω�] are
shown for a set of discrete frequency points. The perturbations at 0.1,
15, and 100 rad∕s are highlighted. Note that all perturbations are
covered by the ε disk. Bode plots ofP1�jω� andP2�jω� are shown on
the left.
Equations (15–17) have geometric interpretations using the ϵ disk.

The upper gainmargin (GM) is given by themarker on the real axis at

1.33, corresponding to �2.48 dB. Accordingly, the marker on the
real axis at 0.75 corresponds to a −2.48 dB gain margin. The phase
margin (PM) is given by the angle of the line tangent to the ϵ disk. The
markers away from the real axis indicate the tangent points,
corresponding to a phase margin of 16.2 deg.
Robustness requirements derived from the model validation

analysis can be examined further using Nichols and Nyquist
diagrams. Figure 2, on the left, shows the Nichols diagram. Gain and
phase variations associated with the ϵ disk form an elliptical region in
the Nichols plane. This ellipse is inscribed in a traditional Nichols
exclusion region marked by the dashed polygon. The Nichols
exclusion region is a useful way to visualize the relationship between
the validation analysis and robustness requirements. If a controller
satisfies robustness requirements given by the Nichols exclusion
region, then the closed-loop system will be stable. Note that the
worst-case perturbation near 15 rad∕s is on the boundary of the
ellipse and inside the Nichols exclusion region.
A robust Nyquist diagram is shown on the right in Fig. 2. The

uncertainty associated with the ϵ disk forms a tube around P1�s� that
contains P2�s�. The worst-case perturbation near 15 rad∕s is
accented with the circular markers. At this frequency, the ϵ disk
exactly capturesP2�s�. It is important that the shaded region does not
cross the critical point at −1 on the real axis, as this would prohibit a
stability guarantee for the closed-loop system.

IV. Unmanned Aircraft System Application

The proposed model validation framework is demonstrated for its
intended application: evaluating the accuracy of aircraft models with
respect to experimental flight data. The data used in this example
were obtained with an Ultra Stick 25e aircraft operated by the
University ofMinnesota [30].§ The aircraft has a fixed-wing airframe
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§Data available online at www.uav.aem.umn.edu [retrieved 2014].
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with a 2 kg mass and a wingspan of 1.3 m. An inertial measurement
unit [31] records angular rates and translational accelerations.
Figure 3 shows the aircraft.
A linear model based on constant aerodynamic coefficients was

generated using frequency-domain system identification techniques
[27]. The trim condition for the experiment was level flight at
19 m∕s. Multiple sinusoidal sweep experiments were carried out to
obtain data over the primary frequency range of the flight dynamics.
Frequency responses were extracted for each input–output data pair,
and a parametric state-space model was fitted to the entire dataset.
Note that frequency responses used for system identification cannot
be reused for model validation. Therefore, two distinct sets of
frequency responses were generated.
To be consistent with the previous example, considerP1�jω� as the

identified model frequency response to be validated. Let P2�jω�
represent the experimental flight data in the form of a frequency
response. The model P1�jω� and flight data P2�jω� are shown as
Bode plots in Fig. 4. Coherence plots are included below to indicate
the quality and accuracy of the frequency responses.
The lightly shaded frequency responses represent the raw data

from each individual sinusoidal sweep experiment. In general, data
obtained from a single experiment would be sufficient to apply
the proposed model validation framework. However, frequency

responses based on single experiments often exhibit significant
random error. In Fig. 4, for example, the roll rate responses are noisy,
particularly at high frequency. Similarly, the yaw rate responses are
noisy near the peak of the magnitude. Errors like this contribute
directly to more conservative robustness requirements in the
validation analysis. This is a consequence of more uncertainty
required to overbound the difference between P1�jω� and P2�jω�.
The handling of frequency response errors is an engineering

decision that depends on the application. In this example, the
individual frequency responses are averaged to reduce the effect of
random error. The darker solid line in Fig. 4 shows this result. Where
the individual roll rate responses are noisy, the average is smooth. A
key feature of the proposed validation framework, however, is that it
can be applied regardless of data quality. This is particularly benefi-
cial in cases where model accuracy is not crucial and controllers are
designed with large stability margins. In these cases, robust stability
is guaranteed despite poor data quality. This can significantly reduce
the scope and cost of a flight-test campaign.
Figure 5 shows the model validation result for the primary input–

output relationships on the aircraft. The lightly shaded markers
represent the raw data from individual experiments. Recall that each
marker corresponds to the difference between P1�jω� and P2�jω�
at a single frequency point. The markers are also related to the
lightly shaded frequency responses in Fig. 4. The lightly shaded ϵ
disk indicates the main validation result. It shows the amount of
uncertainty necessary to account for the perturbations associatedwith
the raw data.
The darker markers in Fig. 5 represent the averaged flight data.

These markers also correspond to the darker frequency responses in
Fig. 4. The darker ϵ disk indicates the amount of uncertainty
necessary to account for the perturbations associated with the
averaged data. Note that the darker ϵ disk is significantly smaller than
its lighter counterpart. This confirms that averaging the flight data
yielded a less conservative uncertainty description. As a result, less
stringent robustness requirements have to be satisfied by the
controller.
The ϵ disks in Fig. 5 indicate that the elevator-to-pitch-rate model

has the highest quality and that the rudder-to–yaw model has the
lowest quality. In all three cases, averaging the experimental data
reduced the amount of uncertainty necessary to account for the
perturbations. Averaging also reduced the random error manifested
as scatter, which is indicative of a smoother experimental frequency
response. This is particularly noticeable in the roll and yaw rate
responses, where the averaged data are qualitatively less scattered
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Fig. 4 Experimental frequency responses compared to the identified linear model.

Fig. 3 University of Minnesota Ultra Stick 25e UAS.
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and more continuous than the raw data. Table 1 provides a summary
of the results.
Table 1 shows how the metric ϵ is related to robustness require-

ments for closed-loop control. Results are given both for the raw and
the averaged data. In comparison to the others, the higher quality of
the elevator-to-pitch-rate model is evident from the lower stability
margins required for the control system. For the averaged data case,
as an example, only about 12 deg of phase margin are required for a
controller to be stable. In the rudder-to-yaw-rate model, however,
about 21 deg of phase margin are required.
The final step in the validation process is to check that the

uncertainty model, which was determined in the frequency domain,
translates appropriately into the time domain. A Monte Carlo simu-
lation is executed using input signals recorded from an open-loop
doublet flight maneuver. The uncertainty is sampled along the
boundary of the ϵ disks and realized as all-pass transfer functions
perturbing the nominal model. For this simulation, ϵ disks computed
based on the averaged flight data are used. The uncertainty sampling
ensures that all possible perturbations in the flight dynamics are
represented in the Monte Carlo simulation. For the flight test, a pitch
doublet was executed first, followed by a roll doublet, and completed
with a yaw doublet. Figure 6 shows the time-domain results by
comparing flight data to the Monte Carlo simulations.
Control surface input signals are included in Fig. 6 along with

the angular rate measurements. The input signals are shown in

degrees but scaled five times in the plot to match the system gain
and the order of magnitude of the outputs. The linear aircraft model
is represented by the thick dashed line. The flight data are shown by
the thick solid line. A lightly shaded tube shows the collection of
500 individual Monte Carlo simulations. This tube corresponds
to the family of responses described by the uncertainty model.
Note that the main excursions from the tube, which are most
significant in the yaw rate response, are caused by unmodeled
cross-coupling.
The time-domain simulations provide complementary insight to

gap analysis. The flight data match the roll and pitch rate simulations
closely. However, the results in Fig. 5 and Table 1 predict that the roll
model is significantly less accurate than the pitch model. This
discrepancy is caused by erroneous deviation in roll rate frequency
response from the identifiedmodel, which results in a large gap value
(relative to the pitch rate). The deviation is attributed to lower
coherence, seen in Fig. 4. Together, gap analysis and the time-domain
results provide a clear path forward for the control design. If the
computed robustness requirements are acceptable, the model is
considered validated and guaranteed stability margins are available.
Conversely, if the robustness requirements are not acceptable, the
validation analysis points directly to the need for new flight experi-
ments to obtain better quality frequency responses.
The pitch ratemodel represents the ideal case, where gap analysis

correctly predicts a close match in the time-domain simulation.
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Fig. 5 Perturbations and uncertainty disks relating flight data to the linear model.

Table 1 Validation results for raw and averaged flight data

Roll rate Pitch rate Yaw rate

Raw Average Raw Average Raw Average

Model quality Gap metric ϵ 0.20 0.14 0.14 0.10 0.27 0.19
Controller requirements Gain margin, dB 3.58 2.47 2.45 1.80 4.70 3.29

Phase margin, deg 23.43 16.21 16.10 11.82 30.73 21.29
Disk margin 0.42 0.28 0.29 0.21 0.57 0.39
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These validation results likely provide an acceptable robustness
requirement for control design. Theyaw ratemodel represents the final
validation case. Here, the computed gap value is large and matches
a significant deviation in the time-domain simulation. The deviation
indicates that a relatively poormodel was identified due to fitting error,
and hence that a controller with large robustness margins is needed
to stabilize the real closed-loop system. Note, however, that the
corresponding uncertainty model successfully accounts for the
deviation. In this case, gap analysis shows that the experimental
frequency response is accurate, eliminating the need for additional
testing. Instead, the underlying modeling and system identification
assumptions should be revisited to obtain a better fit.

V. Conclusions

A model validation framework based on the gap metric was
described and applied to experimental flight data obtained from a small
unmanned aircraft. In the aircraft example, gap values of 0.14, 0.10,
and 0.19 were found for the roll, pitch, and yaw rate models,
respectively. The proposed framework is powerful because it pro-
vides guaranteed robustness requirements for closed-loop control.
Accordingly, the computed gap values correspond to 2.47, 1.80, and
3.29 dB gain margins; and 16.21, 11.81, and 21.29 deg phase margin
requirements. A major advantage of the proposed framework is that
it can be used in model-based flight control design, even if only rough
models are available. This can significantly reduce the scope and
cost of a certification flight-test campaign. An area of future research
is handling multiple-input multiple-output models, allowing cross-
coupling relationships to be accounted for directly.
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