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Dynamics of Relay Relaxation Oscillators

Subbarao Varigonda and Tryphon T. Georgiou

Abstract—Relaxation oscillators can usually be represented as

a feedback system with hysteresis. The relay relaxation oscillator un(y)

consists of relay hysteresis and a linear system in feedback. The ob-

jective of this work is to study the existence of periodic orbits and >

the dynamics of coupled relay oscillators. In particular, we give

a complete analysis for the case of unimodal periodic orbits, and w(y)

illustrate the presence of degenerate and asymmetric orbits. We

also discuss how complex orbits can arise from bifurcation of uni- ¥ U

modal orbits. Finally, we focus on oscillators with an integrator as
the linear component, and study the entrainment under external
forcing, and phase locking when such oscillators are coupled in a
ring.

. INTRODUCTION

. Fig. 1. Feedback system with hysteresis.
ELAXATION oscillators represent a class of models 9 Y Y

which approximate a variety of physical phenomena,

from electronic circuitry to circadian biological clocks [1, pp. Oscillations in hysteretic systems have been extensively
169-173], [2], chemical oscillators [3], and ecological systensgudied in the literature. When the hysteresis model has
[4]. Such oscillators consist basically of a feedback systeseme continuity properties, operator theoretic tools have been
with two elements: a bistable subsystem and a negative integratticularly successful [18]-[20]. For relay systems, several
action. The typical arrangement is shown in Fig. 1. The bistata@proaches have been used. More specifically, graphical tech-
element in the forward path is a hysteresis-type nonlinearitjigues and harmonic balance methods have been used early
The occupancy of one of its two stable states causes a buildasp[11], [12], [18], [21, Ch. 7]. These seem more suitable for
by the integral action in a direction which, in turn, forces thiw-order models and for an approximate analysis. On the other

system into the other stable state, and so on. hand, state-space methods and analysis of Poincaré maps allow
The best-known example of a relaxation oscillator is perhapgnore accurate analysis of periodic phenomena. In particular,
the van der Pol oscillator ([5]-[7]) described by conditions for the existence and stability of unimodal periodic
3 orbits (i.e., orbits having exactly two relay switchings per
=1y — <“_ _ u) period) were obtained for two-dimensional systems in [22, Ch.
3 8], and for higher dimensional systems and for systems with
y=-u time-delays in [13] using Poincaré maps. A sufficient condition

. . . for the existence of a globally stable unimodal periodic orbit

wheree is a small parameter. This system can be viewed, as ; . . .

- o ; A as given in [23] in terms of the transfer function of the linear

in Fig. 1, where the hysteresis is realized by the “fast” bistable : : '

. . : component. Time domain methods (cf. [14], [24]) and fixed

subsystem in the first equation. The van der Pol system was. . )

_ . L . ointtheorems (cf. [25]) have also been used to obtain sufficient
originally used to model a tunnel diode circuit, while analogous__ .. . ) X L .

R . cgnditions for the existence of unimodal periodic orbits. The

models have been used to study synchronization in b|olog|craé\ ationshio between the state-space and freauency-domain

systems [6], [8]. In fact, the same hysteresis-feedback paradigm P P q Y

) . ) . roaches is discussed by Astrom [13]. The case of pure relay
for an oscillatory system has been extensively used in demgnﬁ%j no hysteresis) can be obtained in the limit of the on—off
a variety of chemical oscillators [3], [9]. In this paper, we con* """ . : :
. . . ; : switching points approaching each other. Feedback systems
siderrelay relaxation oscillatorsvhich consist of a relay hys- ~ . L )
. . . with pure relay have been studied in greater detail by Johansson
teresis (cf. [10, p. 262]) and a linear system in feedback as shovxfnal (see [26] and the references therein)

n F.'g' 2. Such fe_:edbac.k syste_ms .W'th relay are encountere Mrhe approach we follow in this paper is based on state-space
a wide range of industrial applications [11]-[15] and, more re-

. L - . ) fepresentations and the analysis of Poincaré maps. In Section I,
cently, in designing periodic drug delivery devices [16], [17]. Wepconsider the system in Fig. 2 witha controllabrl)e and observ-

able realization for the linear systdPrand obtain necessary and
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| to unimodal periodic orbits after they verify some consistency
: ‘ conditions.
i
iz e e I A. Existence of Periodic Orbits
|
: The switching tou = —1 and« = 1 occurs on the level
v u surfacesS_ and S, in IR™ defined bycx = —1 andcx = 1,
respectively. The spadR” is divided into three regions by _
andSy, namely,R_ ={z:cx < —1},Ry ={z:cx > —1,
cx < 1}, andRy = {z: ex > 1}, as shown in Fig. 3.
P Depending on the state, the system is governed by one of the
two modelsM_ and M defined by
Fig. 2. Feedback connection of relay hysteresis and a linear system. M_:x=Azx—b, Yy=cx 3

My:z=Az+0, Yy = cx. 4)
per period can be obtained from the bifurcation of unimodal or-
bits. If the state is inR_, the system follows\/_ until the tra-

In Section lll, we consider the special case of a relay relajectory hits S, at which point, the input; switches to+1.
ation oscillator consisting of relay hysteresis and integral fee@ihe system then followd/, until the trajectory hitsS_ and
back. Such a system has a unique globally stable periodic orlitswitches to—1. In Ry, both M_ and A/, are allowed de-
and resembles the van der Pol oscillator. It also presents grending on the initial state. Notice that crossifig (S_) has
advantage of piece-wise linear maps to study the behaviorraf effect when the system followsd , (M _).
driven or coupled systems. We study the entrainment of this os-The response d? from initial statex(0) to aconstantnput
cillator under periodic external forcing at the input of the intex = 1 over|[0, t] is given byx(t) = ¢*2(0) + fot AT dr bu.
grator. In particular, we show the existence of primary and supor convenience, we will writgfg AT dr = S (AT /i)
harmonic entrainment regions in the relevant parametric spagsA~!(e* — I), but it should be noted that this function is
and contrast our results with results from earlier studies on gefe|l defined even ifA does not have an inverse. Hence we
eral relaxation oscillators [7], [8], [27]-{29], [6, p. 339]. Finally,have x:(t) = e**2(0) + A~1(e — I)bu. The state transi-
we consider rings of relay relaxation oscillators and demotion maps ford/_ (v« = —1) and M, (u = 1) are given by
strate synchrony and phase locking phenomena. The beha\ﬁg(t, 0,z0) = eMx(0) — A~ (e — b and ¢, (t,0,z0) =
of driven or coupled oscillators is of interest in variety of SUbgAt;L'(O) + A7Y(e — I)b, respectively.
jects, such as in biological systems, lasers, phase transitions, re&zonsider a trajectory that has at least a finite number of
action-diffusion systems, etc. [8], [29]-[32]. We show resultswitchings (see Fig. 3). Lefi be the point on the trajectory
for two and three member rings with both uni and bidirectionghere it switches td/, i.e., & € Sy andeé, = 1. Suppose,
coupling and observe that out-of-phase locking is possible evgliter timet;, the trajectory hitsS_ at n (cnx = —1) and
under excitatory coupling (see Remark 9). The analysis candgitches toM_ . Let 75, be the time taken for the trajectory to
extended in principle to larger systems. hit S, again att;,;. Suppose that the trajectory is transversal

to the switching surfaces & andr;..
Il. AUTONOMOUS OSCILLATIONS We can then define the two Poincaré maps= P, (&) and

Consider the feedback system shown in Fig. 2 where the SISt = I~ () s follows:
linear systenP is described by a controllable and observable

state space model m, = et + ATHeM — Db (5)
ppr = g — AT — Db (6)
T = Az + bu Q)
Y = cx. @ wheret;, andr; are implicitly determined as the smallest pos-
itive solutions ofcry, = —1 and &1 = 1, respectively.

The relay switches from it®n-state (output 1) tooff-state The composition” = P_ o P, which mapsS,. to itself,de-
(output —1) if the input reaches-1 from above and switchesfines a Poincaré return map for the feedback system. Similarly,
from the off-state to theon-state if the input reaches oneP = P, o P_,which mapsS_ to itself, is also a Poincaré re-
from below. If the relay is not symmetric with respect to théurn map. Clearly, the fixed points and periodic points of areturn
origin, the analysis will essentially be the same, after an affimeap correspond to the periodic orbits of the feedback system.
transformation. The case when= cx + du, withd > —1for Complex attractors of the map correspond to complex oscilla-
well-posedness, can be reduced to the above form by definintjcas of the system. The stability properties are inherited as well.
new outputj = (¢/d + 1)x which preserves the states at whiclWe call the periodic orbits that have exactly two switchings of
switching occurs. in each periodynimodal orbitsand they correspond to the fixed
The following analysis involves identifying the switching surpoints of the Poincaré map.
faces in state space that correspond to the switching points oRemark 1: The mapsP_ and P, inherit a symmetry from
the relay, and defining a Poincaré return map from one of tkiee underlying model8/_ andM, despite the presence of the
surfaces to itself. The fixed points of the map then correspomdplicitly determined parametets andr,. Namely,P_(r) =
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S_ier =1 Syiex=1 From the invertibility of[b  Ab--- A"~14], it follows that the
" . equation
Lru=
J f “‘ F(A) = g(A) (10)
k
/P\ AN has a solutiorf for all v € IR". Henceyv € IR™, 3¢, such
A0 that
""" T ‘\>
""" Mol P Mou=-1 r(A)p(A)éo — q(A)w] =0 (11)
............ " —
A e D which implies thatvu, 3w € A/(r(4)) and & such that
' & qg(Av = p(A) + w. Therefore,R(¢(A)) is contained in
~__ - M R(p(A) + N (r(4)).
’ For the converse, assume that (8) is satisfied. Singgb €
- R(g(A)), FJw € N(r(A4)) and¢ such thag(A)b = p(A)E +w.
Miu=1 R, Multiplication by () gives (7). -
R Corollary 1: (I — &2AT)¢ = AL (eAT — I)2b whereT is a
R. nonzero scalar has a solution if and only:if" + I is nonsin-

gular.
Proof: Applying Lemma 1 with f(A4) = I — ¢** and
g(A) = A 1(eAT — I)2, we observe that(A) = I — A7,

Fig. 3. Partitioning of the state space and the Poincaré maps.

— Py (—n). This implies that the return maps satisR(¢) =
(P_ o Pu)(€) = (~Py)X(&) andP(n) = (P4 o P_)(n) =
(—=P_)%(n). If ¢ is a fixed point of P = (=P, )?, so is—n

p(A) = eT + Tandg(A) = A~H(I — eAT) with interpolation
polynomials implied. Notice thai(s) andg(s) are coprime as
they do not have a common zero. Bgmma 1a solution exists

wheren = P, (&). Thus, the fixed points of are either the iff
fixed points of— Py, in which case they satisty + n = 0, or AT AT AT
they come in pairg and —. A similar conclusion holds for N ERET+DFNU =),
P. Hence, computing the fixed points of the mag”.(¢) or  However N’ (I — eAT) C R(eAT + I) since(I — ¢*T )y = 0
—P_(n), as was done in [13], may not yield all the unimodalimplies that(c% + I')v = 2v for anyw. Hence, (12) reduces to
peridic orbits. Other unimodal orbits that are period-two (but . AT AT
not period-one) fixed points of this map can exist (shown in RAT (I =) S R(e™ +1).
Sections 1I-B and -D) and hence, we need to analyze the l‘ix%ﬂis condition is trivially satisfied wheer'”
points of the second iterate.

In the subsequent analysis, we will use the return faap =
P(&) = P_(Py(&)). The following lemma is useful in de-

R(A™HI - (12)

(13)

+ 1 is nonsingular.
We now claim that (13) cannot be satisfied whell + I is
singular. To see this, let us rewrite (13) as

termining the fixed points. Letl!, N'(A), R(A) and spe¢A) N T + 1) CN(A YT - e*'TY). (14)
denote the transpose, null space, range and spectruinref , )

spectively. We say that a scalar functis) is defined on the SuUppose& 7 0 andv € N(e*? + 1), ie,

spectrum of a matrixt when f(s) and its derivatives upto the ATy — _y (15)

required order (depending on the Jordan structuté)aire de-

fined at the eigenvalues of (see [33]). Equation (14) then implies that' " (I — ') = 0 which, on

Lemma 1:Let A € R™", b € R™ with (A,b) control- multiplication by A’, gives(I — ¢*'7)v = 0. Hence, we have
lable, and letf, ¢ be functions defined on the spectrum 4f
Let fo(s), go(s) be interpolation polynomials of, g, respec-
tively (i.e., such thatf(A) = fo(A4) andg(A) = go(A)), and
let »(s) be their greatest common divisor apdy be defined
by fo(s) = r(s)p(s) andgo(s) = r(s)q(s), respectively. The
equation

a7
eA Tv = V.

(16)

Equations (15) and (16) imply that= 0, which is a contradic-
tion. Thus 4" 4 I must be nonsingular for a solution to exiist.

A unimodal-periodic solution of the feedback system can,
in general, have different time intervals between successive

FIAYE = g(A)b (7) Switches. We first consider the case of equal intervals between
switches, whereas the general case is discussed in Section |I-D.

has a solution fof if and only if The following result was first stated by Astrom [12], but a
complete proof is provided here as it reveals the existence of

R(q(A4)) € R(p(A)) + N(r(4)). (8) nonisolated-periodic orbits, which have not been identified

earlier.

Proposition 1: The system in Fig. 2, wher@ is described
by (1), (2), has a unimodal-periodic orbit of half-perid iff,
x(T) =0andy(¢t) > 0for0 < ¢ < T where

Proof: If (7) holds, then, by multiplying from the left with
powers ofA4, we get

fAE A¢ AT = g(A) b Ab A,

(9) x(T) =1+ c(I+A)TA™ AT - Db (A7)
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P(t) := 14 c[eMéy + A e — D (18) f——

b= —(I+e*)TTATH M — Db (19) os N

—~ or

Proof. To prove the necessity, suppose there is a periodic %w
orbit with half-period?’. Let¢ € S, andn € S_ be the states
when the switchings te. = 41 occur on this periodic orbit.

Thus, we have " 2 p . [ " 2 ” " s 20
T
df¢ n=[1 -1] (20)
n=Pp&) = Ter AHAT Db (21)
E=P_(n)=e*Tn— A7 e =D (22)

where we used the fact that the trajectory takes fin@reachy;
from £ with « = 1, and to reacl§ from » with « = —1. Solving
for £ andn from (21) and (22), we get

Fig. 4. Graph ofy(T") with rootsT; andT> marked by asterisks and the state
(I _ 62AT)£ — Ail(eAT _ I)Qb (23) space with the corresponding periodic orbits (solid and dashed) for the system

in Example 1.
(I -y =—-A"Y e — D)% (24)

) ) o ) Example 1: This example shows that the periodic orbit in
Since (23) has a solution, Corollary 1 implies tedt” + I is Proposition 1 in general, is not unique. Let

nonsingular. Solving fo¢ and» from (23) and (24), we get

/

—0.05 0 0 -1 0.2
AT —1 4—1; AT A= 0 —-0.1 1 b=| -1 c= 02

= — + 17 A - Db+ 25
§=—(e ) (e )b+ w (25) 0 T oq 1 0

n= (T + DA e - Db+ w (26)
In this case, two different solutions g{7) = 0, 7; = 2.53
wherew € N(e*T — I). Sincec(é + n) = 0 from (20), we and7, = 7.67 satisfys(t) > 0 and give rise to two different
also havew = 0. Notice thatw = 0 is always a solution which periodic orbits. The orbit with the smaller period passes through
corresponds t@ = &. Now, c§ = 1 givesx(I) = 0 since ¢ = (1.2657 3.7342 1.8630), and the other through =
x(T)=1—¢& =1—c. (3.7913 1.2087 0.2143)’. The plots ofy(7") and the periodic
Since the trajectory froré does not hitS_ until 7', it remains  orbits in state space are shown in Fig. 4.
in the regioncz > —1for0 < t < 7 and we have
B. Degenerate Case

14 chy(0,8,8) = p(t) + cetw > 0. (27) The periodic orbit obtained using Proposition 1 may not, in
general, be isolated. Here, we provide a condition that guar-
Similarly, from the conditiorc_(0,¢,7) < 1for0 < ¢t < antees that the orbit is isolated. We also discuss what happens

T, we get when this condition is not satisfied.
Proposition 2: A unimodal periodic orbit with half-period’
1—cp_(0,t,m) = (t) — ceMw > 0. (28) 's isolated iff

. . N —DnN(e) = {0} (29)
The addition of (27) and (28), give&t) > 0for0 < t <
T. Moreover, there exists a continuum of periodic orbits when (29)

For sufficiency, lety(T) = 0 and(t) > 0for0 < ¢t < is not satisfied.

T. The former implies thaty = 1. Hencefy € S andw must Proof: The sufficiency of (29) is straight forward. The

be 1. The trajectory frorg, does not hitS_ before timeT” since roots of x(7’) are isolated and hence any continuum of orbits
P(t) > 0for0 < t < T.AftertimeT, it can be shown that must have the same half-period. Referring to (25), (26) and the
the trajectory hitsS_ atr, := —&, and hence, the input switchesfollowing statementzs must belong toV (et — I) N N (c).

to —1. Again by a similar argument, the trajectory fragawith  Equation (29) then implies that = 0 and henc& = &, and

u = —1 hits S até, after timel’, closing the orbit. Thus, there = —¢&, are unique. Hence there is only one periodic orbit with
is a periodic orbit passing throudh. a givenT.

The periodic orbit in Proposition 1 is in general, neither Now for the necessity, suppose (29) is violated &nd~ 0 in
unique nor isolated. The following example illustrates th&/(c*T —1)NA/(c). We claim that for any such of sufficiently
case of multiple (but isolated) orbits. An interesting case sfnall magnitude, there is a periodic orbit passing through and
a continuum of orbits will be discussed in Section II-B. For awitching até = & + w andn = —& + w. First observe
frequency-domain interpretation of this result and an extensithaté € S, n € S_,n = ¢+(7T,0,£) andé = ¢_(T,0,7).
to systems with time delay, see [12]. To show that the trajectory throughandy is a periodic orbit,



VARIGONDA AND GEORGIOU: DYNAMICS OF RELAY RELAXATION OSCILLATORS 69

-1 15 I o 2 a 6

Fig. 5. Periodic orbits with|w|| = 0 (solid), 0.2 (dotted) and 0.438 (dashed) and the plat(@f)/|ce*tw| for Example 2.

we only need that the switchings do not occur before tifne are 0, 0.9691 and 1 for the nominal orbit through There is
Since(t) is strictly positive in(0,7"), for sufficiently small a continuum of periodic orbits through eagh= &, + w with
lw||, (27), (28) are still satisfied. To compute the boundjad|, ||w||; < 1, some of which are shown in Fig. 5. Whgw|| > 1,
observe that (27), (28) are equivalent to there are no more orbits through= £,+w as the input switches
before timeT'.
lcettw| < (t) foro < t < T. (30)
C. Stability of Periodic Orbits
The stability of the Poincaré return mdp = P_ o Py
W(t) is equivalent to the stability of the periodic orbit. However,
p:= inf — . (31) due to the nonlinearity of the Poincaré map, it is hard to
0<t<T |cettd| 2 : .
guarantee global stability even with a stablematrix. Some

Thus, for|jw|| < p, (27) and (28) are satisfied, and every results have been obtained by Kolesov [23] using the notion
with |lw|| < p has a periodic orbit passing through it. m Of strongly positivetransfer functions. Global stability for a
Remark 2: The matrixe4” — I is nonsingular iff spegd) N class of two dimensional systems has been shown by Megretski
{\: X = (jm2k/T), k € Z} is empty. Moreover, ifA does [14]. Recently, a computational procedure to check global
not have any purely imaginary (nonzero) eigenvaliég;*~ —  stability using quadratic Lyapunov functions, is proposed in
I) = N'(A) and the observability of4, ¢) guarantees (29).  [34]. However, linear stability results can be easily obtained.
Remark 3: The existence of a continuum can also be inferred Let Dp. |¢, Dp_|,, denote the derivatives oy at §
from Remark land the symmetry of the inequality condition irand P at 7 respectively. From Remark 1, we can see that
Proposition 1 If the pair (67 77) such that2w = 5 +n 75 0 Dpf |77:_5 = .Dp+ |§ Assuming that the orbit hits the SWitChing
represents a periodic orbit, so is the ffair;, —¢) and so is each surfaces transversallj? >, can be obtained as
of their convex combinations. All these orbits have the same Vel 4y
period. Dp, le = [I - E} et (32)
A degenerate case with a continuum of periodic orbits is " )
structurally unstable in the sense that this behavior is not rob{idterev = e** (A&, +b) = An. 4 b is the tangent vector
to small perturbations ind, b and ¢ but, is not impossible as just befor_e the switching. The derivative of the return nfag:
illustrated in the following example. bP_o PyisthenDp = Dp_|y, Dp, l¢, = Dp, |5 Dp, e, - A
Example 2: Consider the system fixed point¢ of P is stable ifDp has all eigenvalues within the
open unit disk.

Let « be the unit vector along and

0 -1 0 —0.3184 0]’ Remark 4: It can be noticed thatDp, = cDp_ = 0 and
A=11 0 0 b= | —0.3184 c= |11 . hence,Dp_, Dp_ andDp always have a zero eigenvalue. This
0 0 —0.01 —0.3184 1 is due to the fact that both the domain and range of these maps

have been restricted to a hyperplane thus, in essence, making
We havex(2r) = 0 andy(t) > 0for0 < ¢ < 2n. themn — 1 dimensional.
Hence, there is a periodic orbit & = 27 passing through Remark 5: When A is stable, it is possible to obtain a suf-
& = [0 0 1]. But (29) is not satisfied. There is a nonzerdicient condition for global stability using the contraction map-
vectorw = [1 0 0] in N(e*™ — I) N N (e). From (31),. can  ping principle. The idea involves identifying a compact invariant
be computed to be 0.4882 (see Fig. 5. The eigenvaluég-of setQ2 ¢ IR” of the system as in [25], [34] and then requiring that
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|Dpll = || Dp. || < 1on€2n 5S4, These results will be pre- Adding the two and letting := £ + 7, we get
sented in a future work.
For an isolated symmetric unimodal periodic orbit; 77 = 0 (I — ATy = 2471 (AT — AT-)h, (35)
and we can see th@p = Dp, andv = AT (I + 7)1
The linear stability result can then be stated as below [12]. It can be shown, using Lemma 1, that fiy # 7" there is a
Proposition 3: Suppose the system has an isolated syrgolutionw iff I — ¢**T is nonsingular. In particulard cannot
metric unimodal periodic orbit of half-period” and the be singular. Hence, we have
transversality conditionv # 0, wherev := ¢A7 (1 + A7) 715,
is satisfied. Then, E= (I 1A (T — 2T + Db (36)
= (I — 2Ty AT (=2AT 4 26T — Db, (37
Dp7 :DP+ — |:I— E:| eAT n ( ) ( ) ( )

cv
Let
and the orbit idocally stableif all the eigenvalues oD p_ are
inside the open unit disk in the complex plane. Itisstableif Pi(t) =1+ e+ A7 e — D (38)
at least one of the eigenvaluesiof>_ is outside the unit disk. P (t):=1-— c[eAtn — A—l(@At —D)b). (39)

Remark 6: When the system exhibits degeneracy, any
0 in V(e — I) N NV(c) is an eigenvector oDp, with a The necessary and sufficient conditions can now be stated as
unity eigenvalue, confirming that the orbit is not asymptoticall§ollows.
stable. Proposition 4: The feedback system in Fig. 2 has a unimodal
Example 3: This example shows that evendfis not stable, periodic orbit with different time intervals between relay switch-
the periodic orbit may be locally stable. Consider the systemings if and only if37,, > 0,7_ > 0 (1} # T_) satisfying

A= [_(1) g} b= m ¢ =[-0.42550 —1.7752]. ol — ATy AT 2T — 2= 4 N)b=1  (40)
C(I _ CQAT)—IAA—I(CATJr _ GAT,)b -0 (41)

This system is unstable. HowevenT') has a root al’ =
1.2786 and+(¢) stays positive fo0 < ¢ < T. So, by
Proposition 1, there exists a unimodal periodic orbit. It pass
throughé = [-0.5644 —0.4281]'. The orbit also satisfies the
transversality condition and

with T .= (T4 +T-)/2, ¥4(t) > 0,andy_(t) > 0 for
gs< t < Tyand0 < ¢t < T_, respectively.

Moreover, the asymmetric periodic orbit is stable if all the
eigenvalues oDp = Dp, |_,Dp, ¢, whereDp,_ is given by
(32), are within the open unit disk. It is unstable if at least one

02636 —2.866 eigenvalue is outside the unit disk.
Dr. =\ _506319  0.6869 | - Proof: Equations (40) and (41) follow directly from
¢ = 1, cw = 0 and (36) and (37). The positivity o
The eigenvalues aPp», are 0.9505 and 0, and the periodic orbiand ¢ ensures that the input does not switch beftite
is locally stable. The system is unbounded when the initial codr 7 as applicable in each part of the orbit. The stability

dition is too far from this orbit. analysis of Section II-C applies here as well and the second
part of the proposition is straight forward after noting that
D. Asymmetric Unimodal Oscillations Dp_|, = Dp, |, by symmetry (see Remark 1).

Using the Poincaré maps, we can also obtain the neces%égsrgasrkr;;ngre m_reoqueatlt:té/r Cv(\)/irt]r? I?ﬁgss”:nagﬁosgéot%: r?eltsuorn
and sufficient conditions for unimodal periodic orbits with dif- y y- 09 y Y

ferent time intervals between the relay switchings. Conditiornrni:p in Remark 1, this implies that if there is a periodic orbit
0

for the existence of such asymmetric oscillations for systet rough(¢, ») with periodsT’,. andZ_, then there is another

with an asymmetric relay have been given in [12], but they halfﬁ It through(—n, —¢) with pengdsT, andTy.. However, un-
not been identified in any system. Here, we show that asy ike in Remark 3, convex combinations are not periodic orbits.
metric orbits can exist even in systems with a symmetric rela,égi
Let 7, and7_ (I} # 1_) be the time intervals corre-
sponding toix = 1 andw = —1, respectively. Let € S,

"Example 4: This example shows that unimodal periodic or-
ts with 77y # 1_ can exist. Let

n € S_ be the states at switching and defifie= (7. +7)/2. 005 1 . 0 ! —0-9615
Then we have A=|-1 —0.05 0 b=11 c= 0
0 0o 1 1 —0.9615
= AT e - Db This system satisfies (40) and (41) fér. = 0.6361 and
E=eTn— AN - Db T = 8.1404. We havet = (—1.0985 0.2080 0.0585) and
n = (0.0403 1.1878 0.9997)'. The inequalities)(¢) > 0
which can be written as for0 < ¢t < Ty andy_(t) > Ofor0 < t < 7. are also
AT 1, our T satisfied as shown in Fig. 6. Hence, by Proposition 4, there is
(I—e")e=A" (e =27 + 1)) (33) ' a unimodal periodic orbit through ands. The eigenvalues of

(I— CQAT)U = A—l(_C2AT 4+ 2eATs _ . (34) Dp = Dp_Dp, are0,-0.08 and 1996.8 and hence the orbit is
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unstable. A simulation over one peried = 7', +7_ is shown 2 " 25
in Fig. 6. 2k :
It is possible to obtain more complex orbits involving many
switchings of the relay from the bifurcation of unimodal or-
bits (T;y = T_ = T'). The bifurcation of the unimodal orbit
is caused by the function(t) hitting zero before tim&”, thus 05
causing an early switching. When there are no other stable ul ok
modal orbits, this results in an orbit with more than two switch

1

P (1)

0.5 -05

ings. A similar bifurcation in relation to sliding orbitsinrelay ™ 02 04 05 08 0 2 4 6§ 8§ 10
systems has been reported recently in [35]. . .
The following example illustrates a phenomenon analogot
to period doubling observed in smooth nonlinear systems [6, C "
4]

Example 5: Consider the relay feedback system withb,

andc given by the realization of
—80(s—1—4)(s—147)(s+2)

(s+03—7)(s+03+4)(s+1-pj)(s+1+pj)

The bifurcation parameterdetermines the location of a pair of
poles. This linear system is stable and the feedback system h¢
unigue-stable unimodal periodic orbit (see Fig. 7)fok p.,
(pe = 2.59)]. Only the root ofx(T"), marked with an asterisk,
corresponds to a valid periodic orbitfor< p.. Aspincreases
abovep,, the unimodal orbit ceases to exist singg) hits zero Fig. 6. v, (#), v»_(t) and the periodic orbit with’, = 0.6361 and7_ =
beforeZ” causing an early switch. The system then goes to3d404 for the system irExample 4

periodic orbit with four switchings as shown in Fig. 7.

Increasingp further results in a succession of such bifurca ' =27
tions resulting in orbits with many switchings. The orbit for = T =252 -
p = 15 with a large number of switchings is shown in Fig. 8. &
. -850 B
[Il. ENTRAINMENT, SYNCHRONY, AND PHASE LOCKING o ;
14 16 18 20

We now consider the response of a relay relaxation oscillat
under periodic external forcing. Forcing an autonomous osc
lator with a periodic signal produces an interesting phenomen
known asentrainmenbr resonanceWhen the frequency of the
forcing signal 2) is close tobeing a rational multipley) of
the natural or autonomous frequenay, ) of the oscillator, it I ‘ ; . . ‘
can be entrained, i.e., the system adapts itself and responds ° o8 ! e 2 28
a frequencyw = pf). A generalization of forcing is a system -
of coupled oscillators where each oscillator can influence sor  **
or all the others andlice versaCoupled oscillator systems ex- = .-
hibit synchronyandphase lockingSynchrony is a state wherein # -
all oscillators in the network oscillate with the same phase. N ,
phase locking, each oscillator maintains a constant phase diff -} : .

T S R

ence with respect to the others. This subject has been studier ™= == = = = = = =
great detail in many physical, chemical and biological systems
(see [6]-[8], [27], [36], [37], and the references therein). Fig. 7. Graph ofy(T") and(t) just after the bifurcation and(t) for the

In the remainder of the paper, we focus on a similar analy$fgulting orbit inExample 5
for the relay relaxation oscillator. We treat in detail the simple
but representative case where the linear system consists of@moutput. Thus, there are two qualitatively different kinds of
integrator (see Fig. 9). We demonstrate entrainment at the giarcing depending on the input port used. The mechanism for
mary harmonicg = 2) and other subharmonics (= §}/m,m entrainment in piecewise linear models of relaxation oscilla-
integer). We also study synchronization when two or three relayrs described in [7] and the analysis of coupled relaxation
relaxation oscillators are coupled in a ring. The analysis can bscillators in [28] and [38] consider input to the fast subsystem
extended to:-member rings. whereas in our analysis we consider input to the slow sub-
Models of relaxation oscillators have a fast and a slosystem (the integrator). When relay hysteresis is considered,
subsystem and hence, two possible ports for input and tife analysis in [8] corresponds to taking the output of the slow



72 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 1, JANUARY 2001

subsystem, whereas we consider the output from the rela
which is the fast subsystem. Furthermore, relay switchings ca
be imagined adirings and hence, coupled relay systems can =
be viewed abstractly as pulse coupled oscillators. [@toal. ®
[29] analyzed rings of pulse-coupled oscillators using phase -¢s : : ]
response curves under the assumption that the firing of a _
oscillator affects only the immediate next firing of the next os- g0 8 8 8 88 9 9 9 9% 88 100
cillator in the ring. However, in coupled relay oscillators, even t
in a situation close to entrainment, a switching can influence ——
two future switchings of the next oscillator. This makes the
phase response curve method unsuitable. Using the techniqi -
described in [27], the relay oscillator system with weak forcing = o
input to the slow subsystem can be reduced to a piecewis
continuous flow on the torus, and the entrainment behavior car , : »
be obtained by studying the underlying circle map. However, -nt—-3¢u—d&— & ——~————
we use a different technique that works for the case of strong :
forcing also. We not only obtain the same results in the weak
forcing regime as with the circle map technique, but also obtafig. 8. «(t) andy(t) for the orbit corresponding tp = 15 in Example 5
the bistability regions under strong forcing in the overlapping
region of primary and subharmonic entrainment. u()
In this paper, we restrict our attention iegular dynamics, j
i.e., periodic states but forced relay systems can exhibit co
plex chaotic dynamics under strong forcing due to the preser
of stretching and foldingction [6, p. 339]. However since the y(t)
fast subsystem is not directly affected by the coupling, the mec
anism for stretching and folding is through the acceleration a 2 |
deceleration of the initial conditions moving along the branch
of the relay. T 2T

0.5 . - . : : 4

0 : e

th b

A. Primary and Subharmonic Entrainment Fig. 9. Relay relaxation oscillator with a forcing input.

Consider the configuration of Fig. 9 where a relay relaxation
oscillator of natural half-period; is being driven by an external
periodic signat:. Notice the change of notation in Fig. 9where¢ L
negative feedback is used at the integrator. The sigisaiaken
to be a square-wave of amplitude> 0 and half-period’. For 3
primary or subharmonic entrainment the particular shape of t
signal is not important but only it§;-content over its half-pe- 25
riod. This is because it does not matter how the output of the i
tegratoru(t) varies except when it reaches the switching poini® 2
+1. Given any zero-mean forcing signal, it is always possibl
to find an equivalent square wave that preserves the switchi 1s
times of the relay and hene€t). In the analysis below, we will
identify the entrainment regions in the- parametric plane !
wheres := T3 /T is the normalized autonomous period. The
results of this section are summarized in Fig. 10. Only the p1 °°f
mary entrainment is possible in the regiaRsand P». In B;
andB;, the system exhibits bistability and both the primaryan % o5 1+ 15 2 25 3 35 4 45 5
secondary subharmonic entrainment are possible. Higher si 6
harmonics and multistability can be observed in the triangular _ _ _
regions emanating from the other odd integersreaxis which 79 10- Entrainment regions for the relay oscillator.
are not analyzed here.

Let#, (k = 1,2,...) denote the times at which the state ofor all & sufficiently large and some fixed value of
the relay switches betweenl and—1. We index the switching /e {0, 1,2.. .}, i.e., after sufficiently long time the switchings
times with the conventiofk — 1)7 < #,, < kT as shown in of the forcing signal and relay alternate. Similarly, we often
Fig. 9. We define asntrainmentat the fundamental or primary talk about entrainment in subharmonic resonances when the
harmonic with perio®7’) the situation where switching takes place at regular intervals missing an integral

number of periods of the forcing signal. We say that the
(k=T < toyr < kT oscillator isentrappedf its initial state is such that entrainment

4
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eventually takes place, i.e., if the initial phase lies in the domainWe now consider the case of out-of-phase entrainmeht
of attraction of the entrained state. 0, < 0(k=1,2,...). Switching at two subsequent values for
The approach we use to prove entrainment involves assumthg phas#, andf;.; now leads to
a certain switching pattern and then investigating the existence 9
and stability of fixed points consistent with that pattern. Itis corf=—(—6) + (1 + 6x41)] = € — [(—6x) + (1 + x11)]
venient to work with a phase variable representing the fractional g
lead or lag ofu w.r.t v in stead of the switching times. We de-and, therefore, to
fine thephaseat thekth switching a®y, := ¢, /7T — (k—1). For
itahi ; o 14+¢
the forced relay system, two switching patterns are possible Opp1 = — +
in-phaseand out-of-phaself the relay switches tat1 during l—e 1l-c¢
v = terespectively, we call itin-phase switching and the phasgincec > 0, then|(1 +¢)/(1 — ¢)] > 1, ruling out the
is positive i.e.0 < ¢ < 1. Similarly if the relay switches to possibility of a stable fixed-pointl < 6 < 0. Thus, in
+1 occur duringv = Te, it is out-of-phase switching with an entrainment situation the sign of the oscillator necessarily
—1 < 6 < 0. Fig. 9 shows the in-phase switching patterfo|lows the sign of the driving signal ari< 6;, < 1.
whereas changing the signoft) corresponds to out-of-phase  2) Range of; for Entrapment at the Primary HarmonieWe
switching. consider separately the two cases 6, < land—1<#6; <
Proposition 5: For the oscillator of Fig. 9, driven by theg for the initial phase.

square waves of amplitudec and half-periodl’, entrainment  Case (a): Let0 < 6; < 1. Switching cannot take place

=-2

Qo

O, — 1.

(at the fundamental harmonic) is possible iff beforet = 7" since the state of the integratortat= 7 is 1 +
(e=1)(1-61)(2/0) > —1byvirtue ofthe factthat > 1—e.
l—e<o < l+e (42) Switching over the next half-period intervdl, 27| requires that

Subharmonic resonance with peri@n + 1)7 is also possible é;r_(i) 911) (<1 9 9_1)0,(.2|/n02:aséz * <1 ) §2/tg|)s lea;;/v E(I)Clgsggliﬁie
In case o < e+1.Incasee > 1, itstill holds whenever < 2.
The same holds true for all and sincédy.+1 = abr + 8 with
|| < 1, in both cases, entrainment takes place.

. . . We now consider separately the case where> 2 (and,
If o < 2, the oscillatoris entra_p_p_ed atthe fundamental harmorH%nceﬁ > 1). In this case, the possibility exists for switching
for aimost all values of the initial phasel < 6, < 1. 1In to take place after the oscillator has missed an integral number of

general, intervals exist for the values of the initial phase Wheﬁ%riodszT giving rise tasubharmonic resonanct particular
the oscillator is entrapped in subharmonic resonance. ' '

” . if th f the integrator at= 27" |
Proof: 1) Necessary Conditions for Entrainmenfssume the state of the integrator at S
that the first switching from-1 to +1 takes place af; . We first
consider the case of in-phase entrainmént, 6, < 1(k =

1,2,...). itchi G .
,2,). Switching at two subsequent values for the phiase then it is still greater thar-1 at 37" and and it may only reach

andf,1 (k= 1,2,...) requires that the state of the integrator .
1 i . ——1 over the next half periof37’, 47}, at a phasé such that
changes under the influence of the driving and feedback S|gn?leF (e—1)(1—61) (2/0) — (4)0) — (e + 1)8(2/c) = —1. This

l—e+2m <o < 14+¢e+2m. (43)

L (e—D(1—6)2 (412 > 1

g g

by —2, giving gives switching af, = € (with 8-, 83 missing) where
2 2
(1 = 6k) — Orq1] S (1 = 6k) + Orq1] = —2. 0, = by + 31 (47)
Hence, with 81 = (o0 — 2)/(1 4+ ¢) — «. The iteration in (47) is still a
(Lipschitz-) contractive map from; to 6, leading to a fixed
Opt1 = 0+ aby (44) point phase value of;y = (51/1 — «). A necessary con-

dition for entrainment at this subharmonic resonance is that
whereo = (1 —¢/1+¢€)andf =o/(1+¢) — . Sincee >0, 0 < 3/(1 —«a) < 1 which yields
|| < 1, and (44) have a fixed point
3—e<o < 3+e

o—(1—¢)
o= 2¢ : (45)  similarly, in the case of
By assumption, the phase at steady stated lies in [0, 1) giving 1+42m—e<o < 14+2m+e
l—-e<o < 1+e (46) other subharmonic resonances are possible where switching oc-

curs after missingn integral periods#p = 2, 3, .. .) settling at
Clearly, this condition is also sufficient since an initial phasé,,,y = £,,/(1 — «) with 3, = (¢ —2m)/(1 +¢) — a. In
61 = 0 leads to entrainment. Since (44) has a Lipschitz constaait these cases intervals of entrapment at the subharmonic res-
awith || < 1,thereis atleastan open interval about the fixeonance exist, as well as the possibility of a more complicated
point where entrapment is guaranteed. behavior in general (provided, ¢ are sufficiently large).
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We now identify intervals of entrapment at the primary har- Proposition 6: Consider the oscillator of Fig. 9, driven by
monic. First note that, in general whérn< 6, < 1, switching the square-wave of amplitudee and half-periodl’, and with
cannot take place in the intervidk — 1)7’, k7’| sincel 4+ (¢ — normalized period satisfying2 < ¢ < 4.

1)(2/0)(1—6x) > —1byvirtue of the factthatr > 1—e. 1) 1f2 < 0 < 24 (e —1)?/(e + 1), the oscillator is

In the case where < 2, the next switching will necessarily always entrapped at the fundamental harmonic.

take place ifkT, (k+1)T] sincel + (¢ — 1)_(_2/0) (1—6)— )24+ (e—12/(e+1) < 0 < 2+ (e — 1)2/2,
(e+1)(2/0) < —1by virtue of the conditions < e+ 1 the oscillator is entrapped at the fundamental harmonic
andos < 2 and entrapment takes place. We now deal with the when

casesr > 2.Sincesc < 1+¢,thene > 1. Define

6, € {0,1—2(0_2)} U {0_2,1}

o—2 (e —1)2 e—1
e—1 and in a subharmonic resonance with perdddother-
A simple computation shows thatdf< ¢, < 1, switching will wise.
take place in the next half-period, ahd> 65,1 > (/1 + ¢). 3) If24+(e—1)%/2 < o < 4,the oscillator is entrapped
Here,c < 1+ ¢impliesthat(c/1 +¢) > & which in turn at the fundamental harmonic whépe [(o —2)/(¢ —
shows that; € [4, 1] leads to entrainment at the fundamental 1), 1] and in a subharmonic resonance with peddd
harmonic. In general, there are other intervals in [0, 1] where otherwise.

entrapment at the fundamental, or other harmonics, is also pos- Proof: We deal only with initial in-phase switching, i.e.,
sible. The structure of these intervals is complicated in gefi-< 6; < 1. From the Proof of Proposition 5 we know that
eral and will only be elucidated in Proposition 6 for the cas® value ofé; in the interval[é, 1] with 6 = (o — 2)/(e — 1)
2 < o < 4. leads always to entrapment at the fundamental harmonic. On
Case (b): We finally consider the casel < #; < 0. We the other hand, if; < ¢ the oscillator skips two half-period
show that the phase in subsequent intervals drifts and eventualtgrvals and switches again at
0, (for somek) lies in [0, 1]. Thereby the transition toward _o
entrainment follows the previous analysis. 04 = b + — —a. (48)
In casec > 1, no switching out-of-phase is possible in sub- e+l
sequent intervals since the external driving signal exceeds fHege map in (48) takes the intervl 6] onto the intervalé’, o']
value of the feedback. Eventual switching is unavoidable singéered’ := (¢ — 1)/(e + 1) ando’ := (0 + ¢+ 3)/(c + 1).
the value ofv reduces by-4/5 over every subsequedf™in- Another important quantity is the pre-imageof 6 under the
terval. Therefore, the next switching will take place in-phaseame map. This i8=1—2(c —2)/(c—1)2).
giving a positive value for the relevaéit, which brings us back ~ There are three cases of interest: a) when under the action of
to the previous analysis. Entrainment at the fundamental fige map in (48)[¢’, ¢'] lies squarely in the domain of attraction
guency or at another subharmonic resonance will depend on @fighe fundamental resonance; b) when it lies in the domain of
particular value of);, in the first in-phase switching. attraction of the subharmonic resonance; and cjrihedcase.
Now consider the case < 1. We again show that in-phaseThus, in casé < ¢’ all initial phases lead to entrainment at
operation will eventually take place, albeit, after possibly a largee fundamental harmonic, albeit after the intefal37"]. This
number of intervals. In casel < 6; < dy with dy := condition leads to the condition given in part 1) of Proposition
—o /(¢ + 1) the next switching takes place in the same intervél In case’ < ¢, all initial phases in the intervad, 6] lead to
[-T,0], since at a poin® < 0 the value ofy becomes-1, phase values in the same interval after missing a complgte
giving rise to in-phase operation (then just renaine: 6_;). period. This gives rise to condition in part 3) of Proposition 6.
To see this note, that if no switching were to take place tfde mixed case requires considering the pre-image &fand
value ofy(0) would bel + (—e — 1) (2/o) (—6;) < 1. Define its relative position with regard t&. It turns out that < &
dig :=do+a(l +dy_1)fork =1,2,...and sed_; := —1. holds always. Therefore, all values &f < S lead to entrap-
It can be checked that if out-phase switching takes place witkent at the fundamental resonance, while all values larger than
phase indy, di11] (k > 0), the next switching will take place ¢ and less thad lead to subharmonic resonance. This gives the
over the next half-interval period (hence still out-of-phase) witbonditions and the particular intervals in part 2)R¥bposition
value for the corresponding phase[ifi_, dx]. Hence, after a 6. u
finite number of steps, the phase will be in the intefval,, do| o )
and in the next step in-phase operation will be restored. It orfyy Synchrony and Phase Locking in Coupled Relay Oscillators
remains to show that the union of the intervals_;,d;] for Rings of coupled relay relaxation oscillators can exhibit syn-
k > 0 covers[—1,0]. This follows from the fact thatl, — chrony and phase-locking phenomena ([30], [31]) for suitable
(14do/1—«) > Oaskincreases(since< 1=0 < « < 1 coupling strengths. Here, we demonstrate these phenomena for
while —1 < dp < 0). m thetwo and three member rings shown in Fig. 11. A single oscil-
We wish to elucidate a case where subharmonic resonafet®r unit with autonomous half-peridt], along with its input
is possible. The general situation is quite complex, so we wihd output ports is shown in Fig. 11(a). The method used is anal-
present only the analysis of the case where & < 4, in ogous to the case of entrainment analysis in Section IlI-A. We
which case the only subharmonic resonance possible is the enemerate all the switching patterns for the oscillators with the
with period4T. assumption that no oscillator switches twice before all the others
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in the ring switch, and investigate the existence of fixed poin';
and their local stability. The above assumption implies that cor :
plex switching patterns are not considered and the situations i
alyzed cover only a part of the state space. Therefore, therest: |¥
are only sufficient conditions for synchrony or phase locking. |

The two oscillatorgy; andOs shown in Fig. 11(b) have au-
tonomous half-period%; and7> and are connected in a feed- 5\
back loop with gaing and—~ respectively. Without loss of gen-
erality, assume that; > 7. We investigate the possibility of
the feedback interconnection attainisgnchronythat is, both ty
components oscillating with a common period. The conditioro1
for synchrony are stated in the following proposition. Two os @
cillator ring with the same sign for the gains cannot attain sy
chrony for1y # 1> and will not be discussed here.

Proposition 7: The two oscillator system in Fig. 11(b) with
7, > 1) attains synchrony with (&), leadingO; for v >
(T, — T1)/(T> + T1) and (b) withO, leadingOs for —y >
(T — T1)/(T> + T1) with the mean half-period” := (11 +
13)/2.

Proof: The two scenarios are illustrated in Fig. 12. Ob

serve that if a gairy produces the scenario (a), then the sym- , , _ o
metry of the ring in Fig. 11(5) implies that a gaim produces 5,11, o!et 2y esciats, (@) snge secloi i ot and ou
the scenario (b). Hence we need to prove 0n|y‘ part (a). coupling, and (d) three member ring with two-way coupling.

Consider the scenario shown in Fig. 12(a). tiebe thek-th
switching time of thei-th oscillator. Tracing the states of the
integrators of the two oscillators, we obtain

Uout

Uz

T = thgr — th = (8 — t2) + Y(thgr — 17) (49)
1= ti+1 - ti - ’Y(t}c+1 - tf) + ’Y(ti+1 - t11c+1)' (50)

 thn & i

Let the half-period at synchrony GE and 8°7 be the lag of
O1 Wrt O, ie. th , — ti = T andt},, — t§ = 6°T for
all k. Substituting in (49), (50), we g&t = (77 + 1»)/2 and
6° = 1/2 — (T —T1)/(4~T). The constraint§ < §° < 1 give
rise toy > (T —T1)/ (T2 + T1).

Now, to analyze the stability of the synchronous state, defin
the phase variable#, := i — kT and denot#,, = [0} 6]’ ot Bty
Substituting (49), (50), we get

1+~ 0 _ 1=y -2y (a) (b)
{ 2 1+’y}9k+1_{ 0 1—7}91“'

Fig. 12. Two scenarios for synchrony in the two oscillator system{dpads
The eigenvalues of this system are 1 &he-v)/(1++)2. The Ox, (b) O1 leadsO..
unity eigenvalue has the eigenvecibil]’ and corresponds to a
constant shift in time. The second eigenvalue has modulus lessation in stead of pictures. For example the two scenarios in
than unity sincey > 0. Hence, the synchronous state showRig. 12 can be represented fs72 | ---}and{1 727 ---}
in Fig. 12(a) is stable. m respectively. Of all the simple switching patterns (recall our
Remark 8: From a control perspectivBroposition 7implies assumption that no oscillator switches twice before the others
that both the period and phase of a relay relaxation oscillator camitch) for the three member ring, only two lead to stable phase
be setto arbitrary values using an oscillatory feedback controllecking. The following propositions summarize the results for
and proper choice of gains. three member rings. Assume, without loss of generality, that
Now let us consider a ring of three coupled oscillatorshe oscillators have unit autonomous half-period.
For simplicity, we assume that the oscillators are identical. Proposition 8: Consider the three oscillator system with
Fig. 11(c) and (d) shows the cases of one-way coupling ande-way coupling shown in Fig. 11(c) where all the oscillators
two-way coupling respectively. Again, a two-way coupleare identical and have unit autonomous half-period. The system
system with gains having the same sign in both directions daetains a 1/3 phase locked state with half-peflogt 3/(3 — ~)
not show stable phase locking behavior and will not be consiand the switching pattern (1 1237 ---}for0 < v < 3
ered. We can represent the switching scenarios using a companxt (b){113 27 ---} for—1 < ~v < 0.
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Proof: Consider the switching pattefi 12137 ---} and been identified in many chemical and biological systems and
let#!, denote theé:th switching time of théth oscillator with the has also been used to design many chemical oscillators. This
convention that}, < #2 < ¢3. Tracing each of the oscillators, structure can be exploited to alter the behavior of an existing

we obtain oscillatory system, e.g. by changing the integral action with a
suitable outer loop. While there is an extensive literature on the
L=th —th =yt —th) + (i — t2) (51) subject of oscillations, the problem of predicting oscillations in

1= 2 ot 2y (2, — 52 higher dimensional systems, in general, is a difficult one.
L MR i M ’g) i Mt ’2”’1) (53) In this paper, we have studied in detail unimodal periodic os-
=t — 1k = V(e = 1) +9(fgr — tign). (59) cillations for the case of a feedback connection with a linear

L. L . stem and a relay hysteresis. Precise conditions for the exis-
Observe that therells afixed pqlnt V\.”th‘a phase difference of lfgnce and local stability are provided using the Poincaré map.
Let T" be the resulting half-period, i.€},,, — ¢, = T and set

21 _ 3 _ 42 _ /3 for all k. Substituting in (51 The existence of a degenerate case with a continuum of periodic
tk‘b_.tkT__tk — t; = T/3 for all k. Substituting in (51), we orbits is shown. Asymmetric orbits and orbits with many relay
obtainT = (3/3 —~). - _ 4 4 switchings per period have also been addressed. The method-

To analyze the stability, define the phaggs:= ¢, — k1" —

, K= ology extends to the case of nonlinear systems connected to
i 1 g2 g3y _ ) .
(¢ —1)T/3and letd, = [6,, 65 6;]. Substituting (51)—(53), static hysteresis as well.

we get Relay oscillators can exhibit entrainment phenomena very
much like other smooth oscillators, and can be used in coupled
I+ 0 0 1=y 0 2y oscillator models. The particular case of pure integrator in feed-
—2y I4v 0 O 0 1= 0 18 packwith relay hysteresis is similar to the van der Pol oscillator
0 -2y 1+~ 0 0 1—»~

and is amenable to a detailed analysis. We study in detail pri-
mary and subharmonic entrainment in this system when forced
. 2 1\3/2(x 1/2 by a periodic driving signal at the input to the integrator. We

matica as 1, [y — 1)*(1 +2v) £ y(y — 1)°*(5y + 3)V7]/(1 also consider the synchrony and phase locking in rings of two

+ ). The unity eigenvalue has the eigenve¢tot 1]’ and cor- ; : .
responds to a constant shift in time. The nontrivial eigenvalu Qd three coupled oscillators. The technique can be applied to

have modulus less than unity for< < 3. Hence, the syn- m?/(/nhti)leeronsr::gilllsazzrxealllr.e omnipresent in natural as well as in en
chronous state shown in Fig. 12(a) is stabletfor v < 3. P

Similarly, considering the patterfi 13 | 21 ---} we can gineering systems, key questions still remain. In particular, iden-

. ; . tifying periodic orbits for general systems, e.g., in the optimal
show that there is a 1/3 phase locked state with half-péFied 2 ’ . .
3/(3 — ) and it is stable for-1 < v < 0. periodic control problem [39], [40], is quite challenging. On the

Along the same lines, we can analyze the two-way coupl&gqer hand, robust control of periodic orbits is still a relatively
three oscillator ring. We skip the proof and state the result. ngexplored area [41]. We expect that the paradigm of hysteresis

. L with a linear feedback component will provide a useful frame-
tice that part (a) of the below proposition implies part (b) b}//vork tor the further develop?nent of thepsubject

The eigenvalues of this system are obtained usitaghe-

symmetry.
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