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Dynamics of Relay Relaxation Oscillators
Subbarao Varigonda and Tryphon T. Georgiou

Abstract—Relaxation oscillators can usually be represented as
a feedback system with hysteresis. The relay relaxation oscillator
consists of relay hysteresis and a linear system in feedback. The ob-
jective of this work is to study the existence of periodic orbits and
the dynamics of coupled relay oscillators. In particular, we give
a complete analysis for the case of unimodal periodic orbits, and
illustrate the presence of degenerate and asymmetric orbits. We
also discuss how complex orbits can arise from bifurcation of uni-
modal orbits. Finally, we focus on oscillators with an integrator as
the linear component, and study the entrainment under external
forcing, and phase locking when such oscillators are coupled in a
ring.

I. INTRODUCTION

RELAXATION oscillators represent a class of models
which approximate a variety of physical phenomena,

from electronic circuitry to circadian biological clocks [1, pp.
169–173], [2], chemical oscillators [3], and ecological systems
[4]. Such oscillators consist basically of a feedback system
with two elements: a bistable subsystem and a negative integral
action. The typical arrangement is shown in Fig. 1. The bistable
element in the forward path is a hysteresis-type nonlinearity.
The occupancy of one of its two stable states causes a build-up
by the integral action in a direction which, in turn, forces the
system into the other stable state, and so on.

The best-known example of a relaxation oscillator is perhaps
the van der Pol oscillator ([5]–[7]) described by

where is a small parameter. This system can be viewed, as
in Fig. 1, where the hysteresis is realized by the “fast” bistable
subsystem in the first equation. The van der Pol system was
originally used to model a tunnel diode circuit, while analogous
models have been used to study synchronization in biological
systems [6], [8]. In fact, the same hysteresis-feedback paradigm
for an oscillatory system has been extensively used in designing
a variety of chemical oscillators [3], [9]. In this paper, we con-
siderrelay relaxation oscillatorswhich consist of a relay hys-
teresis (cf. [10, p. 262]) and a linear system in feedback as shown
in Fig. 2. Such feedback systems with relay are encountered in
a wide range of industrial applications [11]–[15] and, more re-
cently, in designing periodic drug delivery devices [16], [17].
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Fig. 1. Feedback system with hysteresis.

Oscillations in hysteretic systems have been extensively
studied in the literature. When the hysteresis model has
some continuity properties, operator theoretic tools have been
particularly successful [18]–[20]. For relay systems, several
approaches have been used. More specifically, graphical tech-
niques and harmonic balance methods have been used early
on [11], [12], [18], [21, Ch. 7]. These seem more suitable for
low-order models and for an approximate analysis. On the other
hand, state-space methods and analysis of Poincaré maps allow
a more accurate analysis of periodic phenomena. In particular,
conditions for the existence and stability of unimodal periodic
orbits (i.e., orbits having exactly two relay switchings per
period) were obtained for two-dimensional systems in [22, Ch.
8], and for higher dimensional systems and for systems with
time-delays in [13] using Poincaré maps. A sufficient condition
for the existence of a globally stable unimodal periodic orbit
was given in [23] in terms of the transfer function of the linear
component. Time domain methods (cf. [14], [24]) and fixed
point theorems (cf. [25]) have also been used to obtain sufficient
conditions for the existence of unimodal periodic orbits. The
relationship between the state-space and frequency-domain
approaches is discussed by Astrom [13]. The case of pure relay
(i.e., no hysteresis) can be obtained in the limit of the on–off
switching points approaching each other. Feedback systems
with pure relay have been studied in greater detail by Johansson
et al. (see [26] and the references therein).

The approach we follow in this paper is based on state-space
representations and the analysis of Poincaré maps. In Section II,
we consider the system in Fig. 2 with a controllable and observ-
able realization for the linear systemP and obtain necessary and
sufficient conditions for the existence of unimodal periodic or-
bits. This follows the aforementioned analysis in [13], but pro-
vides a more complete picture. We show the existence of a de-
generate case with a continuum of periodic orbits. We also show
that asymmetric periodic orbits can exist in a system with a sym-
metric relay. Complex orbits involving many relay switchings
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Fig. 2. Feedback connection of relay hysteresis and a linear system.

per period can be obtained from the bifurcation of unimodal or-
bits.

In Section III, we consider the special case of a relay relax-
ation oscillator consisting of relay hysteresis and integral feed-
back. Such a system has a unique globally stable periodic orbit,
and resembles the van der Pol oscillator. It also presents the
advantage of piece-wise linear maps to study the behavior of
driven or coupled systems. We study the entrainment of this os-
cillator under periodic external forcing at the input of the inte-
grator. In particular, we show the existence of primary and sub-
harmonic entrainment regions in the relevant parametric space,
and contrast our results with results from earlier studies on gen-
eral relaxation oscillators [7], [8], [27]–[29], [6, p. 339]. Finally,
we consider rings of relay relaxation oscillators and demon-
strate synchrony and phase locking phenomena. The behavior
of driven or coupled oscillators is of interest in variety of sub-
jects, such as in biological systems, lasers, phase transitions, re-
action-diffusion systems, etc. [8], [29]–[32]. We show results
for two and three member rings with both uni and bidirectional
coupling and observe that out-of-phase locking is possible even
under excitatory coupling (see Remark 9). The analysis can be
extended in principle to larger systems.

II. A UTONOMOUSOSCILLATIONS

Consider the feedback system shown in Fig. 2 where the SISO
linear systemP is described by a controllable and observable
state space model

(1)

(2)

The relay switches from itson-state (output 1) tooff-state
(output 1) if the input reaches 1 from above and switches
from the off-state to theon-state if the input reaches one
from below. If the relay is not symmetric with respect to the
origin, the analysis will essentially be the same, after an affine
transformation. The case when , with for
well-posedness, can be reduced to the above form by defining a
new output which preserves the states at which
switching occurs.

The following analysis involves identifying the switching sur-
faces in state space that correspond to the switching points of
the relay, and defining a Poincaré return map from one of the
surfaces to itself. The fixed points of the map then correspond

to unimodal periodic orbits after they verify some consistency
conditions.

A. Existence of Periodic Orbits

The switching to and occurs on the level
surfaces and in defined by and ,
respectively. The space is divided into three regions by
and , namely, , ,

, and , as shown in Fig. 3.
Depending on the state, the system is governed by one of the
two models and defined by

(3)

(4)

If the state is in , the system follows until the tra-
jectory hits , at which point, the input switches to 1.
The system then follows until the trajectory hits and

switches to . In , both and are allowed de-
pending on the initial state. Notice that crossing ( ) has
no effect when the system follows ( ).

The response ofP from initial state to aconstantinput
over is given by .

For convenience, we will write
as , but it should be noted that this function is
well defined even if does not have an inverse. Hence we
have . The state transi-
tion maps for ( ) and ( ) are given by

and
, respectively.

Consider a trajectory that has at least a finite number of
switchings (see Fig. 3). Let be the point on the trajectory
where it switches to i.e., and . Suppose,
after time , the trajectory hits at ( ) and
switches to . Let be the time taken for the trajectory to
hit again at . Suppose that the trajectory is transversal
to the switching surfaces at and .

We can then define the two Poincaré maps and
as follows:

(5)

(6)

where and are implicitly determined as the smallest pos-
itive solutions of and , respectively.
The composition , which maps to itself,de-
fines a Poincaré return map for the feedback system. Similarly,

,which maps to itself, is also a Poincaré re-
turn map. Clearly, the fixed points and periodic points of a return
map correspond to the periodic orbits of the feedback system.
Complex attractors of the map correspond to complex oscilla-
tions of the system. The stability properties are inherited as well.
We call the periodic orbits that have exactly two switchings of
in each period,unimodal orbitsand they correspond to the fixed
points of the Poincaré map.

Remark 1: The maps and inherit a symmetry from
the underlying models and , despite the presence of the
implicitly determined parameters and . Namely,
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Fig. 3. Partitioning of the state space and the Poincaré maps.

. This implies that the return maps satisfy
and

. If is a fixed point of , so is
where . Thus, the fixed points of are either the
fixed points of , in which case they satisfy , or
they come in pairs and . A similar conclusion holds for

. Hence, computing the fixed points of the map or
, as was done in [13], may not yield all the unimodal-

peridic orbits. Other unimodal orbits that are period-two (but
not period-one) fixed points of this map can exist (shown in
Sections II-B and -D) and hence, we need to analyze the fixed
points of the second iterate.

In the subsequent analysis, we will use the return map
. The following lemma is useful in de-

termining the fixed points. Let , , and spec
denote the transpose, null space, range and spectrum of, re-
spectively. We say that a scalar function is defined on the
spectrum of a matrix when and its derivatives upto the
required order (depending on the Jordan structure of) are de-
fined at the eigenvalues of (see [33]).

Lemma 1: Let , with control-
lable, and let be functions defined on the spectrum of.
Let , be interpolation polynomials of , respec-
tively (i.e., such that and ), and
let be their greatest common divisor and be defined
by and , respectively. The
equation

(7)

has a solution for if and only if

(8)

Proof: If (7) holds, then, by multiplying from the left with
powers of , we get

(9)

From the invertibility of , it follows that the
equation

(10)

has a solution for all . Hence, , such
that

(11)

which implies that , and such that
. Therefore, is contained in

.
For the converse, assume that (8) is satisfied. Since

, and such that .
Multiplication by gives (7).

Corollary 1: where is a
nonzero scalar has a solution if and only if is nonsin-
gular.

Proof: Applying Lemma 1, with and
, we observe that ,

and with interpolation
polynomials implied. Notice that and are coprime as
they do not have a common zero. ByLemma 1, a solution exists
iff

(12)

However, since
implies that for any . Hence, (12) reduces to

(13)

This condition is trivially satisfied when is nonsingular.
We now claim that (13) cannot be satisfied when is
singular. To see this, let us rewrite (13) as

(14)

Suppose and , i.e.,

(15)

Equation (14) then implies that which, on
multiplication by , gives . Hence, we have

(16)

Equations (15) and (16) imply that , which is a contradic-
tion. Thus, must be nonsingular for a solution to exist.

A unimodal-periodic solution of the feedback system can,
in general, have different time intervals between successive
switches. We first consider the case of equal intervals between
switches, whereas the general case is discussed in Section II-D.
The following result was first stated by Astrom [12], but a
complete proof is provided here as it reveals the existence of
nonisolated-periodic orbits, which have not been identified
earlier.

Proposition 1: The system in Fig. 2, whereP is described
by (1), (2), has a unimodal-periodic orbit of half-period, iff,

and for where

(17)
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(18)

(19)

Proof: To prove the necessity, suppose there is a periodic
orbit with half-period . Let and be the states
when the switchings to occur on this periodic orbit.
Thus, we have

(20)

(21)

(22)

where we used the fact that the trajectory takes timeto reach
from with , and to reach from with . Solving
for and from (21) and (22), we get

(23)

(24)

Since (23) has a solution, Corollary 1 implies that is
nonsingular. Solving for and from (23) and (24), we get

(25)

(26)

where . Since from (20), we
also have . Notice that is always a solution which
corresponds to . Now, gives since

.
Since the trajectory fromdoes not hit until , it remains

in the region for and we have

(27)

Similarly, from the condition for
, we get

(28)

The addition of (27) and (28), gives for
.
For sufficiency, let and for
. The former implies that . Hence and must

be 1. The trajectory from does not hit before time since
for . After time , it can be shown that

the trajectory hits at and hence, the input switches
to . Again by a similar argument, the trajectory fromwith

hits at after time , closing the orbit. Thus, there
is a periodic orbit passing through.

The periodic orbit in Proposition 1 is in general, neither
unique nor isolated. The following example illustrates the
case of multiple (but isolated) orbits. An interesting case of
a continuum of orbits will be discussed in Section II-B. For a
frequency-domain interpretation of this result and an extension
to systems with time delay, see [12].

Fig. 4. Graph of�(T ) with rootsT andT marked by asterisks and the state
space with the corresponding periodic orbits (solid and dashed) for the system
in Example 1.

Example 1: This example shows that the periodic orbit in
Proposition 1, in general, is not unique. Let

In this case, two different solutions of ,
and satisfy and give rise to two different
periodic orbits. The orbit with the smaller period passes through

, and the other through
. The plots of and the periodic

orbits in state space are shown in Fig. 4.

B. Degenerate Case

The periodic orbit obtained using Proposition 1 may not, in
general, be isolated. Here, we provide a condition that guar-
antees that the orbit is isolated. We also discuss what happens
when this condition is not satisfied.

Proposition 2: A unimodal periodic orbit with half-period
is isolated iff

(29)

Moreover, there exists a continuum of periodic orbits when (29)
is not satisfied.

Proof: The sufficiency of (29) is straight forward. The
roots of are isolated and hence any continuum of orbits
must have the same half-period. Referring to (25), (26) and the
following statement, must belong to .
Equation (29) then implies that and hence and

are unique. Hence there is only one periodic orbit with
a given .

Now for the necessity, suppose (29) is violated and in
. We claim that for any such of sufficiently

small magnitude, there is a periodic orbit passing through and
switching at and . First observe
that , , and .
To show that the trajectory throughand is a periodic orbit,
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Fig. 5. Periodic orbits withkwk = 0 (solid), 0.2 (dotted) and 0.438 (dashed) and the plot of (t)=jce ŵj for Example 2.

we only need that the switchings do not occur before time.
Since is strictly positive in , for sufficiently small

, (27), (28) are still satisfied. To compute the bound on,
observe that (27), (28) are equivalent to

for (30)

Let be the unit vector along and

(31)

Thus, for , (27) and (28) are satisfied, and every
with has a periodic orbit passing through it.

Remark 2: The matrix is nonsingular iff spec
, is empty. Moreover, if does

not have any purely imaginary (nonzero) eigenvalues,
and the observability of guarantees (29).

Remark 3: The existence of a continuum can also be inferred
from Remark 1and the symmetry of the inequality condition in
Proposition 1. If the pair such that
represents a periodic orbit, so is the pair and so is each
of their convex combinations. All these orbits have the same
period.

A degenerate case with a continuum of periodic orbits is
structurally unstable in the sense that this behavior is not robust
to small perturbations in , and but, is not impossible as
illustrated in the following example.

Example 2: Consider the system

We have and for .
Hence, there is a periodic orbit at passing through

. But (29) is not satisfied. There is a nonzero
vector in . From (31), can
be computed to be 0.4882 (see Fig. 5. The eigenvalues of

are 0, 0.9691 and 1 for the nominal orbit through. There is
a continuum of periodic orbits through each with

, some of which are shown in Fig. 5. When ,
there are no more orbits through as the input switches
before time .

C. Stability of Periodic Orbits

The stability of the Poincaré return map
is equivalent to the stability of the periodic orbit. However,
due to the nonlinearity of the Poincaré map, it is hard to
guarantee global stability even with a stablematrix. Some
results have been obtained by Kolesov [23] using the notion
of strongly positivetransfer functions. Global stability for a
class of two dimensional systems has been shown by Megretski
[14]. Recently, a computational procedure to check global
stability using quadratic Lyapunov functions, is proposed in
[34]. However, linear stability results can be easily obtained.

Let , denote the derivatives of at
and at respectively. From Remark 1, we can see that

. Assuming that the orbit hits the switching
surfaces transversally, can be obtained as

(32)

where is the tangent vector
just before the switching. The derivative of the return map

is then . A
fixed point of is stable if has all eigenvalues within the
open unit disk.

Remark 4: It can be noticed that and
hence, , and always have a zero eigenvalue. This
is due to the fact that both the domain and range of these maps
have been restricted to a hyperplane thus, in essence, making
them dimensional.

Remark 5: When is stable, it is possible to obtain a suf-
ficient condition for global stability using the contraction map-
ping principle. The idea involves identifying a compact invariant
set of the system as in [25], [34] and then requiring that
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on . These results will be pre-
sented in a future work.

For an isolated symmetric unimodal periodic orbit,
and we can see that and
The linear stability result can then be stated as below [12].

Proposition 3: Suppose the system has an isolated sym-
metric unimodal periodic orbit of half-period and the
transversality condition , where ,
is satisfied. Then,

and the orbit islocally stableif all the eigenvalues of are
inside the open unit disk in the complex plane. It isunstableif
at least one of the eigenvalues of is outside the unit disk.

Remark 6: When the system exhibits degeneracy, any
in is an eigenvector of with a

unity eigenvalue, confirming that the orbit is not asymptotically
stable.

Example 3: This example shows that even ifis not stable,
the periodic orbit may be locally stable. Consider the system

This system is unstable. However, has a root at
and stays positive for . So, by

Proposition 1, there exists a unimodal periodic orbit. It passes
through . The orbit also satisfies the
transversality condition and

The eigenvalues of are 0.9505 and 0, and the periodic orbit
is locally stable. The system is unbounded when the initial con-
dition is too far from this orbit.

D. Asymmetric Unimodal Oscillations

Using the Poincaré maps, we can also obtain the necessary
and sufficient conditions for unimodal periodic orbits with dif-
ferent time intervals between the relay switchings. Conditions
for the existence of such asymmetric oscillations for systems
with an asymmetric relay have been given in [12], but they have
not been identified in any system. Here, we show that asym-
metric orbits can exist even in systems with a symmetric relay.

Let and ( ) be the time intervals corre-
sponding to and , respectively. Let ,

be the states at switching and define .
Then we have

which can be written as

(33)

(34)

Adding the two and letting , we get

(35)

It can be shown, using Lemma 1, that for there is a
solution iff is nonsingular. In particular, cannot
be singular. Hence, we have

(36)

(37)

Let

(38)

(39)

The necessary and sufficient conditions can now be stated as
follows.

Proposition 4: The feedback system in Fig. 2 has a unimodal
periodic orbit with different time intervals between relay switch-
ings if and only if , ( ) satisfying

(40)

(41)

with , , and for
and , respectively.

Moreover, the asymmetric periodic orbit is stable if all the
eigenvalues of , where is given by
(32), are within the open unit disk. It is unstable if at least one
eigenvalue is outside the unit disk.

Proof: Equations (40) and (41) follow directly from
, and (36) and (37). The positivity of

and ensures that the input does not switch before
or as applicable in each part of the orbit. The stability
analysis of Section II-C applies here as well and the second
part of the proposition is straight forward after noting that

by symmetry (see Remark 1).
Remark 7: The inequality conditions in Proposition 4 also

have a symmetry. Together with the symmetry of the return
map in Remark 1, this implies that if there is a periodic orbit
through with periods and , then there is another
orbit through with periods and . However, un-
like in Remark 3, convex combinations are not periodic orbits.

Example 4: This example shows that unimodal periodic or-
bits with can exist. Let

This system satisfies (40) and (41) for and
. We have and

. The inequalities
for and for are also
satisfied as shown in Fig. 6. Hence, by Proposition 4, there is
a unimodal periodic orbit throughand . The eigenvalues of

are 0, and 1996.8 and hence the orbit is
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unstable. A simulation over one period is shown
in Fig. 6.

It is possible to obtain more complex orbits involving many
switchings of the relay from the bifurcation of unimodal or-
bits . The bifurcation of the unimodal orbit
is caused by the function hitting zero before time , thus
causing an early switching. When there are no other stable uni-
modal orbits, this results in an orbit with more than two switch-
ings. A similar bifurcation in relation to sliding orbits in relay
systems has been reported recently in [35].

The following example illustrates a phenomenon analogous
to period doubling observed in smooth nonlinear systems [6, Ch.
4].

Example 5: Consider the relay feedback system with, ,
and given by the realization of

The bifurcation parameterdetermines the location of a pair of
poles. This linear system is stable and the feedback system has a
unique-stable unimodal periodic orbit (see Fig. 7) for ,

]. Only the root of , marked with an asterisk,
corresponds to a valid periodic orbit for . As increases
above , the unimodal orbit ceases to exist since hits zero
before causing an early switch. The system then goes to a
periodic orbit with four switchings as shown in Fig. 7.

Increasing further results in a succession of such bifurca-
tions resulting in orbits with many switchings. The orbit for

with a large number of switchings is shown in Fig. 8.

III. ENTRAINMENT, SYNCHRONY, AND PHASE LOCKING

We now consider the response of a relay relaxation oscillator
under periodic external forcing. Forcing an autonomous oscil-
lator with a periodic signal produces an interesting phenomenon
known asentrainmentor resonance. When the frequency of the
forcing signal ( ) is close tobeing a rational multiple () of
the natural or autonomous frequency () of the oscillator, it
can be entrained, i.e., the system adapts itself and responds with
a frequency . A generalization of forcing is a system
of coupled oscillators where each oscillator can influence some
or all the others andvice versa. Coupled oscillator systems ex-
hibit synchronyandphase locking. Synchrony is a state wherein
all oscillators in the network oscillate with the same phase. In
phase locking, each oscillator maintains a constant phase differ-
ence with respect to the others. This subject has been studied in
great detail in many physical, chemical and biological systems
(see [6]–[8], [27], [36], [37], and the references therein).

In the remainder of the paper, we focus on a similar analysis
for the relay relaxation oscillator. We treat in detail the simple
but representative case where the linear system consists of an
integrator (see Fig. 9). We demonstrate entrainment at the pri-
mary harmonic ( ) and other subharmonics ( ,
integer). We also study synchronization when two or three relay
relaxation oscillators are coupled in a ring. The analysis can be
extended to -member rings.

Models of relaxation oscillators have a fast and a slow
subsystem and hence, two possible ports for input and two

Fig. 6.  (t),  (t) and the periodic orbit withT = 0:6361 andT =
8:1404 for the system inExample 4.

Fig. 7. Graph of�(T ) and (t) just after the bifurcation andu(t) for the
resulting orbit inExample 5.

for output. Thus, there are two qualitatively different kinds of
forcing depending on the input port used. The mechanism for
entrainment in piecewise linear models of relaxation oscilla-
tors described in [7] and the analysis of coupled relaxation
oscillators in [28] and [38] consider input to the fast subsystem
whereas in our analysis we consider input to the slow sub-
system (the integrator). When relay hysteresis is considered,
the analysis in [8] corresponds to taking the output of the slow
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subsystem, whereas we consider the output from the relay
which is the fast subsystem. Furthermore, relay switchings can
be imagined asfirings and hence, coupled relay systems can
be viewed abstractly as pulse coupled oscillators. Droret al.
[29] analyzed rings of pulse-coupled oscillators using phase
response curves under the assumption that the firing of an
oscillator affects only the immediate next firing of the next os-
cillator in the ring. However, in coupled relay oscillators, even
in a situation close to entrainment, a switching can influence
two future switchings of the next oscillator. This makes the
phase response curve method unsuitable. Using the technique
described in [27], the relay oscillator system with weak forcing
input to the slow subsystem can be reduced to a piecewise
continuous flow on the torus, and the entrainment behavior can
be obtained by studying the underlying circle map. However,
we use a different technique that works for the case of strong
forcing also. We not only obtain the same results in the weak
forcing regime as with the circle map technique, but also obtain
the bistability regions under strong forcing in the overlapping
region of primary and subharmonic entrainment.

In this paper, we restrict our attention toregular dynamics,
i.e., periodic states but forced relay systems can exhibit com-
plex chaotic dynamics under strong forcing due to the presence
of stretching and foldingaction [6, p. 339]. However since the
fast subsystem is not directly affected by the coupling, the mech-
anism for stretching and folding is through the acceleration and
deceleration of the initial conditions moving along the branches
of the relay.

A. Primary and Subharmonic Entrainment

Consider the configuration of Fig. 9 where a relay relaxation
oscillator of natural half-period is being driven by an external
periodic signal . Notice the change of notation in Fig. 9 where a
negative feedback is used at the integrator. The signalis taken
to be a square-wave of amplitude and half-period . For
primary or subharmonic entrainment the particular shape of the
signal is not important but only its -content over its half-pe-
riod. This is because it does not matter how the output of the in-
tegrator varies except when it reaches the switching points

. Given any zero-mean forcing signal, it is always possible
to find an equivalent square wave that preserves the switching
times of the relay and hence . In the analysis below, we will
identify the entrainment regions in the– parametric plane
where is the normalized autonomous period. The
results of this section are summarized in Fig. 10. Only the pri-
mary entrainment is possible in the regionsand . In
and , the system exhibits bistability and both the primary and
secondary subharmonic entrainment are possible. Higher sub-
harmonics and multistability can be observed in the triangular
regions emanating from the other odd integers on-axis which
are not analyzed here.

Let ( ) denote the times at which the state of
the relay switches between and . We index the switching
times with the convention as shown in
Fig. 9. We define asentrainment(at the fundamental or primary
harmonic with period ) the situation where

Fig. 8. u(t) andy(t) for the orbit corresponding top = 15 in Example 5.

Fig. 9. Relay relaxation oscillator with a forcing input.

Fig. 10. Entrainment regions for the relay oscillator.

for all sufficiently large and some fixed value of
, i.e., after sufficiently long time the switchings

of the forcing signal and relay alternate. Similarly, we often
talk about entrainment in subharmonic resonances when the
switching takes place at regular intervals missing an integral
number of periods of the forcing signal. We say that the
oscillator isentrappedif its initial state is such that entrainment
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eventually takes place, i.e., if the initial phase lies in the domain
of attraction of the entrained state.

The approach we use to prove entrainment involves assuming
a certain switching pattern and then investigating the existence
and stability of fixed points consistent with that pattern. It is con-
venient to work with a phase variable representing the fractional
lead or lag of w.r.t in stead of the switching times. We de-
fine thephaseat the th switching as . For
the forced relay system, two switching patterns are possibleviz.
in-phaseandout-of-phase. If the relay switches to during

respectively, we call it in-phase switching and the phase
is positive i.e., . Similarly if the relay switches to

occur during , it is out-of-phase switching with
. Fig. 9 shows the in-phase switching pattern

whereas changing the sign of corresponds to out-of-phase
switching.

Proposition 5: For the oscillator of Fig. 9, driven by the
square wave of amplitude and half-period , entrainment
(at the fundamental harmonic) is possible iff

(42)

Subharmonic resonance with period is also possible
in case

(43)

If , the oscillator is entrapped at the fundamental harmonic
for almost all values of the initial phase . In
general, intervals exist for the values of the initial phase where
the oscillator is entrapped in subharmonic resonance.

Proof: 1) Necessary Conditions for Entrainment—Assume
that the first switching from to takes place at . We first
consider the case of in-phase entrainment, (

). Switching at two subsequent values for the phase
and ( ) requires that the state of the integrator
changes under the influence of the driving and feedback signals
by , giving

Hence,

(44)

where and . Since ,
, and (44) have a fixed point

(45)

By assumption, the phase at steady stated lies in [0, 1) giving

(46)

Clearly, this condition is also sufficient since an initial phase
leads to entrainment. Since (44) has a Lipschitz constant

with , there is at least an open interval about the fixed
point where entrapment is guaranteed.

We now consider the case of out-of-phase entrainment,
( ). Switching at two subsequent values for

the phase and now leads to

and, therefore, to

Since , then , ruling out the
possibility of a stable fixed-point . Thus, in
an entrainment situation the sign of the oscillator necessarily
follows the sign of the driving signal and .

2) Range of for Entrapment at the Primary Harmonic—We
consider separately the two cases and

for the initial phase.
Case (a): Let . Switching cannot take place

before since the state of the integrator at is
by virtue of the fact that .

Switching over the next half-period interval requires that
which gives

. In case , this always holds since
. In case , it still holds whenever .

The same holds true for all and since with
, in both cases, entrainment takes place.

We now consider separately the case where (and,
hence, ). In this case, the possibility exists for switching
to take place after the oscillator has missed an integral number of
periods, , giving rise tosubharmonic resonance. In particular,
if the state of the integrator at is

then it is still greater than at and and it may only reach
over the next half period , at a phase such that

. This
gives switching at (with missing) where

(47)

with . The iteration in (47) is still a
(Lipschitz-) contractive map from to leading to a fixed
point phase value of . A necessary con-
dition for entrainment at this subharmonic resonance is that

which yields

Similarly, in the case of

other subharmonic resonances are possible where switching oc-
curs after missing integral periods ( ) settling at

with . In
all these cases intervals of entrapment at the subharmonic res-
onance exist, as well as the possibility of a more complicated
behavior in general (provided, are sufficiently large).
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We now identify intervals of entrapment at the primary har-
monic. First note that, in general when , switching
cannot take place in the interval since

by virtue of the fact that .
In the case where , the next switching will necessarily
take place in since

by virtue of the conditions
and and entrapment takes place. We now deal with the
case . Since , then . Define

A simple computation shows that if , switching will
take place in the next half-period, and .
Here, implies that which in turn
shows that leads to entrainment at the fundamental
harmonic. In general, there are other intervals in [0, 1] where
entrapment at the fundamental, or other harmonics, is also pos-
sible. The structure of these intervals is complicated in gen-
eral and will only be elucidated in Proposition 6 for the case

.
Case (b): We finally consider the case . We

show that the phase in subsequent intervals drifts and eventually
(for some ) lies in [0, 1]. Thereby the transition toward

entrainment follows the previous analysis.
In case , no switching out-of-phase is possible in sub-

sequent intervals since the external driving signal exceeds the
value of the feedback. Eventual switching is unavoidable since
the value of reduces by over every subsequent -in-
terval. Therefore, the next switching will take place in-phase,
giving a positive value for the relevant, which brings us back
to the previous analysis. Entrainment at the fundamental fre-
quency or at another subharmonic resonance will depend on the
particular value of in the first in-phase switching.

Now consider the case . We again show that in-phase
operation will eventually take place, albeit, after possibly a large
number of intervals. In case with

the next switching takes place in the same interval
, since at a point the value of becomes ,

giving rise to in-phase operation (then just rename ).
To see this note, that if no switching were to take place the
value of would be . Define

for and set .
It can be checked that if out-phase switching takes place with
phase in ( ), the next switching will take place
over the next half-interval period (hence still out-of-phase) with
value for the corresponding phase in . Hence, after a
finite number of steps, the phase will be in the interval
and in the next step in-phase operation will be restored. It only
remains to show that the union of the intervals for

covers . This follows from the fact that
as increases (since

while ).
We wish to elucidate a case where subharmonic resonance

is possible. The general situation is quite complex, so we will
present only the analysis of the case where , in
which case the only subharmonic resonance possible is the one
with period .

Proposition 6: Consider the oscillator of Fig. 9, driven by
the square-wave of amplitude and half-period , and with
normalized period satisfying .

1) If , the oscillator is
always entrapped at the fundamental harmonic.

2) If ,
the oscillator is entrapped at the fundamental harmonic
when

and in a subharmonic resonance with periodother-
wise.

3) If , the oscillator is entrapped
at the fundamental harmonic when

and in a subharmonic resonance with period
otherwise.

Proof: We deal only with initial in-phase switching, i.e.,
. From the Proof of Proposition 5 we know that

a value of in the interval with
leads always to entrapment at the fundamental harmonic. On
the other hand, if the oscillator skips two half-period
intervals and switches again at

(48)

The map in (48) takes the interval onto the interval
where and .
Another important quantity is the pre-imageof under the
same map. This is .

There are three cases of interest: a) when under the action of
the map in (48), lies squarely in the domain of attraction
of the fundamental resonance; b) when it lies in the domain of
attraction of the subharmonic resonance; and c) themixedcase.
Thus, in case all initial phases lead to entrainment at
the fundamental harmonic, albeit after the interval . This
condition leads to the condition given in part 1) of Proposition
6. In case , all initial phases in the interval lead to
phase values in the same interval after missing a complete
period. This gives rise to condition in part 3) of Proposition 6.
The mixed case requires considering the pre-image of, , and
its relative position with regard to . It turns out that
holds always. Therefore, all values of lead to entrap-
ment at the fundamental resonance, while all values larger than

and less than lead to subharmonic resonance. This gives the
conditions and the particular intervals in part 2) ofProposition
6.

B. Synchrony and Phase Locking in Coupled Relay Oscillators

Rings of coupled relay relaxation oscillators can exhibit syn-
chrony and phase-locking phenomena ([30], [31]) for suitable
coupling strengths. Here, we demonstrate these phenomena for
the two and three member rings shown in Fig. 11. A single oscil-
lator unit with autonomous half-period along with its input
and output ports is shown in Fig. 11(a). The method used is anal-
ogous to the case of entrainment analysis in Section III-A. We
enumerate all the switching patterns for the oscillators with the
assumption that no oscillator switches twice before all the others
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in the ring switch, and investigate the existence of fixed points
and their local stability. The above assumption implies that com-
plex switching patterns are not considered and the situations an-
alyzed cover only a part of the state space. Therefore, the results
are only sufficient conditions for synchrony or phase locking.

The two oscillators and shown in Fig. 11(b) have au-
tonomous half-periods and and are connected in a feed-
back loop with gains and respectively. Without loss of gen-
erality, assume that . We investigate the possibility of
the feedback interconnection attainingsynchrony, that is, both
components oscillating with a common period. The conditions
for synchrony are stated in the following proposition. Two os-
cillator ring with the same sign for the gains cannot attain syn-
chrony for and will not be discussed here.

Proposition 7: The two oscillator system in Fig. 11(b) with
attains synchrony with (a) leading for

and (b) with leading for
with the mean half-period

.
Proof: The two scenarios are illustrated in Fig. 12. Ob-

serve that if a gain produces the scenario (a), then the sym-
metry of the ring in Fig. 11(b) implies that a gain produces
the scenario (b). Hence we need to prove only part (a).

Consider the scenario shown in Fig. 12(a). Letbe the -th
switching time of the -th oscillator. Tracing the states of the
integrators of the two oscillators, we obtain

(49)

(50)

Let the half-period at synchrony be and be the lag of
w.r.t , i.e., and for

all . Substituting in (49), (50), we get and
. The constraints give

rise to .
Now, to analyze the stability of the synchronous state, define

the phase variables and denote .
Substituting (49), (50), we get

The eigenvalues of this system are 1 and . The
unity eigenvalue has the eigenvector and corresponds to a
constant shift in time. The second eigenvalue has modulus less
than unity since . Hence, the synchronous state shown
in Fig. 12(a) is stable.

Remark 8: From a control perspective,Proposition 7implies
that both the period and phase of a relay relaxation oscillator can
be set to arbitrary values using an oscillatory feedback controller
and proper choice of gains.

Now let us consider a ring of three coupled oscillators.
For simplicity, we assume that the oscillators are identical.
Fig. 11(c) and (d) shows the cases of one-way coupling and
two-way coupling respectively. Again, a two-way coupled
system with gains having the same sign in both directions does
not show stable phase locking behavior and will not be consid-
ered. We can represent the switching scenarios using a compact

Fig. 11. Coupled relay oscillators. (a) single oscillator with input and output
ports, (b) two member ring with gains�, (c) three member ring with one-way
coupling, and (d) three member ring with two-way coupling.

Fig. 12. Two scenarios for synchrony in the two oscillator system: (a)O leads
O , (b)O leadsO .

notation in stead of pictures. For example the two scenarios in
Fig. 12 can be represented as and
respectively. Of all the simple switching patterns (recall our
assumption that no oscillator switches twice before the others
switch) for the three member ring, only two lead to stable phase
locking. The following propositions summarize the results for
three member rings. Assume, without loss of generality, that
the oscillators have unit autonomous half-period.

Proposition 8: Consider the three oscillator system with
one-way coupling shown in Fig. 11(c) where all the oscillators
are identical and have unit autonomous half-period. The system
attains a 1/3 phase locked state with half-period
and the switching pattern (a) for
and (b) for .
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Proof: Consider the switching pattern and
let denote the th switching time of theth oscillator with the
convention that . Tracing each of the oscillators,
we obtain

(51)

(52)

(53)

Observe that there is a fixed point with a phase difference of 1/3.
Let be the resulting half-period, i.e., and set

for all . Substituting in (51), we
obtain .

To analyze the stability, define the phases
and let . Substituting (51)–(53),

we get

The eigenvalues of this system are obtained usingMathe-
matica® as 1, [

. The unity eigenvalue has the eigenvector and cor-
responds to a constant shift in time. The nontrivial eigenvalues
have modulus less than unity for . Hence, the syn-
chronous state shown in Fig. 12(a) is stable for .

Similarly, considering the pattern we can
show that there is a 1/3 phase locked state with half-period

and it is stable for .
Along the same lines, we can analyze the two-way coupled

three oscillator ring. We skip the proof and state the result. No-
tice that part (a) of the below proposition implies part (b) by
symmetry.

Proposition 9: Consider the three oscillator system with
two-way coupling shown in Fig. 11(d) where all the oscillators
are identical and have unit autonomous half-period. The system
attains a 1/3 phase locked state with half-period and
the switching pattern (a) for and (b)

for .
Remark 9: Observe that in the one-way coupled case, even

excitatory coupling (positive ) between the oscillators results
in a state with out-of-phase locking where each oscillator re-
sponds in the opposite direction than the excitation signal.

A completely synchronous state with simultaneous switch-
ings of all the three oscillators has been observed in the two-way
coupled system in numerical simulations. But the approach to
this state always violated the simple switching pattern assump-
tion implying that the trajectory of the system goes out of the set
of initial conditions we considered in this paper. The technique
we have used can be extended to-member rings to identify and
analyze the stability of phase-locked states.

IV. CONCLUSION

A basic model for relaxation oscillators is that of a hysteresis
in feedback with negative-integral action. The classical van der
Pol oscillator can be viewed in this form. This structure has

been identified in many chemical and biological systems and
has also been used to design many chemical oscillators. This
structure can be exploited to alter the behavior of an existing
oscillatory system, e.g. by changing the integral action with a
suitable outer loop. While there is an extensive literature on the
subject of oscillations, the problem of predicting oscillations in
higher dimensional systems, in general, is a difficult one.

In this paper, we have studied in detail unimodal periodic os-
cillations for the case of a feedback connection with a linear
system and a relay hysteresis. Precise conditions for the exis-
tence and local stability are provided using the Poincaré map.
The existence of a degenerate case with a continuum of periodic
orbits is shown. Asymmetric orbits and orbits with many relay
switchings per period have also been addressed. The method-
ology extends to the case of nonlinear systems connected to
static hysteresis as well.

Relay oscillators can exhibit entrainment phenomena very
much like other smooth oscillators, and can be used in coupled
oscillator models. The particular case of pure integrator in feed-
back with relay hysteresis is similar to the van der Pol oscillator
and is amenable to a detailed analysis. We study in detail pri-
mary and subharmonic entrainment in this system when forced
by a periodic driving signal at the input to the integrator. We
also consider the synchrony and phase locking in rings of two
and three coupled oscillators. The technique can be applied to
member rings as well.

While oscillations are omnipresent in natural as well as in en-
gineering systems, key questions still remain. In particular, iden-
tifying periodic orbits for general systems, e.g., in the optimal
periodic control problem [39], [40], is quite challenging. On the
other hand, robust control of periodic orbits is still a relatively
unexplored area [41]. We expect that the paradigm of hysteresis
with a linear feedback component will provide a useful frame-
work for the further development of the subject.
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